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Systemes différentiels linéaires

1 Loutil odeint

Nous allons voir ici comment résoudre (numériquement) un probléme de Cauchy a I'aide de Python ; et ob-
server sur des exemples des caractéristiques des trajectoires.

Nous travaillerons notamment sur des systémes 2 x 2 : dans ce cas, les « trajectoires » des solutions se représen-
tent pas des courbes du plan, et nous pourrons illustrer les notions d’état d’équilibre et de convergence (ou
divergence) de solutions.

1.1 Résolution d’'un systeme différentiel : la commande odeint

Le package scipy de Python comporte la fonction odeint (ordinary differential equation integration) qui per-
met de trouver 'unique solution d’'un probléme de Cauchy donné.

La résolution ne se fait pas de maniére symbolique (ie en manipulant des polynémes, des exponentielles, etc.)
mais de maniere numérique (ce qui donne des valeurs approchées).

Les imports nécessaires sont :

import numpy as np # numpy
import matplotlib.pyplot as plt # pour dessiner
from scipy.integrate import odeint # solveur d’équa diff

Par ailleurs, on a vu en cours que la résolution d'un systeme différentiel est fortement liée a la réduction de la
matrice associée : nous importerons donc le package d’algebre linéaire numpy . linalg.

import numpy.linalg as al # outils d’algébre linéaire, notamment de réduction

1.2 Syntaxe de odeint

La fonction odeint résout une équation de type X' = f(X, t) avec la condition initiale X(#) = X,. Elle regoit
trois arguments :

1. lafonction f, quirecoitunnp.array et unréel ¢ et renvoie un np.array.
NB : dans notre programme les équations sont en fait de la forme X' = f(X) (on parle d’équations dif-
férentielles autonomes). 1l faut néanmoins faire apparaitre ¢ dans les arguments de la fonction f, quitte
arenvoyer un résultat indépendant de ¢.

2. la condition initiale X, (objet de mémes dimensions que X).

3. l'intervalle de résolution [a, b] sous forme d'un np.array de réels [t0,t1,t2,...,tn] telsque t{p = a
et t, = b. Le premier élément t0 doit étre le point définissant la condition initiale.
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X =-
Par exemple, pour résoudre le systeme { , ;’ sur l'intervalle [0, 1], avec la condition initiale x(0) = 3,
Yy =—cx+y
y(0) =5, on écrira:
# fonction f(X,t)
def fonc(X,t):
A= ... .. ... ..
# la matrice associée au systéme
return ............

# on renvoie le produit matriciel AX

# intervalle de résolution sous forme de linspace
T =

# calcul de la solution
sol = odeint( ............ , [eveo... s e 1, . )

On rappelle que la commande numpy np . dot effectue un produit matriciel.

Lobjet sol renvoyé par la commande odeint est une matrice (typenp.array) a 2 colonnes, et autant de lignes
que de points dans I'argument T=[t0,t1,t2,...,tn] : la 1ére colonne contient les valeurs approchées de
x(t), x(t1),..., x(t,) ; etla seconde colonne la méme chose pour la fonction y.

Exercice 1. sol étant un np.array a deux colonnes, donner les syntaxes permettant de créer un np.array x
égal a la premiere colonne de sol, et unnp.array y égal a la seconde colonne de sol.
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1.3 Représentation(s) graphique(s)
Etant données des fonctions x1, xy, ..., X, définies sur un intervalle I, on peut envisager deux représentations :
¢ Les n courbes des x; sur I'intervalle I.

* L'ensemble des points (x;(2), x2(£),...,x,(2)) pour t €I (qQuon a appelé trajectoire du systéme).
Pour cette derniére représentation, on se limitera au cas n = 2 : ainsi les points (x;(¢), x2(#)) sont des
points du plan et on obtiendra une figure en 2 dimensions.

