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Comparaison de fonctions
Développements limités

1 Comparaison des fonctions

On étend dans ce chapitre la notion de comparaison (o, ~) aux fonctions. Les définitions, regles de calcul
et résultats seront similaires a ceux des suites ; la différence majeure sera que les résultats de comparaison
dépendront du point o on examine le comportement. Dans le cas des suites, on ne s'intéressait qu’a une
limite (n — +00) ; ici il faudra examiner le cas de limites x — a, pour tout a réel ou infini.

En pratique, on se limitera en fait aux comportements en 0 et +oo ; les autres cas s’y rameneront.

1.1 Vocabulaire : voisinage

Dans la suite on considérera souvent un « nombre » a qui est soit un réel, soit +oo, soit —co.
On dit que:

¢ f estdéfinie au voisinage de a € R ssi elle est définie sur un intervalle I tel que a € I ou a est une extrémité
del

* f est définie au voisinage de +oco ssi elle est définie sur un intervalle de la forme [A, +oo]
* f est définie au voisinage de —oo ssi elle est définie sur un intervalle de la forme ] — oo, B].

Ainsi, la fonction In est définie au voisinage de 0 (bien qu’elle ne le soit pas en 0) car elle est définie sur ]0, +ool.

Essentiellement, si f est définie au voisinage de a, la limite lim f(x) a un sens (car le x peut a la fois tendre
X—a
vers a et rester dans le domaine de définition de f).

1.2 Comparaisons

Les définitions et propriétés sont identiques au cas des suites. Il faudra par contre préciser le point (fini ou
infini) au voisinage duquel on se place.

Dans ce qui suit a est réel, a = +oo, ou a = —oo.

Définition 1 (Négligeabilité). Soient f et g deux fonctions définies sur un intervalle I, tel que a € 1 ou a est une extrémité de 1. On dit que f
est négligeable devant g au voisinage de a si et seulement si il existe une fonction € définie sur I telle que :

e Vxel, f(x)=e(x)gx);

e lime(x)=0
X—a

On a en fait le critére plus intuitif suivant (et en pratique, celui qu’on utilisera) :

Proposition 1 (et, en pratique, Définition).
Soient f et g deux fonctions définies sur un intervalle I, tel que a €1 ou a est une extrémité de 1.

Si g ne sannule pas au voisinage de a (sauf éventuellement en a), on dit que f est négligeable devant g au
. . con fX)
voisinage de a si et seulement si : lim J =0.
x—a g(x)




—

On note alors f(x) o 0(g(x)). La référence a a est ici primordiale : ]161_{% % dépend évidemment de a !

Ainsi, on ne notera « f(x) = o(g(x)) » que si on rappelle clairement au préalable qu’on écrit des relations de
comparaison au voisinage de a.

On définit aussi la relation d’équivalence :

Définition 2 (Equivalence). Soient f et g deux fonctions définies sur un intervalle I, tel que a € 1 ou a est une extrémité de I.
On dit que f et g sont équivalentes en a si et seulement si il existe une fonction a définie sur I telle que :

e Vxel, f(x) =a(x)gx);
e lima(x)=1
X—a

Et on a ici aussi le critere suivant :

Proposition 2 (et, en pratique, Définition).
Soient f et g deux fonctions définies sur un intervalle I, tel que a € 1 ou a est une extrémité de L.

Si g ne s'annule pas au voisinage de a (sauf éventuellement en a), on dit que f et g sont équivalentes au
o . co J)
voisinage de a si et seulement si : lim f— =1.
x—a g(x)

On note alors f(x) o g(x).

Méthode :
fx

Pour montrer que f(x) Za 0(g(x)), on montrera souvent que chll% @ =0.

. fx)
Pour montrer que f(x) S g(x), on montrera souvent que )1611% ﬁ =1.

(mais on aura parfois des moyens détournés ; cf. régles de calcul plus loin)

Remarque 1. Comme pour les suites :
Les relations de comparaison et les limites mentionnées étant toutes au voisinage du méme point a :

* Ona lim f(x) =0sietseulementsi: f(x) = o(1).
X—a X—a

* Les constantes ne sont pas importantes dans la relation de négligeabilité : si (a,p) € (R*)?,
f) =o(ag) < f(x) =0(g) < Pf(x)=o0(gx)

¢ Toute fonction négligeable devant une fonction tendant vers £ € R tend vers 0.

1.3 Echelles de comparaison
Les fonctions intervenant dans les échelles de comparaison sont toujours les mémes : exponentielles, puis-

sances de x (donc polynoémes et fractions rationnelles), logarithmes.

