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Comparaison de fonctions
Développements limités

1 Comparaison des fonctions

On étend dans ce chapitre la notion de comparaison (o, ∼) aux fonctions. Les définitions, règles de calcul
et résultats seront similaires à ceux des suites ; la différence majeure sera que les résultats de comparaison
dépendront du point où on examine le comportement. Dans le cas des suites, on ne s’intéressait qu’à une
limite (n →+∞) ; ici il faudra examiner le cas de limites x → a, pour tout a réel ou infini.
En pratique, on se limitera en fait aux comportements en 0 et +∞ ; les autres cas s’y ramèneront.

1.1 Vocabulaire : voisinage

Dans la suite on considérera souvent un « nombre » a qui est soit un réel, soit +∞, soit −∞.
On dit que :

• f est définie au voisinage de a ∈R ssi elle est définie sur un intervalle I tel que a ∈ I ou a est une extrémité
de I.

• f est définie au voisinage de +∞ ssi elle est définie sur un intervalle de la forme [A,+∞[

• f est définie au voisinage de −∞ ssi elle est définie sur un intervalle de la forme ]−∞,B].

Ainsi, la fonction ln est définie au voisinage de 0 (bien qu’elle ne le soit pas en 0) car elle est définie sur ]0,+∞[.

Essentiellement, si f est définie au voisinage de a, la limite lim
x→a

f (x) a un sens (car le x peut à la fois tendre

vers a et rester dans le domaine de définition de f ).

1.2 Comparaisons

Les définitions et propriétés sont identiques au cas des suites. Il faudra par contre préciser le point (fini ou
infini) au voisinage duquel on se place.

Dans ce qui suit a est réel, a =+∞, ou a =−∞.

Définition 1 (Négligeabilité). Soient f et g deux fonctions définies sur un intervalle I, tel que a ∈ I ou a est une extrémité de I. On dit que f
est négligeable devant g au voisinage de a si et seulement si il existe une fonction ε définie sur I telle que :

• ∀x ∈ I, f (x) = ε(x)g (x) ;

• lim
x→a

ε(x) = 0

On a en fait le critère plus intuitif suivant (et en pratique, celui qu’on utilisera) :

Proposition 1 (et, en pratique, Définition).
Soient f et g deux fonctions définies sur un intervalle I, tel que a ∈ I ou a est une extrémité de I.

Si g ne s’annule pas au voisinage de a (sauf éventuellement en a), on dit que f est négligeable devant g au

voisinage de a si et seulement si : lim
x→a

f (x)

g (x)
= 0.
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On note alors f (x) =
x→a

o
(
g (x)

)
. La référence à a est ici primordiale : lim

x→a

f (x)

g (x)
dépend évidemment de a !

Ainsi, on ne notera « f (x) = o
(
g (x)

)
» que si on rappelle clairement au préalable qu’on écrit des relations de

comparaison au voisinage de a.

On définit aussi la relation d’équivalence :

Définition 2 (Équivalence). Soient f et g deux fonctions définies sur un intervalle I, tel que a ∈ I ou a est une extrémité de I.
On dit que f et g sont équivalentes en a si et seulement si il existe une fonction α définie sur I telle que :

• ∀x ∈ I, f (x) = α(x)g (x) ;

• lim
x→a

α(x) = 1

Et on a ici aussi le critère suivant :

Proposition 2 (et, en pratique, Définition).
Soient f et g deux fonctions définies sur un intervalle I, tel que a ∈ I ou a est une extrémité de I.

Si g ne s’annule pas au voisinage de a (sauf éventuellement en a), on dit que f et g sont équivalentes au

voisinage de a si et seulement si : lim
x→a

f (x)

g (x)
= 1.

On note alors f (x) ∼
x→a

g (x).

Méthode :
Pour montrer que f (x) =

x→a
o
(
g (x)

)
, on montrera souvent que lim

x→a

f (x)

g (x)
= 0.

Pour montrer que f (x) ∼
x→a

g (x), on montrera souvent que lim
x→a

f (x)

g (x)
= 1.

(mais on aura parfois des moyens détournés ; cf. règles de calcul plus loin)

Remarque 1. Comme pour les suites :
Les relations de comparaison et les limites mentionnées étant toutes au voisinage du même point a :

• On a lim
x→a

f (x) = 0 si et seulement si : f (x) =
x→a

o(1).