1.4 Courbesdes x;

La commande odeint renvoie, pour A€ .4, (R) et T un linspace égal a [#, 11, ..., Ip], la matrice

x1(t)  x2(t0) ... xn(lo)
x1(n)  x2(f1) ... xp(fy)
x1(tp)  x2(tp) ... xp(tp)

Munis des array T = [fg, &1, ..., [p] €t X1 = [x1 (%), ..., X1(Zp)], on peut tracer la courbe représentative de x; sur
Iintervalle (7o, ] par la commande

plt.plot( ............. s e )




Exercice 2. Compléter le code suivant qui permet de tracer les courbes de x, y et z sur l'intervalle [0, 5], ol x et

X' =-2x+2y-2z
y sont les solutions de { y' = -2x -4z vérifiant x(0) =0, y(0) =1, z(0) = 3.
Z=2x-2y+2z
[N S 5990 E4558E%7 (000600000 000000000000000000000000000000000000000000003 )

# la matrice du systéme X’=AX

def fonc(X,t):
return .............

T = np.linspace( ..... ... )
# dans ce qui suivra tO est le premier élément de T

sol = odeint (............. e e e e e )
# le second argument contient la condition initiale
# de la forme [x(t0),y(t0),z(t0)]

X = i
Y =

Z = e

# récupération des x(ti),y(ti),z(ti), cf exo 1

plt.plot (C............. s e color=’red’, label=’x(t)’)
plt.plot(............. s e e , color=’blue’, label=’y(t)’)
plt.plot C............. s e e , color=’green’, label=’z(t)’)

plt.legend ()
# tracé des trois courbes x(t),y(t),z(t) avec une légende

plt.show ()
# affichage

1.5 Outils de réduction

On a vu dans le cours que la structure et les propriétés des solutions d'un systeme différentiel sont fortement
reliées aux éléments propres de la matrice associée a ce systéme.

Python contient un package d’algebre linéaire (numpy . 1inalg) qui contient la commande eig permettant de
déterminer valeurs propres et vecteurs propres d'une matrice diagonalisable (dans le cas contraire, les algos
numériques ne fonctionnent pas bien).

-2 2 =2
Cherchons par exemple a diagonaliser la matrice A=|—-2 0 —4] vue dans le systeme précédent. Apres
2 =2 2

I'import :

import numpy.linalg as al

on peut taper dans la console :

D,P=al.eig([[-2,2,-2],[-2,0,-41,[2,-2,2]])
print (D)
print (P)

ce qui renvoie

[ 8.8817842e-16 2.0000000e+00 -2.0000000e+00]
[[-0.81649658 0.57735027 -0.57735027]
[-0.40824829 0.57735027 0.57735027]
[ 0.40824829 -0.57735027 0.57735027]]

Le premier array est la diagonale de la matrice D telle que M = PDP~! ; le second array est la matrice P.
La lecture des colonnes de P donne donc les sous-espaces propres ; la premiére colonne de P est par exemple



—0.81649658 0.81649658 2
—0.40824829 [, ce qui montre que E(A) = Vect (| —0.40824829 |) = Vect (| -1 |).
0.40824829 0.40824829 1

NB : ces éléments propres sont obtenus par des méthodes numeériques (assez souvent comme limites de suites).
On voit alors qu'on obtient des valeurs approchées des valeurs propres : pour +2 ¢a ne pose pas trop de probleme
mais la valeur propre nulle apparait sous la forme 8.88 x 10716, On ne peut pas faire mieux avec ces outils.

Par ailleurs les générateurs obtenus pour les SEP peuvent apparaitre assez désagréables... mais la encore c’est un
effet des méthodes numériques. Dans des cas favorables on saura revenir a des colonnes plus « fréquentables » en
divisant les générateurs par des coefficients bien choisis...
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Exercice 3. On avu que Eo(A) =Vect(| 1 |).
-1
ATaide de la sortie Python ci-dessus, déterminer deux colonnes C; et C3 a coefficients entiers telles que Ep(A) =
Vect (Cy) et E_2(A) = Vect (Cs).
Observer le comportement en +oo des solutions du systeme de I'exercice précédent pour les conditions ini-
tiales :

¢ X(0) «quelconque » (faites plusieurs essais)
e X(0)=C; (i=1,2,3)

* X(0)=C1+Cy

e X(0)=C;+C3

e X(0)=2C;-Cs

e X(0)=2C; +0.0001C, —C3

Prévoir la limite t — +oo de la solution ayant pour conditions initiales aC; +pC, + yCs, ou a, 3, Y sont des réels
quelconques.

Exercice 4 (pour les enthousiastes). Démontrer la conjecture de |'exercice précédent.

