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Comparaison des fonctions, développements limités

Exercices

Exercice 1. (Équivalents)
Donner des équivalents simples en x →+∞, puis en x → 0, des expressions suivantes :

x3 −x x4 −x2 + 3

x
− 1

x2 e2x −x5 xex +x4

xe2x +e3x ln(x)+ 1p
x

x ln(x)+x3/2

2

x5 −e−x ln

(
x +2

x

)
ln

(
x +2

x3

)
Dans le dernier cas, on pourra factoriser la dernière expression dans le ln par

1

x2 pour examiner l’un des deux

équivalents.

Exercice 2. (Calcul de développements limités et applications) (*)
Calculer les développements limités à l’ordre 2 en 0 des expressions suivantes.
Pour les fonctions f et g , déduire de ce DL l’équation de la tangente en 0 à la courbe représentative de la
fonction ; ainsi que, si possible, la position relative de la courbe et de la tangente.

e2x −2ln(1+x) f (x) = e2x

p
1+x

g (x) = 1

(1+x2)3/2

1

2−x
(1−x)x

Exercice 3. (Calcul de développements limités, plus difficile)
Calculer les développements limités à l’ordre 2 en 0 des expressions suivantes.
Déduire de ces DL l’équation de la tangente en 0 à la courbe représentative de la fonction ; ainsi que, si possible,
la position relative de la courbe et de la tangente.

e
p

1+x 1

1+ ln(1+x)

1

1+ex

Exercice 4. (Développements en en a ̸= 0, en ±∞)

1. Donner le développement limité de x 7→
p

1+x +x2 au point x0 = 1.

2. Développer les expressions suivantes à la précision
1

x2 (ie les écrire sous la forme a+ b

x
+ c

x2 +o

(
1

x2

)
) au

voisinage de +∞ :

√
x −1

x
ln

(
x −1

x +1

)

NB : pour le second, montrer que ln

(
x −1

x +1

)
= ln

(
1− 1

x

)
− ln

(
1+ 1

x

)
.

3. Déterminer a,b,c réels tels que
p

1+x2e1/x =
x→+∞ ax +b + c

x
+o

(
1

x

)
.
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Exercice 5. (Calcul de limites) (*)
Calculer les limites suivantes :

lim
x→0

(
1

ln(1+x)
− 1

x

)
lim

x→0+

p
1+2x −ex

x4 −x3 lim
x→+∞x

(
1

x +1
+ ln

(
x −1

x

))

lim
n→+∞n

(
21/n −1

)
lim

n→+∞(n +1)

(√
1+ 1

n
+ ln

(
1− 1

2n

)
−1

)
lim

n→+∞e
− 1

2n2 −n2 ln

(
1+ 1

n2

)
Dans le cas d’une suite de limite nulle, donner également la nature de

∑
un .

Exercice 6 (Étude locale d’un prolongement). Soit f définie par f (x) = ln

(
ex −1

x

)
.

1. Donner l’ensemble de définition de f ; montrer que f est C 1 sur cet ensemble.

2. Montrer que f se prolonge par continuité en 0. On notera f̃ ce prolongement.

3. Montrer que f̃ est dérivable en 0. Donner l’équation de la tangente au point d’abscisse 0 à sa courbe
représentative.

4. Montrer que f̃ est C 1 sur R.

5. On admet que : ex =
x→0

1+ x + x2

2
+ x3

6
+o(x3). Déterminer la position relative de la courbe de f̃ et de sa

tangente au point d’abscisse 0.

Exercice 7. On reprend un exercice de la feuille de TD sur les séries.

Pour tout n ∈N, on pose un = (2n)!

(2nn!)2 .

On a vu que :

• ln

(
un+1

un

)
∼

n→+∞ − 1

2n
. Ainsi la série

∑(
ln(un+1)− ln(un)

)
diverge ; comme elle est à termes négatifs, ses

sommes partielles tendent vers −∞. On a donc, par sommation téléscopique, lim
n→+∞ ln(un) =−∞ ; d’où

lim
n→+∞un = 0.

• De même, en posant vn = nun , l’étude de la série de terme général ln

(
vn+1

vn

)
montre que

lim
n→+∞nun =+∞.

Ainsi un tend vers 0, mais moins vite que
1

n
(car la limite précédente donne

1

n
=

n→+∞ o(un)).

