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Exercice 1

On considère les matrices :

I =
1 0 0

0 1 0
0 0 1

 , J =
0 1 0

0 0 1
0 0 0

 , K =
0 0 1

0 0 0
0 0 0


On note F = Vect(I, J,K).

1. Donner une base et la dimension de F .

Il est facile de vérifier (mais il faut le faire, et ne pas dire que I,J,K sont non colinéaires !!!) que (I, J,K) est
libre ; c’est donc une base de l’espace qu’elle engendre.
dim(F ) = Card({I, J,K}) = 3.

2. Calculer les produits J2,K2, JK,KJ. En déduire que F est stable par produit, c’est-à-dire : ∀ (M,M′) ∈
F 2, MM′ ∈F .

Calcul direct : J2 = K, K2 = KJ = JK = 0 (matrice nulle de M3(R)).
Avec ces formules les calculs se simplifient un peu : si M = aI+ bJ + cK et N = dI+ eJ + f K sont deux
éléments de F alors

MN = (aI+bJ+cK)(dI+eJ+ f K) = adI+aeJ+a f K+bdJ+beK+cdK = (ad)I+(ae+bd)J+(a f +be+cd)K ∈F

et on a bien la stabilité par produit.

3. On s’intéresse à l’inversibilité des matrices de F . Pour (a,b,c) ∈R3, on note M(a,b,c) = aI+bJ+ cK.

(a) Montrer que M est inversible ssi a ̸= 0.

M(a,b,c) =
a b c

0 a b
0 0 a

 est triangulaire, donc inversible ssi tous ses coeff diagonaux sont non nuls.

Ceci équivaut bien ici à a ̸= 0.

(b) Pour (b,c, x, y) ∈R4, calculer le produit
(
I+bJ+ cK

)(
I+xJ+ yK

)
. En déduire M(1,b,c)−1.

Utiliser la question 2 !!
En changeant le nom des coefficients(

I+bJ+ cK
)(

I+xJ+ yK
)= I+ (b +x)J+ (y +bx + c)K

On pense alors à chercher l’inverse de M(1,b,c) sous la forme M(1, x, y) avec x et y convenables.
D’après le calcul précédent, si b +x = 0 et y +bx + c = 0, on aura bien

(
I+bJ+ cK

)(
I+xJ+ yK

)= I.
On résout alors : {

b +x = 0

y +bx + c = 0
⇔

{
x =−b

y =−c −bx = b2 − c

et on a donc M(1,b,c)−1 = M(1,−b,b2 − c).

4. On s’intéresse maintenant aux puissances de la matrice M(1,1,1) = I+ J+K.
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(a) Exprimer
(
I+ J+K

)2 et
(
I+ J+K

)3 comme des combinaisons linéaires de I, J,K.

On utilise encore le calcul :

(aI+bJ+ cK)(dI+eJ+ f K) = (ad)I+ (ae +bd)J+ (a f +be + cd)K

Pour a = b = c = d = e = f = 1 : (I+ J+K)2 = I+2J+3K
Et avec a = b = c = d = 1, e = 2 et f = 3 :

(I+ J+K)3 = (I+ J+K)(I+ J+K)2 = (I+ J+K)(I+2J+3K) = I+3J+6K

(b) Justifier que pour tout entier n ∈N, il existe trois réels an ,bn ,cn tels que(
I+ J+K

)n = anI+bnJ+ cnK

Justifier que ces réels sont uniques.
(I+ J+K)0 = I ∈F .
Par stabilité de F par produit on a immédiatement : I+J+K ∈F ⇒∀n ∈N∗, (I+J+K)n ∈F ; ce qui
par définition de F signifie que (I+ J+K)n s’exprime comme combinaison linéaire de I, J,K.
Les coefficients intervenant dans cette combinaison linéaire sont uniques : ce sont les coordonnées
de (I+ J+K)n dans la base {I, J,K}. Par ailleurs .

Exprimer an+1,bn+1,cn+1 en fonction de an ,bn ,cn .

Encore un petit calcul :

(I+ J+K)n+1 = (I+ J+K)n × (I+ J+K) = (anI+bnJ+cnK)(I+ J+K) = anI+ (an +bn)J+ (an +bn +cn)K

d’où par unicité des réels an+1,bn+1,cn+1 :
an+1 = an

bn+1 = an +bn

cn+1 = an +bn + cn

(c) Déterminer la valeur de an pour tout n ∈N ; puis de bn pour tout n ∈N.

La suite (an) est constante (première équation) : ∀n ∈N, an = a0 = 1 (car (I+J+K)0 = I = I+0.J+0.K
donne a0 = 1, b0 = c0 = 0).