Mais comme on I'a déja rappelé, la «hiérarchie» entre fonctions obtenue dépend de 'endroit auquel on se

place. On vérifie par exemple que x? = o(x) ; alors que x N o(xz).
X— —+00

Nous aurons donc deux échelles de comparaison : au voisinage de 0 et au voisinage de +co.

Remarque 2. On pourrait chercher des échelles de comparaison au voisinage de tout a € R. C’est en fait inutile :
e pour examiner une limite x — a € R, on pose h = x — a (ou x = a + h) et on est ramené a la limite & — 0.
e pour examiner une limite x — —oo, on pose y = —x et on est ramené a la limite y — +oo.

On se dispensera donc d’apprendre des relations de comparaison en des points différents de 0 et +oo.



1.3.1 Comparaisons au voisinage de +oco

Les relations suivantes se déduisent des formules de croissances comparées.
Ces relations de comparaison sont identiques a celles vues sur les suites (pour lesquelles la variable n tend
vers +00).

. = p
a<p = x* = o(x)

e Ya>0,YBp>0, In(x)* = o(xﬁ)
X—+00
. o px
Ya>0,YB>0, x xﬂ+oo0(e )-
¢ Auvoisinage de +oo, une fonction polynémiale est équivalente a son terme de plus haut degré.

¢ Cerésultat s’étend ici aussi toute somme de puissances quelconques de x (c’est une conséquence
du premier point) : par exemple,

1 _
2xvVx+x+ — =232 1 x+x7V2 ~ 2482

\/} x—+00

Exemple 1.

x = o) = o(e) In(x) = o(\Wx) B-2x ~ x
X—+00 X—+00 X—+00 X—+00

En prenant les inverses, on en déduit des comparaisons entre fonctions de limite nulle en +oo:

1 1
. 0<a<5:ﬁx—-:+ooo(x_(x)
_ 1
e Ya>0,Vp>0, e Bx = 0(—).
X—+00 x«

1 1
e Va>0,¥Vp>0, — = —
* P xP x—>+°°0(ln(x)“)

Exemple 2.



1.3.2 Comparaisons au voisinage de 0

On obtient de nouvelles relations de comparaison dans le cas d'une variable tendant vers 0. On remarquera
notamment que certaines relations de comparaison s’'inversent ; mais pas toutes !

Ne pas croire que si f(x) =0 (g(x)), on aura g(x) =,° (fx)).

e V(mneR: n>m = x" :Oo(xm).

X—
* Au voisinage de 0, une fonction polynomiale est équivalente a son terme de plus bas degré.

¢ Cerésultat s’étend en fait a toute somme de puissances quelconques de x : par exemple,

1 1 _ _ 1
Br—-——=x3+x 2yl ~ =
X X =0 X

1
Y (o, p) € (Rj)z,ln(x)"‘ = 0 (_ﬁ) (NB : ces deux fonctions étant de limite infinie en 0).
x— X

* Auvoisinage de 0, on a les équivalents classiques suivants (formules similaires au cas des suites) :

Inl+x) ~ x ef—-1 ~ x 1+x)%*-1 ~ ax (poura#0)
x—0 x—0 x—0

Exemple 3. Au voisinage de0:

1
3 _ 2 _ — 3_ ~ —
x = o(x) X X:OO(\/}) In(x) xioo(\/}) X Zxxao 2x

Exercice 1. Donner des équivalents des fonctions suivantes au voisinage de 0, puis au voisinage de +oo :

f(x)=vVx+x* g(x) = x+In(x) h(x)zi—% k(x)=e*+1+x



1.4 Compatibilité avec les opérations

On écrit ici toutes les relations de comparaison au voisinage d'un méme point a ; toutes les fonctions mention-
nées sont définies sur un intervalle I tel que a € I ou a est une extrémité de I ; et ces fonctions ne s’annulent pas
sur I, sauf éventuellement en a.

Toutes les régles qui suivent sont identiques a celles énoncées dans le cours sur la com-
paraison de suites.

. (f(x) =o(gx))etg(x) = o(h(x))) = f(x) = o(h(x)) (transitivité).

. (f(x) =o(h(x)) et gx) = o(h(x))) = f(x)+gx) = o(h(x)) (compatibilité avec +)

(f(x) = 0(g(x)) et g(x) ~ h(x)) = f(x) =o(h(x).

o f)=0(gx)=fWhx) =o(gx)h(x).