On va utiliser un argument similaire pour donner un équivalent de un . Pour α ∈R, on pose wn = nαun .

NB : pour simplifier un peu les calculs, on traite ln

(
wn

wn−1

)
au lieu de ln

(
wn+1

wn

)
.

1. Pour n Ê 2, donner l’expression de ln

(
wn

wn−1

)
.

2. Donner un développement de ln

(
wn

wn−1

)
à l’ordre o

(
1

n2

)
.

3. En déduire que lim
n→+∞nαun = ℓ ̸= 0 ssi α= 1

2
.

On a donc montré que : un ∼
n→+∞

ℓp
n

.
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Exercice 8. (Étude d’une suite implicite)
Toutes les relations de comparaison dans cet exercice s’entendent pour n →+∞.

1. On reprend une suite implicite rencontrée dans la feuille d’exercices sur les suites : un est l’unique solu-

tion de l’équation nx = e−x . On a donc par définition un = e−un

n
(∗).

On a vu que un ∼
1

n
; ceci permet d’écrire

un = 1

n
+o

(
1

n

)

On souhaite maintenant être plus précis. On note alors un = 1

n
+ vn , avec vn = o

(
1

n

)
.

(a) En injectant cette égalité dans la formule (∗), montrer que

1

n
+ vn = 1

n

(
1− 1

n
+o

(
1

n

))

(b) En déduire que vn ∼− 1

n2 .

Grâce aux développements limités, nous sommes donc passés de un = 1

n
+o

(
1

n

)
à un = 1

n
− 1

n2 +o

(
1

n2

)
.

2. (Plus technique) On continue : on pose maintenant un = 1

n
− 1

n2 +wn , avec wn = o

(
1

n2

)
.

En réinjectant cette relation dans la formule (∗), montrer que wn ∼
3

2n3 .

On peut itérer cette méthode pour obtenir un développement de plus en plus précis de un ; mais il faut pour
cela un DL d’exp à un ordre supérieur à 2.
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Indications
1 Réponses :
En +∞ :

• x3 (plus grande puissance)

• x4 (idem)

• e2x (faire le quotient et conclure par croiss. comp. basique)

• xex (idem)

• e3x (idem)

• ln(x)

• x3/2 (par faiblesse du ln devant les puissances ; mais le montrer par quotient)

•
2

x5
(croissance comp., à montrer par quotient)

•
2

x
(reconnaître ln(1+h),h → 0 ;

• −2ln(x) (le contenu su ln équivaut à x−2 mais ça ne prouve rien ; faire le quotient)

En 0 :

• −x (plus petite puissance)

• − 1

x2
(idem)

• 1 (limite réelle non nulle)

• xex (car xex ∼ x et x4 = o(x) ; mais faire le quotient)

• 1 (limite réelle non nulle)

•
1p
x

(faire le quotient et reconnaître une croiss comp) ;

• x ln(x) (idem)

•
2

x5
(un terme infini, un terme fini – mais faire le quotient)

• − ln(x) (couper le ln en 2 pour conjecturer et faire le quotient)

• −3ln(x) (idem)

2 • e2x −2ln(1+x) = 1+3x2 +o(x2).

• f (x) = e2x (1+x)−1/2 = 1+3x/2+11x2/8+o(x2).
Le terme en a +bx donne la tangente, et le terme suivant du DL la position relative avec cette tangente.

• g (x) = 1− 3

2
(x2)+o(x2).

•
1

2−x
= 1

2
+ x

4
− x2

8
+o(x2)

• exp(x ln(1−x)) = 1−x2 +o(x2).

3 • e
p

1+x = e(1+x/2+o(x2)).
Attention ici on ne peut pas conclure sur la position relative !

•
1

1+ ln(1+x)
= 1−x +3x2/2+o(x2).

•
1

1+ex = 1

2
− x

4
+o(x2).

4 1. Avec x = 1+h,
√

1+x +x2 =
√

3+3h +h2 =p
3

(
1+ h

2
+ h2

24
+o(h2)

)
donc

√
1+x +x2 =

x→1

p
3

(
1+ 1

2
(x −1)+ 1

24
(x −1)2 +o

(
(x −1)2))

.