2 Pour aller plus loin : étude de trajectoires en deux dimensions

On se place maintenant en deux dimensions.

x' =
On adapte ici le code précédent pour tracer la trajectoire du systéme { , J ) sur [0,1], avec x(0) =1 et
Yy =—2x+y
y(0) = 2.
A = np.array( .... )

# la matrice du systéme X’=AX

def fonc(X,t):
return np.dot (A,X)

T = np.linspace( ... )
# dans ce qui suit t0O est le premier élément de T

sol = odeint(fonc, ... ,T)

# les ... contiennent la condition initiale de la forme [x(t0),y(t0)]
x =

y = c

# récupération des x(ti) et y(ti), cf exo 1

plt.plot (... , ...)
# tracé de la courbe formée par les points (x(t),y(t))

plt.show ()
# affichage




2.1 Trajectoires et champ de vecteurs

Dans la suite, on considérera les 5 matrices suivantes.

Matrice Valeur propre 1 | Sous-espace propre 1 | Valeur propre 2 | Sous-espace propre 2

A R e[} e[
[ v 1) vea ([ )
A vee ) vee )
mlis v | vee ) vee [ )
S I e 1) vea ([

(pour plus de simplicité et de lisibilité dans les dessins qui suivront, les directions propres sont les mémes pour
les 5 matrices)

Exercice 5.
1. Utiliser la commande al.eig pour compléter le tableau précédent.
2. Pour les systemes X' = A; X :

¢ Déterminer les états d’équilibre.

* Discuter |'existence de solutions divergentes.

Exercice 6. Compléter le code suivant, qui affiche les courbes représentatives des solutions du systeme X' = AX
pour une matrice A et un intervalle de résolution I définis dans le code.

A = np.array( .... )
# la matrice du systéme X’=AX

def fonc(X,t):
return np.dot (A,X)

T = np.linspace( ... )

sol = odeint(fonc, ... ,T)

# les ... contiennent une condition initiale de la forme [x(t0),y(t0)]
x =

y:

# récupération des x(ti) et y(ti), cf exo 1

plt.plot(... , ... , color=’red’, label="x(t)’)

plt.plot (... , ... , color=’blue’, label="y(t)’)

plt.legend ()
# tracé des deux courbes x(t),y(t) avec une légende

plt.show ()
# affichage

Tester ce code sur les 5 matrices ci-dessus. On pourra résoudre sur [0, 1] et faire varier la condition initiale.

2.2 Champ de vecteurs et trajectoires

On va dans cette section illustrer la dépendance existant entre la condition initiale d'une solution et son com-
portement asymptotique, que nous avons esquissé dans ce qui précede.

x'=
On définit la notion de champ de vecteurs. Considérons le systeme différentiel { , y2 . Si, pour une
y=—exty

valeur fy, une solution vérifie x(fy) = a, y(ty) = b, alors le systtme montre que x'(f) = b, y'(ty) = —2a+ b. On



peut alors associer au point (a, b) du plan le vecteur (b, —2a+ b) : sila trajectoire d'une solution passe par (a, b),
le vecteur tangent a la trajectoire en ce point sera (b, —2a + b).

Dans cet exemple, on appelle champ de vecteurs le tracé de tous les vecteurs (b,—2a + b) pour (a,b) € R?
(évidemment, il n’est pas possible de tracer TOUS ces vecteurs ; on en tracera un certain nombre bien répartis
dans le plan). Si on superpose le tracé d'une trajectoire du systéme différentiel a ce dessin, on verra qu'une
trajectoire «suit les fleches » du champ de vecteurs.

Pour tracer un champ de vecteurs on utilise la commande plt.streamplot de Matplotlib. Il faut générer un
«quadrillage » du plan qui définira les points ol on trace un vecteur.