• Les constantes ne sont pas importantes dans la relation de négligeabilité : si (α,β) ∈ (R∗)2,

f (x) = o
(
αg (x)

)⇔ f (x) = o
(
g (x)

)⇔ β f (x) = o
(
g (x)

)
• Toute fonction négligeable devant une fonction tendant vers ℓ ∈R tend vers 0.

1.3 Échelles de comparaison

Les fonctions intervenant dans les échelles de comparaison sont toujours les mêmes : exponentielles, puis-
sances de x (donc polynômes et fractions rationnelles), logarithmes.

Mais comme on l’a déjà rappelé, la « hiérarchie » entre fonctions obtenue dépend de l’endroit auquel on se
place. On vérifie par exemple que x2 =

x→0
o(x) ; alors que x =

x→+∞ o
(
x2

)
.

Nous aurons donc deux échelles de comparaison : au voisinage de 0 et au voisinage de +∞.

Remarque 2. On pourrait chercher des échelles de comparaison au voisinage de tout a ∈R. C’est en fait inutile :

• pour examiner une limite x → a ∈R, on pose h = x −a (ou x = a +h) et on est ramené à la limite h → 0.

• pour examiner une limite x →−∞, on pose y =−x et on est ramené à la limite y →+∞.

On se dispensera donc d’apprendre des relations de comparaison en des points différents de 0 et +∞.
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1.3.1 Comparaisons au voisinage de +∞
Les relations suivantes se déduisent des formules de croissances comparées.
Ces relations de comparaison sont identiques à celles vues sur les suites (pour lesquelles la variable n tend
vers +∞).

• α< β ⇒ xα =
x→+∞ o

(
xβ

)
• ∀α> 0,∀β> 0, ln(x)α =

x→+∞ o
(
xβ

)
• ∀α> 0,∀β> 0, xα =

x→+∞ o
(
eβx

)
.

• Au voisinage de ±∞, une fonction polynômiale est équivalente à son terme de plus haut degré.

• Ce résultat s’étend ici aussi toute somme de puissances quelconques de x (c’est une conséquence
du premier point) : par exemple,

2x
p

x +x + 1p
x
= 2x3/2 +x +x−1/2 ∼

x→+∞ 2x3/2

Exemple 1.

x =
x→+∞ o(x3) x51 =

x→+∞ o
(
ex)

ln(x) =
x→+∞ o(

p
x) x3 −2x ∼

x→+∞ x3

En prenant les inverses, on en déduit des comparaisons entre fonctions de limite nulle en +∞ :

• 0 < α< β⇒ 1

xβ
=

x→+∞ o

(
1

xα

)

• ∀α> 0,∀β> 0, e−βx =
x→+∞ o

(
1

xα

)
.

• ∀α> 0,∀β> 0,
1

xβ
=

x→+∞ o

(
1

ln(x)α

)

Exemple 2.

e−x =
x→+∞ o

(
1

x4

)
1

x2 =
x→+∞ o

(
1

x

)
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1.3.2 Comparaisons au voisinage de 0

On obtient de nouvelles relations de comparaison dans le cas d’une variable tendant vers 0. On remarquera
notamment que certaines relations de comparaison s’inversent ; mais pas toutes !
Ne pas croire que si f (x) =

x→+∞ o
(
g (x)

)
, on aura g (x) =

x→0
o

(
f (x)

)
.

• ∀ (m,n) ∈R2, n > m ⇒ xn =
x→0

o(xm).

• Au voisinage de 0, une fonction polynômiale est équivalente à son terme de plus bas degré.

• Ce résultat s’étend en fait à toute somme de puissances quelconques de x : par exemple,

x3 + 1p
x
− 1

x
= x3 +x−1/2 −x−1 ∼

x→0
− 1

x

• ∀ (α,β) ∈ (R∗+)2, ln(x)α =
x→0

o

(
1

xβ

)
(NB : ces deux fonctions étant de limite infinie en 0).