Équation de la tangente : y =p
3

(
1+ 1

2
(x −1)

)
; écart ∼

p
3

24
(x −1)2 Ê 0 donc la courbe est au-dessus.

2. √
x −1

x
=

√
1+ 1

x
=

x→+∞ 1+ 1

2x
− 1

8x2
+o

(
1

x2

)
ln

(
x −1

x +1

)
= 2

x
− 4

x2
+o

(
1

x2

)
3. √

1+x2e1/x = x

√
1+ 1

x2
e1/x = x +1+ 1

x
+o

(
1

x

)

5 • Passer au même dénominateur.

lim
x→0

(
1

ln(1+x)
− 1

x

)
= 1

2
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• Le numérateur équivaut à −x2. On trouve

p
1+2x −ex

x4 −x3
→−∞.

• L’expression à développer vaut
1

1+ 1
x

+ x ln

(
1− 1

x

)
; on trouve le développement − 3

2x
+ o(1/x) (attention à la précision, en 1/x

seulement).

• Variable dans la puissance donc mise sous forme exponentielle. → ln(2).

• ∼
n→+∞− 1

4n
.

• Il faut pousser les DL en 1/n4, car au final la multiplication par n2 donne un o(1/n2) nécessaire à la discussion). Tous les termes
du développement s’annulent, SAUF LE o(1/n2). Et on peut donc conclure sur la limite de la suite et la nature de la série.

6 1. Tableau de signes sur la quantité dans le ln.

2. Étudier la limite en 0 ; elle est usuelle.

3. Taux de variation ; il n’y a pas d’autre méthode !!
Ici, par rapport à la limite précédente, il faut pousser le DL un cran plus loin.

On trouve f ′(0) = 1

2
.

4. Il s’agit surtout de montrer lim
x→0

f ′(x) = f ′(0) = 1

2
.

f ′(x) = (x −1)ex +1

x2
et le numérateur se développe en x2/2+o(x2).

5. Ce nouveau terme permet de pousser le DL de f un cran plus loin : f (x) = x/2+ x2/24+o(x2). Le nouveau terme est l’écart entre
f (x) et la tangente x/2 : on connaît son signe au voisinage de 0.

7 1. On simplifie des factorielles à tour de bras.
On peut décomposer le calcul en

•
un

un−1
= 2n −1

2n

• donc
wn

wn−1
=

(
n −1

n

)−α 2n −1

2n

• donc ln

(
wn

wn−1

)
=−α ln

(
1− 1

n

)
+ ln

(
2n −1

2n

)
2. Pas de souci conceptuel : 1/n → 0 donc on peut développer en puissances de 1/n.

On trouve : ln

(
wn

wn−1

)
=

(
α− 1

2

)
1

n
+

(
α

2
− 1

8

)
1

n2
+o

(
1

n2

)
3. Question pas très directe mais on est en TD :)

Si α = 1

2
, la série de terme général ln

(
wn

wn−1

)
converge. Avec des arguments téléscopiques, donc ln(wN) admet une limite finie a

pour N →+∞ ; enfin wN = e ln(wN) → ea = ℓ> 0.

Par contre si α ̸= 1

2
, la série de terme général ln

(
wn

wn−1

)
diverge.

Le terme général de la série est de signe constant (au moins à partir d’un certain rang, information que nous fournit l’équivalent) ;
la série diverge ; donc les sommes partielles tendent vers +∞ ou −∞. Par les mêmes calculs on en déduit que ln(wN) → −∞
(donc wN → 0) si α< 1

2
, et ln(wN) →+∞ (donc wN →+∞) si α> 1

2
.

8 1. (a) On a un = 1

n
exp(un ) et un = 1

n
+vn :

1

n
+vn = 1

n
exp

−
(

1

n
+ vn

)
︸ ︷︷ ︸

→0

 et on développe l’exponentielle. Réfléchir à l’ordre de

grandeur du o

(
1

n
+ vn

)
.

(b) Développer et simplifier.

2. On part cette fois de
1

n
− 1

n2
+wn = 1

n
exp

(
−

(
1

n
− 1

n2
+wn

))
.

Ne pas oublier que wn = o

(
1

n2

)
et

wn

n
= o

(
1

n3

)
ce qui permet d’absorber beaucoup de termes sous-dominants dans les o(...).

À la fin on trouve wn ∼
n→+∞

3

2n3
.
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