On a alors : ∀n ∈ N, bn+1 = bn + 1 et b0 = 0. (bn) est donc arithmétique et on a directement :
∀n ∈N, bn = n.

(d) Montrer : ∀n ∈N, cn = n(n +1)

2
.

On a ensuite : ∀n ∈N, cn+1 = cn +n+1. Avec c0 = 0 on a le résultat souhaité par une récurrence sans
difficulté.

5. On rappelle que pour M inversible, on définit M−n = (
M−1

)n
. Montrer, à l’aide de ce qui précède, que

pour tout entier n > 0, on a (
I+ J+K

)−n = I−nJ+ n(n −1)

2
K

Il suffit de reprendre la question 3b.

(I+ J+K)−n = ((I+ J+K)n)−1 = (anI+bnJ+ cnK)−1 =
(
I+nJ+ n(n +1)

2
K

)−1

= I−nJ+
(
n2 − n(n +1)

2

)
K

= I−nJ+ n(n −1)

2
K
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Exercice 2

Partie 1 : Étude d’une variable discrète sans mémoire.
Soit X une variable aléatoire discrète à valeurs dansN, telle que : ∀m ∈N, P(X Ê m) > 0.
On suppose également que X vérifie : ∀(m,n) ∈N2,P(XÊm)(X Ê n +m) =P(X Ê n).
On pose P(X = 0) = p et on suppose que p > 0.

1. On pose q = 1−p. Montrer que P(X Ê 1) = q. En déduire que 0 < q < 1.

Comme X(Ω) =N, P(X Ê 1) = 1−P(X = 0) = 1−p = q .
p > 0 d’après l’énoncé donc q < 1 ; de plus d’après l’énoncé : ∀m ∈N, P(X Ê m) > 0 ; donc P(X Ê 1) = q >
0.

2. Montrer que : ∀(m,n) ∈N2, P(X Ê n +m) =P(X Ê m)P(X Ê n).

On part de la propriété sans mémoire : ∀(m,n) ∈N2,P(XÊm)(X Ê n +m) =P(X Ê n).
(NB : P(X Ê m) > 0 donc pas de souci de définition).
Par définition d’une conditionnelle :

P
(
(X Ê m)∩ (X Ê n +m)

)
P(X Ê m)

=P(X Ê n)

Or comme m +n Ê m on a (X Ê m) ⊃ (X Ê n +m) et donc

P
(
(X Ê m)∩ (X Ê n +m)

)=P(X Ê n +m)

On a finalement
P(X Ê n +m)

P(X Ê m)
=P(X Ê n)

ce qui donne la propriété voulue.

3. Pour tout n deN on pose un =P(X Ê n).

(a) Utiliser la relation obtenue à la deuxième question pour montrer que la suite (un) est géométrique.

Pour m = 1 la propriété précédente s’écrit :

∀n ∈N, P(X Ê n +1) =P(X Ê 1)P(X Ê n)

ce qui montre que la suite
(
P(X Ê n)

)
n∈N est géométrique, de raison P(X Ê 1) = q .

(b) Pour tout n deN, exprimer P(X Ê n) en fonction de n et de q.

On déduit immédiatement, par formule générale des suites géométriques :

∀n ∈, P(X Ê n) = qnP(X Ê 0) = qn

(P(X Ê 0) = 1 car X à valeurs positives).

(c) Établir que : ∀n ∈N, P(X = n) =P(X Ê n)−P(X Ê n +1).

Comme X est à valeurs entières on a l’union disjointe : (X Ê n) = (X = n)∪ (X Ê n +1) ; ce qui donne
P(X Ê n) =P(X = n)+P(X Ê n +1) en passant aux probas.

(d) En déduire que, pour tout n deN, on a P(X = n) = qn p.

On rassemble les résultats précédents :

∀n ∈N, P(X = n) =P(X Ê n)−P(X Ê n +1)

= qn −qn+1

= qn(1−q)

∀n ∈N, P(X = n) = qn p
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4. (a) Reconnaître la loi suivie par la variable X+1.

X(Ω) =N donc (X+1)(Ω) =N∗ ; et

∀n ∈N∗, P(X+1 = n =P(X = n −1) = qn−1p

avec la loi précédente (on a bien n −1 ∈N).
On reconnaît X+1 ,→G (p).

(b) En déduire E(X) etV(X).

D’après le cours :

• E(X+1) existe et vaut
1

p
; donc par linéarité E(X) existe aussi, et E(X) = E(X+1)−1 = 1

p
−1 = q

p
;

• V(X+1) existe et vaut
q

p2 ; donc par linéarité V(X) existe aussi, et V(X) =V(X+1) = q

p2 .