(f(x) =o(g) et h(x) = o(k(x))) = f(X)h(x) = o(g(x)k(x))

fx)~gx) = f(x)h(x) ~ gx)h(x)

(f(x) ~ g(x) et h(x) ~ k(x)) = f(x)h(x) ~ g(x)k(x) (on peut multiplier des équivalents)

. GO 16} : ent d'éaui
(f(x) ~ g(x) et h(x) ~ k(x)) = o~ k0 (on peut faire le quotient d’équivalents)

e flx)y~gx)=>Vkez f (x)k ~ g(x)k (on peut élever les équivalents a une puissance fixe)

* si f et g sont positives au voisinage de a, f(x) ~ g(x) = / f(x) ~ \/g(x) (on peut prendre la racine carrée
d’équivalents)

On ne peut toujours pas:
¢ additionner ou soustraire des équivalents.

¢ appliquer des fonctions arbitraires a des équivalents :

Si f(x) ~ g(x), on n'a pas forcément @(f(x)) ~ ¢(g(x)).

Notamment, les équivalents ne passent ni a I’exponentielle, ni au logarithme :

f)~gx) el ~e8® et f(x)~gx)=In (f) ~In(gx)

* passer un équivalent a une puissance non fixe: par exemple si f(x) ~ g(x), onn’a pas forcément f(x)* ~ g(x)*.

Pour comparer des fonctions, on peut comparer leurs équivalents (qui, si on se débrouille bien, auront une
forme plus simple) :

Toutes les relations de comparaison sont au voisinage d'un méme point q, fini ou infini.
Supposons : f(x) ~ h(x) et g(x) ~ k(x). Alors :

f(x) ~ g(x) & h(x) ~ k(x) et f(x)=0(gx) & h(x) = o(k(x))




1.5 Composition des relations de comparaison

Le résultat suivant s’énonce de maniere un peu abstraite, mais c’est en fait assez intuitif quand on regarde ca
sur un exemple, et c’est d'usage tres fréquent :

Proposition 3. Soient a et b deux nombres réels ou infinis, | et g définies au voisinage de a, et ¢ définie
au voisinage de b. Si on suppose :

* f =z, 0l8W) et

—

e lim@(x) = a.
x—b

Alors f(@(x)) Z 0(g(@(x))). On a le méme résultat avec les relations o et ot

Par exemple :

e In(l+y) ~ y;
y—0

e lim —=0;
x—+o0 x2

doneln 1+ 2 ! t considé ' ¢y L
oncin +? x;:oo? (Onpeu considerer qu Onaposey—;).

Nous reverrons des manipulations de ce type sur les développements limités.



2 Développements limités

Le développement limité d’'une fonction en un point permet de connaitre le comportement local d'une fonc-
tion : en premier lieu son équivalent, puis les « termes suivants » qui permettent d’affiner cette approximation.
Cette connaissance précise au voisinage d'un point permettra notamment d’examiner des positions relatives,
de calculer des limites, ou encore d’examiner la convergence de séries ou d’'intégrales.

2.1 Premier exemple : approximation affine

Si f est une fonction continue en xp, lim f(x) = f(xp), et on peut donc écrire (si f(x) #0) :
X—Xo

f@) ~ flx)

On peut ensuite chercher a estimer ['écart entre f(x) et f(xg). La dérivation nous aide ici. Si f est dérivable en
Xp, on a, par définition
f () — fxo)

. . }(.Xh‘f‘h)-}()(fo)
f’ = - - / =
(X()) xlln;clo ) ou encore f (XO) }IZIII’(I)

+h) - —-hf'
Cette derniere égalité donne }lin}) [+ ) f}(lx()) I (xo)
ce qui peut s’écrire sous la forme :

=0; ouencore f(xo+ h) — f(xo) — hf'(x0) hzoo(h) ;

fxo+h) o f(x0) + hf (x0) + o(h)

On obtient ainsi :

Proposition 4. Soit f une fonction dérivable en xy. On a:
fxo+h) h=0f(xo) +hf(x0) + o(h)

Cette écriture est appelée approximation affine de f au voisinage de x.

On a ainsi obtenu une nouvelle information : I'écart entre f(x+ h) et f(xg) est équivalent a i f'(xp) (ou est une
quantité négligeable devant h si f'(xp) = 0).

Remarque 3. Sion choisit la variable x = xo + h, on a alors f(x) = J o) + (x— xo)f’(xoz+0((x — Xp)). On re-

T (x)
connaitdans J (x) I’équation de la tangente ala courbe de f au point d’abscisse xy. Autrement dit, |’approximation

affine consiste a « approximer une fonction par sa tangente » .

On a en fait ici une équivalence :

Proposition 5. Soit f définie sur un intervalle I, et xy € 1.
f estdérivable en xy si et seulement si on peut écrire

flxo+h) o f(xo) + ah+ o(h)

Dans ce cas, f'(x) = a.