• Au voisinage de 0, on a les équivalents classiques suivants (formules similaires au cas des suites) :

ln(1+x) ∼
x→0

x ex −1 ∼
x→0

x (1+x)α−1 ∼
x→0

αx (pour α ̸= 0)

Exemple 3. Au voisinage de 0 :

x3 =
x→0

o(x) x2 =
x→0

o
(p

x
)

ln(x) =
x→0

o

(
1p
x

)
x3 −2x ∼

x→0
−2x

Exercice 1. Donner des équivalents des fonctions suivantes au voisinage de 0, puis au voisinage de +∞ :

f (x) =p
x +x2 g (x) = x + ln(x) h(x) = 1

x
− 1

x2 k(x) = ex +1+x
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1.4 Compatibilité avec les opérations

On écrit ici toutes les relations de comparaison au voisinage d’un même point a ; toutes les fonctions mention-
nées sont définies sur un intervalle I tel que a ∈ I ou a est une extrémité de I ; et ces fonctions ne s’annulent pas
sur I, sauf éventuellement en a.

Toutes les règles qui suivent sont identiques à celles énoncées dans le cours sur la com-
paraison de suites.

•
(

f (x) = o
(
g (x)

)
et g (x) = o

(
h(x)

)) ⇒ f (x) = o
(
h(x)

)
(transitivité).

•
(

f (x) = o
(
h(x)

)
et g (x) = o

(
h(x)

)) ⇒ f (x)+ g (x) = o
(
h(x)

)
(compatibilité avec +)

•
(

f (x) = o
(
g (x)

)
et g (x)∼ h(x)

)
⇒ f (x) = o

(
h(x)

)
.

• f (x) = o
(
g (x)

)⇒ f (x)h(x) = o
(
g (x)h(x)

)
.

•
(

f (x) = o
(
g (x)

)
et h(x) = o

(
k(x)

))⇒ f (x)h(x) = o
(
g (x)k(x)

)
• f (x)∼ g (x) ⇒ f (x)h(x)∼ g (x)h(x)

•
(

f (x)∼ g (x) et h(x)∼ k(x)
)⇒ f (x)h(x)∼ g (x)k(x) (on peut multiplier des équivalents)

•
(

f (x)∼ g (x) et h(x)∼ k(x)
)⇒ f (x)

h(x)
∼

g (x)

k(x)
(on peut faire le quotient d’équivalents)

• f (x)∼ g (x) ⇒∀k ∈Z, f (x)k ∼ g (x)k (on peut élever les équivalents à une puissance fixe)

• si f et g sont positives au voisinage de a, f (x)∼ g (x) ⇒√
f (x)∼

√
g (x) (on peut prendre la racine carrée

d’équivalents)

On ne peut toujours pas :

• additionner ou soustraire des équivalents.

• appliquer des fonctions arbitraires à des équivalents :

Si f (x)∼ g (x), on n’a pas forcément ϕ
(

f (x)
)
∼ϕ

(
g (x)

)
.

Notamment, les équivalents ne passent ni à l’exponentielle, ni au logarithme :

f (x)∼ g (x)⇏ e f (x) ∼ eg (x) et f (x)∼ g (x)⇏ ln
(

f (x)
)
∼ ln

(
g (x)

)
• passer un équivalent à une puissance non fixe : par exemple si f (x)∼ g (x), on n’a pas forcément f (x)x ∼ g (x)x .

Pour comparer des fonctions, on peut comparer leurs équivalents (qui, si on se débrouille bien, auront une
forme plus simple) :

Toutes les relations de comparaison sont au voisinage d’un même point a, fini ou infini.

Supposons : f (x)∼ h(x) et g (x)∼ k(x). Alors :

f (x)∼ g (x) ⇔ h(x)∼ k(x) et f (x) = o
(
g (x)

)⇔ h(x) = o
(
k(x)

)
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1.5 Composition des relations de comparaison

Le résultat suivant s’énonce de manière un peu abstraite, mais c’est en fait assez intuitif quand on regarde ça
sur un exemple, et c’est d’usage très fréquent :

Proposition 3. Soient a et b deux nombres réels ou infinis, f et g définies au voisinage de a, et ϕ définie
au voisinage de b. Si on suppose :

• f (y) =
y→a

o
(
g (y)

)
; et

• lim
x→b

ϕ(x) = a.

Alors f
(
ϕ(x)

) =
x→b

o
(
g (ϕ(x))

)
. On a le même résultat avec les relations ∼

y→a
et ∼

x→b
.

Par exemple :

• ln(1+ y) ∼
y→0

y ;

• lim
x→+∞

1

x2 = 0 ;

donc ln

(
1+ 1

x2

)
∼

x→+∞
1

x2 (on peut considérer qu’on a posé y = 1

x2 ).