Partie 2 : Taux de panne d’une variable discrète.
Pour toute variable aléatoire Y à valeurs dansN et telle que, pour tout n deN, P(Y Ê n) > 0, on définit le taux
de panne de Y à l’instant n, noté λn par : ∀n ∈N, λn =P(YÊn)(Y = n).

5. (a) Montrer que: ∀n ∈N, λn = P(Y = n)

P(Y Ê n)
.

Ici aussi l’énoncé assure la bonne définition de la proba conditionnelle : P(Y Ê n) > 0.
On calcule ensuite :

λn =P(YÊn)(Y = n) = P
(
(Y = n)∩ (Y Ê n)

)
P(Y Ê n)

= P(Y = n)

P(Y Ê n)

car au niveau des événements : (Y = n)∩ (Y Ê n) = (Y = n).

(b) En déduire que: ∀n ∈N, 1−λn = P(Y Ê n +1)

P(Y Ê n)
.

On trouve alors

1−λn = 1− P(Y = n)

P(Y Ê n)
= P(Y Ê n)−P(Y = n)

P(Y Ê n)
= P(Y Ê n +1)

P(Y Ê n)

où on a utilisé la formule de 3c (Y étant bien à valeurs entières).

(c) Établir alors que : ∀n ∈N, 0 É λn < 1.

Comme P(Y Ê n +1) et P(Y Ê n) sont > 0 d’après l’énoncé, 1−λn > 0 et donc λn < 1.
De plus (Y Ê n +1) ⊂ (Y Ê n) donc P(Y Ê n +1) ÉP(Y Ê n) et donc 1−λn É 1 : λn Ê 0.

(d) Montrer par récurrence, que : ∀n ∈N∗,P(Y Ê n) =
n−1∏
k=0

(1−λk ).

Pour n = 1 la propriété à démontrer s’écrit

P(Y Ê 1) = 1−λ0

Or d’après 5b

1−λ0 = P(Y Ê 1)

P(Y Ê 0)
=P(Y Ê 1)

(P(Y Ê 0) = 1) ce qui établit bien la propriété.

Soit maintenant n ∈N∗ ; on suppose P(Y Ê n) =
n−1∏
k=0

(1−λk ).

Alors :

P(Y Ê n +1) =︸︷︷︸
5b

(1−λn)P(Y Ê n) = (1−λn)
n−1∏
k=0

(1−λk ) =
n∏

k=0
(1−λk )
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et la propriété est bien héréditaire ; ce qui permet de conclure.

Remarque : on pouvait aussi voir un produit téléscopique :

∀n ∈N∗,
P(Y Ê n)

P(Y Ê 0)
=

n−1∏
k=0

P(Y Ê k +1)

P(Y Ê k)
=

n−1∏
k=0

(1−λk )

et on conclut avec P(Y Ê 0) = 1.

6. (a) Montrer que : ∀n ∈N∗,
n−1∑
k=0

P(Y = k) = 1−P(Y Ê n).

Y(Ω) =N donc
+∞∑
k=0

P(Y = k) = 1 ; or on peut découper cette dernière somme :

n−1∑
k=0

P(Y = k)+
n−1∑
k=0

P(Y = k) = 1

et on reconnaît bien
n−1∑
k=0

P(Y = k)+P(Y Ê n) = 1

(b) En déduire que lim
n→+∞P(Y Ê n) = 0.

Pour n →+∞, par définition de la convergence de la série :

lim
n→+∞

(
n−1∑
k=0

P(Y = k)

)
= 1

donc 1−P(Y Ê n) → 1 et on a bien la limite voulue.

(c) Montrer que lim
n→∞

(
n−1∑
k=0

− ln(1−λk )

)
=+∞

On part de l’expression de 5d et on prend le ln (P(Y Ê n) > 0 d’après l’énoncé) :

ln(P(Y Ê n) = ln

(
n−1∏
k=0

(1−λk )

)

=
n−1∑
k=0

ln(1−λk )

donc
n−1∑
k=0

− ln(1−λk ) =− ln(P(Y Ê n))

Or P(Y Ê n) → 0, ce qui donne − ln(P(Y Ê n)) →+∞ et donc

lim
n→∞

(
n−1∑
k=0

− ln(1−λk )

)
=+∞

(d) En déduire la nature de la série de terme général λn .

On voudrait utiliser l’équivalent ln(1−λk ) ∼−λk ... mais a-t-on λk → 0 ??
En fait cela fait partie de la discussion :

• Si (λn) ne tend pas vers 0 en +∞, alors
∑
λn diverge grossièrement ;

• Si λn → 0 on a − ln(1−λn) ∼
n→+∞ −(−λn) = λn et par équivalence de SATP les séries

∑
λn et∑− ln(1−λn) sont de même nature.