Démonstration. Le sens direct a été étudié ci-dessus.
Supposons maintenant f (xp + 1) W f(xo) + ah+ o(h) ; pour examiner la dérivabilité en xy on étudie le taux de
-0

variation : b b b I b
[0+ 1) = f(xo) _ flxo) +ah+o(l)—f(xo) _ ah+o(h) —at o))
h h h
Pour h — 0 cette derniere expression fournit :
lim L3S0y (a4 o) = a
h—0 h h—0
On obtient bien que f est dérivable en xg et f'(xo) = a. O

NB : ce théoreme est hors-programme. La démonstration devra étre reproduite en cas de besoin ; nous verrons
cela en exercice.



2.2

Développements limités ; formule de Taylor-Young

La notion de développement limité est une généralisation du résultat précédent.

Définition 3. Soit f une fonction définie au voisinage de x, € R.

Les fonctions x — a+ b(x — xo) et x — a+ b(x — xg) + c(x — X)® sont appelées parties principales de ces
développements limités.

e Ondit que f admet un développement limité a l'ordre 1 en xy (abréviation : DL, en xy) si l'on peut
écrire:
fx) = a+bx—xp)+o0(x—xp)
X— X0

avec (a, b) € R2.
* Ondit que f admet un développement limité a l'ordre 2 en xy (abréviation : DL, en xy) si l'on peut
écrire:
f(x) LS at b(x — xo) + c(x — x0)* + o((x — x0)?)
—X0

avec (a, b, ¢) € R3.

Remarque 4.

S’il existe, un DL est unique. Cela permet dans une certaine mesure d’identifier des coefficients : si on a
trouvé, par divers moyens, que

fx)=-x+0(x*) et f(x)=ax+bx*+o(x?
on peut déduire que a=—-1et b=0.
Comme, au voisinage de xp, on a (x — x0)®2 = o(x—xp), on voit qu'une fonction admettant un DL, en
X— X0
un point admet aussi un DL; en ce méme point, obtenu en tronquant la partie principale.

Si f est définie en xp, f est dérivable en x; ssi elle admet un DL, en xy (vu plus haut: c’est'approximation
affine).

En posant i = x — xp, on peut se ramener a des développements au voisinage de 0 : les DL deviennent
donc f(xo + h) =4t bh+o(h) et f(xo+ h) o bh+ch?®+ o(h?).

h—

Comme les formules donnant les DL usuels s’écrivent pour des variables tendant vers 0, cette manipula-
tion sera systématique pour examiner tout comportement en xp € R*.

On peut en fait définir, selon le méme motif, un développement limité a I'ordre n, olt n € N* est quel-
conque. Le programme de Maths Appliquées se limite a n = 2.

On utilise pour cela le résultat suivant : 'équivalent d'un DL est le premier terme non nul de celui-ci.

Méthode::

Pour obtenir un équivalent en 0, on peut utiliser un développement limité.
(en rangeant de maniére usuelle les termes par puissances croissantes)

Par exemple: si f(x) = 3x- x% + o(x?), alors f(x) ~, 3%
X— X—

Remarque 5. Enorme avantage : on peut sommer des développements limités !!

Dans une recherche d’équivalent oli on ressent le besoin d’ajouter des équivalents (pas bien !), on pourra
utiliser des DL, qu'on peut additionner (bien!) ; puis on en déduira I'’équivalent recherché a I'aide de la re-
marque précédente.

1 Attention ce n’est plus vrai a 'ordre 2 : si f admet un DL en 0, on ne peut pas affirmer qu’elle est deux fois dérivable en 0.



La formule de Taylor-Young donne un résultat d’existence de DL :

Théoréme 6 (Formule de Taylor-Young). Soit f une fonction de classe 6? sur un intervallel, et xo € . On

a:
" (x0)
2

f) = foxo)+ ! (x0) (x — x0) + (x - x0)% + o((x — x0)?)

ou, de maniere équivalente, pour h — 0 :

fo+h) = f(xo)+f(xo)h+f (o)

2+o(h?)

En appliquant ce dernier résultat a des fonctions particulieres, on obtient alors les développements limités
d’ordre 2 usuels:

Théoréeme 7. Au voisinagedeO,ona:
2
o 0¥ = 1+x+?+o(x2)

2
* In(l+x)=x-= +0(x?)

ala—1
s YaeR, (1+x)°‘=1+ocx+(—)x2+0(x2)
En particulier :
! 2 2
- Poura=-1:——=1-x+x*+0(x?)

1+x

1 X
- Pour(x:E: Vitx=1+=-"—+0(x?)

\S]
o | =

1 x 3x?
- Pouro=——

1
2 Vi+x 2 8

Remarque 6. Formules a connaitre PAR C(EUR!