Nous reverrons des manipulations de ce type sur les développements limités.
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2 Développements limités

Le développement limité d’une fonction en un point permet de connaître le comportement local d’une fonc-
tion : en premier lieu son équivalent, puis les « termes suivants » qui permettent d’affiner cette approximation.
Cette connaissance précise au voisinage d’un point permettra notamment d’examiner des positions relatives,
de calculer des limites, ou encore d’examiner la convergence de séries ou d’intégrales.

2.1 Premier exemple : approximation affine

Si f est une fonction continue en x0, lim
x→x0

f (x) = f (x0), et on peut donc écrire (si f (x0) ̸= 0) :

f (x) ∼
x→x0

f (x0)

On peut ensuite chercher à estimer l’écart entre f (x) et f (x0). La dérivation nous aide ici. Si f est dérivable en
x0, on a, par définition

f ′(x0) = lim
x→x0

f (x)− f (x0)

x −x0
ou encore f ′(x0) = lim

h→0

f (x0 +h)− f (x0)

h

Cette dernière égalité donne lim
h→0

f (x0 +h)− f (x0)−h f ′(x0)

h
= 0 ; ou encore f (x0 +h)− f (x0)−h f ′(x0) =

h→0
o(h) ;

ce qui peut s’écrire sous la forme :

f (x0 +h) =
h→0

f (x0)+h f ′(x0)+o(h)

On obtient ainsi :

Proposition 4. Soit f une fonction dérivable en x0. On a :

f (x0 +h) =
h→0

f (x0)+h f ′(x0)+o(h)

Cette écriture est appelée approximation affine de f au voisinage de x0.

On a ainsi obtenu une nouvelle information : l’écart entre f (x0+h) et f (x0) est équivalent à h f ′(x0) (ou est une
quantité négligeable devant h si f ′(x0) = 0).

Remarque 3. Si on choisit la variable x = x0 +h, on a alors f (x) =
x→x0

f (x0)+ (x −x0) f ′(x0)︸ ︷︷ ︸
T (x)

+o
(
(x − x0)

)
. On re-

connaît dans T (x) l’équation de la tangente à la courbe de f au point d’abscisse x0. Autrement dit, l’approximation
affine consiste à « approximer une fonction par sa tangente » .

On a en fait ici une équivalence :

Proposition 5. Soit f définie sur un intervalle I, et x0 ∈ I.
f est dérivable en x0 si et seulement si on peut écrire

f (x0 +h) =
h→0

f (x0)+ah +o(h)

Dans ce cas, f ′(x0) = a.

Démonstration. Le sens direct a été étudié ci-dessus.
Supposons maintenant f (x0+h) =

h→0
f (x0)+ah+o(h) ; pour examiner la dérivabilité en x0 on étudie le taux de

variation :
f (x0 +h)− f (x0)

h
= f (x0)+ah +o(h)− f (x0)

h
= ah +o(h)

h
= a +o(1)

Pour h → 0 cette dernière expression fournit :

lim
h→0

f (x0 +h)− f (x0)

h
= lim

h→0

(
a +o(1)

)= a

On obtient bien que f est dérivable en x0 et f ′(x0) = a.

NB : ce théorème est hors-programme. La démonstration devra être reproduite en cas de besoin ; nous verrons
cela en exercice.
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2.2 Développements limités ; formule de Taylor-Young

La notion de développement limité est une généralisation du résultat précédent.

Définition 3. Soit f une fonction définie au voisinage de x0 ∈R.

• On dit que f admet un développement limité à l’ordre 1 en x0 (abréviation : DL1 en x0) si l’on peut
écrire :

f (x) =
x→x0

a +b(x −x0)+o(x −x0)

avec (a,b) ∈R2.

• On dit que f admet un développement limité à l’ordre 2 en x0 (abréviation : DL2 en x0) si l’on peut
écrire :

f (x) =
x→x0

a +b(x −x0)+ c(x −x0)2 +o
(
(x −x0)2)

avec (a,b,c) ∈R3.

Les fonctions x 7→ a +b(x − x0) et x 7→ a +b(x − x0)+ c(x − x0)2 sont appelées parties principales de ces
développements limités.

Remarque 4.