Comme on vient de voir que
∑− ln(1−λn) diverge (ses sommes partielles tendent vers +∞) on

en déduit ici encore la divergence de
∑
λn .

Dans tous les cas
∑
λn diverge.
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7. On suppose ici que Y ,→P (α), avec α> 0.

(a) Pour n ∈N∗, donner l’expression de P(Y É n −1) sous forme d’une somme finie ; en déduire une
expression de P(Y Ê n).

Avec la formule de cours :

∀n ∈N∗, P(Y É n −1) =
n−1∑
k=0

P(Y = k) = e−α
n−1∑
k=0

αk

k !

puis comme Y est à valeurs entières :

P(Y Ê n) = 1−P(Y É n −1) = 1−e−α
n−1∑
k=0

αk

k !

(b) Écrire une fonction Scilab d’en-tête function p=Poisson(n,alpha) qui calcule P(Y Ê n) pour
Y ,→P (α).
On admet n! s’obtient en Python par np.math.factorial(n).

On peut y aller très brutalement avec la fonction factorielle :

def Poisson (n,alpha ):
return 1-np.exp(-alpha )*

np.sum ([ alpha **k/np.math. factorial (k) for k in range (n)])

MAIS c’est très malhabile car on se refait le calcul de la factorielle à chaque étape.

On peut procéder de la manière suivante : pour passer de
αk

k !
à

αk+1

(k +1)!
il suffit de multiplier par

α

k
.

On construit alors les
αk

k !
de proche en proche et on les ajoute à la somme.

def Poisson2 (n,alpha ):
s=1
p=1
for k in range (1,n):

p=alpha/k*p
s=s+p

return 1-np.exp(-alpha )*s

(c) En déduire une fonction Python Taux_Panne(n,alpha) qui calcule le taux de panne de Y à l’instant
n. On pourra utiliser la fonction programmée en question 7b.

Le « mieux » est de reprendre 5b :

λn = 1− P(Y Ê n +1)

P(Y Ê n)

et on code immédiatement

def Taux_Panne (n,alpha ):
return 1- Poisson2 (n+1, alpha )/ Poisson2 (n,alpha)

mais là encore c’est très faible : lors du calcul de Poisson2(n+1,alpha) on refait tout ce qui a été
fait en Poisson2(n,alpha) !
Il vaut mieux attraper au vol les bonnes quantités

def Taux_Panne (n,alpha ):
s=1
p=1
for k in range (1,n):

p=alpha/k*p
s=s+p

t1=1-np.exp(-alpha )*s
# t1 = P(Y>=n)
# et on rajoute encore un terme
p=alpha/n*p
s=s+p
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t2=1-np.exp(-alpha )*s
# t2 = P(Y>=n+1)
return 1-t2/t1

Partie 3 : Caractérisation des variables dont la loi est du type de celle de X.

8. Déterminer le taux de panne de la variable X dont la loi a été trouvée à la question 3d.

On rappelle que P(X = n) = qn p, et P(X Ê n) = qn . Avec la définition du taux de panne :

∀n ∈N, λn = P(X = n)

P(X Ê n)
= p

On obtient un taux de panne constant.

9. On considère une variable aléatoire Z, à valeurs dansN, et vérifiant : ∀n ∈N, P(Z Ê n) > 0. On suppose
que le taux de panne de Z est constant, c’est-à-dire que l’on a : ∀n ∈N, λn = λ.

(a) Montrer que 0 < λ< 1.

On a déjà vu 0 É λ< 1 (on est bien dans les hypothèses de la partie 2).
Si λ= 0 on a pour tout n ∈N, P(Z = n) = 0 : c’est absurde.
On a donc bien 0 < λ< 1.

(b) Pour tout n deN, déterminer P(Z Ê n) en fonction de λ et n.

D’après 5d :

∀n ∈N∗,P(Z Ê n) =
n−1∏
k=0

(1−λk ) =
n−1∏
k=0

(1−λ) = (1−λ)n

d’où : P(Z = n) =P(Z Ê n)−P(Z Ê n +1) = (1−λ)n − (1−λ)n+1 = (1−λ)nλ.

(c) Conclure que les seules variables aléatoires Z à valeurs dansN, dont le taux de panne est constant
et telles que pour tout n deN,P(Z Ê n) > 0, sont les variables dont la loi est du type de celle de X.

C’est ce qu’on vient de faire : si le taux de panne est constant on retrouve la loi de X (question 9b) ;
et la loi de X donne bien un taux de panne constant (question 8).
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