Remarque 7. Ces formules permettent de retrouver les équivalents classiques en 0. Les DLs donnent en fait
plus d’information que les équivalents.

On remarque aussi que le développement limité en 0 d’une fonction polynémiale s’obtient en tronquant son
expression a I'ordre désiré : par exemple, si f(x) = x* — x> +2x>~1,0na:

_ _ 2 2
f) = -l+ox) et flx) = -1+2x +0(x%)

2.3 Calcul pratique de développements limités

Premiere chose a faire : si on étudie la fonction autour de a € R*, poser i = x— a pour se ramener a une variable
tendant vers 0.

Pour obtenir le développement limité en 0 d'une fonction, on peut utiliser la formule de Taylor-Young, en cal-
culant les dérivée et dérivée seconde. Sila fonction est un peu compliquée, cela devient vite fastidieux, surtout
si on veut aller a 'ordre 2.

Une meilleure stratégie est d’additionner, multiplier et diviser les développements limités des différents termes
composant la fonction. Ces opérations fonctionnent comme les opérations usuelles ; il faut juste savoir gérer

'ordre du développement.

Pour cela on utilisera des résultats déja vus, tels que (en comparant au voisinage de 0) :



¢ Si m et n sont deux entiers, x™ x o(x™) = o(x™*") ;

e Si f(x) ~ x™, alors o(f(x)) = o(x™).

e Si m> n, tout o(x™) est aussi o(x") ; mais la réciproque est fausse.
Par exemple, si f(x) =3x+ o(x®), on a aussi f(x) = 3x + o(x?).

Par contre, si f(x) =3x— x3, on peut écrire f(x) =3x+ o(xz) mais pas f(x) =3x+ o(x3).

Exemple 4. Donner les DL, (0) des fonctions suivantes :

f=0+x)e* g(x) =In(1 + x+x?)

2.4 Application aux études de fonction

Le développement limité d'une fonction est unique. Soit f une fonction définie au voisinage d'un point xg (xp
compris) : si par divers moyens, on a montré que, pour & — 0, f(xo + h) = a+ bh + ch? + o(h?), on en déduit
que:

e f estcontinue en xp et f(xg) = a;

* f estdérivable en xq et f'(xg) = b.
Les deux premiers termes du développement limité donnent alors I'équation de la tangente en x.

* Le terme en h? peut donner la position relative, au voisinage de xo, de la courbe de f et de sa tangente.
Si ¢ >0, 6€f sera au-dessus de la tangente ; si ¢ <0 elle sera en-dessous. Si ¢ = 0 on ne peut pas conclure.

Exemple 5. Al'aide d'un développement limité, retrouver 'équation de la tangente en x =02 f(x) = V2 + x, et
déterminer la position relative de € par rapport a celle-ci.

Ceci permettra aussi d’examiner ces propriétés pour des fonctions qui ne sont pas définies en x; (mais seule-
ment au voisinage) :

Méthode : étude de prolongements
Soit f définie au voisinage de xy mais pas en xg ; on suppose que f (xo+ k) = a+bh+ch?®+ o(h?). Alors :
. xhjr}o fx) = }li_r% f(xo+h) = a; donc on peut prolonger f par continuité en a, en posant f(xy) = a;
e avec ce prolongement :

_ 2 2
lim fxo+h) = f(xo) — lim bh+ch? + o(h?)
h—0 h h—0 h

=limb+ch+o(h)=>b
h—0

donc le prolongement effectué est dérivable en ay, et f'(xg) = b.

NB : ces deux calculs seront a refaire sur une copie, ils ne peuvent pas étre utilisés sans démonstration.
Nous ferons ¢a en exercice.

2.5 Application aux études de suites et de séries

Les DL en 0 donnent le comportement d'une fonction dont la variable tend vers 0. On peut s’en servir pour
examiner des limites n — +oo : on procéde comme dans la section 1.5, en remplacant la variable tendant vers

0 par une suite de limite nulle. Ainsi, comme — — 0, on peut écrire
n

ou encore



développements qui peuvent ensuite s’additionner / multiplier / etc. pour obtenir limites ou équivalents ; ou
encore nature de séries.
Par exemple :

e(l)lln(l 1)1 1+1+o )1(1 ! o( ))
xp|—|-1- ——|=1l-—=+ = —|-1- -— —
P 2n 2n 2n  8n? n? 2n  8n? n?
7o)
=—+0
4n? n?
oo anz =0

1 1
et par comparaison de SATP, on déduit que la série de terme général exp (2—) -1-In (1 - 2—) converge.
n n

11