HP :la commande np .meshgrid
Soient absc=[a,b,c,d] une liste d’abscisses, et ordo=[e, f,g,h] une liste d’ordonnées.
La commande np .meshgrid (absc,ordo) désigne le produit cartésien de ces deux listes, qui s'identifie a la matrice

(ae) (be) (ce) (de)

(@af)y bf) ©fH dn

(a,8) (bg) (c,8) (98

(a,h)y (b,h) (c,h) (dh)
Elle permet ensuite de séparer les abscisses et les ordonnées de ce nouvel objet : si on tape X,Y=np.meshgrid(absc,ordo), les X et Y
renvoyés sont :

a b ¢ d e e e e
x=|? b ¢ d ot Y= f rfr rfr f
a b ¢ d g & 8 g8
a b ¢ d h h h h
. - . . s . 0 -1
Le code suivant utilise np .meshgrid et permet le tracé du champ de vecteurs associé alamatrice A= 5 1

sur le rectangle [-10,10] x [-10, 10].

absc=np.linspace(-10,10,100)
ordo=np.linspace(-10,10,100)
X,Y=np.meshgrid (absc,ordo)

plt.streamplot (X, Y,-Y,-2*X+Y,arrowsize=2)

plt.show ()

On obtient le schéma suivant :

o =

5.0 - B>\\\\‘,
B2\

s ’;:\\'} 25 50 75 100

-10.0 T T
-10.0 -75 =50 =25

sur lequel on note des «directions de divergence » (coins haut-gauche et bas-droit) et des « directions de con-
vergence » (coins haut-droite et bas-gauche). Nous préciserons cela plus tard.

Superposons maintenant une trajectoire : on demande par exemple x(0) = —1, y(0) = 0. On trace alors sur le
méme dessin la trajectoire correspondante, pour £ € [0,3/2]' :

Lvaleur choisie pour ne pas trop déborder : avec des exponentielles divergentes, ¢a part vite !



A = np.array( .... )
# la matrice du systéme X ’=AX

def fonc(X,t):
return np.dot (A,X)

T = np.linspace( ... )

sol = odeint (fonc, ... ,T)

# les ... contiennent une condition initiale de la forme [x(t0),y(t0)]
x =

y = ...

# récupération des x(ti) et y(ti), cf exo 1

plt.plot(... , ... ,linewidth=3,color=’red’)
# tracé en trait épais pour la visibilité

absc=np.linspace(-10,10,100)

ordo=np.linspace(-10,10,100)

X,Y=np.meshgrid (absc,ordo)

plt.streamplot(X, Y,A[0,0]*X+A[0,1]1*Y,A[1,0]*X+A[1,1]*Y,arrowsize=2)
# superposition du champ de vecteurs

plt.show ()
# affichage

et on obtient (ca déborde un peu)

0 Q

—-54

10 éA\

-10.0 -75 -5.0 =25 0.0 2.5 5.0 7.5 10.0

Exercice 7. Reproduire cette expérience avec d’autres conditions initiales (et éventuellement en allongeant ou
en rétrécissant l'intervalle défini par le linspace T pour avoir une trajectoire bien proportionnée).
Tester notamment le cas d'une condition initiale appartenant a un sous-espace propre. Qu'observe-t-on ?

Exercice 8. Reprendre 'exercice pour les matrices Ay, ...,As. On visualisera les faits suivants :

¢ Avec A, toute trajectoire obtenue tend vers (0,0) : on visualise en effet que toutes les fleches raménent a
Porigine.

* Avec A3, toute trajectoire non nulle diverge (les fleches montrent que toute trajectoire qui n’est pas (0, 0)
explose).

* Avec Ay, la trajectoire converge ssi la condition initiale est dans Ker (A3) (et dans ce cas la trajectoire est
en fait constante !). Sinon, elle diverge.
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superposer sur le champ de vecteurs). On remarque alors que les fleches s’éloignent de 1'équilibre (on
parle d’équilibre instable).

Les points d’équilibre sont Vect (( )) : ils se représentent donc par la droite d’équation y = —2x (a

* Avec As, toute trajectoire converge vers un point d’équilibre.
Les points d’équilibre sont cette fois Vect ((1)) ; donc la droite y = x. Cette fois les fleches se dirigent vers

I'équilibre (on parle d’équilibre stable).

Et dans le cas non diagonalisable ?? Pas de chance c’est celui qui donne les plus jolies figures. Tester par
x' =2x+3y {x’:x—5y {x’:—y

y =-4x-4y y =2x+3y y=x

les résoudre il faudrait faire de la trigonométrie et des nombres complexes...

exemple les systémes { (pas de valeur propre réelle). Mais pour