• S’il existe, un DL est unique. Cela permet dans une certaine mesure d’identifier des coefficients : si on a
trouvé, par divers moyens, que

f (x) =−x +o(x2) et f (x) = ax +bx2 +o(x2)

on peut déduire que a =−1 et b = 0.

• Comme, au voisinage de x0, on a (x − x0)2 =
x→x0

o(x − x0), on voit qu’une fonction admettant un DL2 en

un point admet aussi un DL1 en ce même point, obtenu en tronquant la partie principale.

• Si f est définie en x0, f est dérivable en x0 ssi elle admet un DL1 en x0 (vu plus haut : c’est l’approximation
affine)1.

• En posant h = x − x0, on peut se ramener à des développements au voisinage de 0 : les DL deviennent
donc f (x0 +h) =

h→0
a +bh +o(h) et f (x0 +h) =

h→0
a +bh + ch2 +o(h2).

Comme les formules donnant les DL usuels s’écrivent pour des variables tendant vers 0, cette manipula-
tion sera systématique pour examiner tout comportement en x0 ∈R∗.

• On peut en fait définir, selon le même motif, un développement limité à l’ordre n, où n ∈ N∗ est quel-
conque. Le programme de Maths Appliquées se limite à n = 2.

Méthode :
Pour obtenir un équivalent en 0, on peut utiliser un développement limité.

On utilise pour cela le résultat suivant : l’équivalent d’un DL est le premier terme non nul de celui-ci.
(en rangeant de manière usuelle les termes par puissances croissantes)

Par exemple : si f (x) =
x→0

3x −x2 +o
(
x2

)
, alors f (x) ∼

x→0
3x.

Remarque 5. Énorme avantage : on peut sommer des développements limités !!
Dans une recherche d’équivalent où on ressent le besoin d’ajouter des équivalents (pas bien !), on pourra
utiliser des DL, qu’on peut additionner (bien !) ; puis on en déduira l’équivalent recherché à l’aide de la re-
marque précédente.

1Attention ce n’est plus vrai à l’ordre 2 : si f admet un DL2 en 0, on ne peut pas affirmer qu’elle est deux fois dérivable en 0.
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La formule de Taylor-Young donne un résultat d’existence de DL2 :

Théorème 6 (Formule de Taylor-Young). Soit f une fonction de classe C 2 sur un intervalle I, et x0 ∈ I. On
a :

f (x) =
x→x0

f (x0)+ f ′(x0)(x −x0)+ f ′′(x0)

2
(x −x0)2 +o

(
(x −x0)2)

ou, de manière équivalente, pour h → 0 :

f (x0 +h) =
h→0

f (x0)+ f ′(x0)h + f ′′(x0)

2
h2 +o

(
h2)

En appliquant ce dernier résultat à des fonctions particulières, on obtient alors les développements limités
d’ordre 2 usuels :

Théorème 7. Au voisinage de 0, on a :

• ex = 1+x + x2

2
+o

(
x2

)
• ln(1+x) = x − x2

2
+o

(
x2

)
• ∀α ∈R, (1+x)α = 1+αx + α(α−1)

2
x2 +o

(
x2

)
En particulier :

– Pour α=−1 :
1

1+x
= 1−x +x2 +o

(
x2

)
– Pour α= 1

2
:
p

1+x = 1+ x

2
− x2

8
+o

(
x2

)
– Pour α=−1

2
:

1p
1+x

= 1− x

2
+ 3x2

8
+o

(
x2

)

Remarque 6. Formules à connaître PAR CŒUR !
Remarque 7. Ces formules permettent de retrouver les équivalents classiques en 0. Les DLs donnent en fait
plus d’information que les équivalents.

On remarque aussi que le développement limité en 0 d’une fonction polynômiale s’obtient en tronquant son
expression à l’ordre désiré : par exemple, si f (x) = x4 −x3 +2x2 −1, on a :

f (x) =
x→0

−1+o(x) et f (x) =
x→0

−1+2x2 +o
(
x2)

2.3 Calcul pratique de développements limités

Première chose à faire : si on étudie la fonction autour de a ∈R∗, poser h = x−a pour se ramener à une variable
tendant vers 0.

Pour obtenir le développement limité en 0 d’une fonction, on peut utiliser la formule de Taylor-Young, en cal-
culant les dérivée et dérivée seconde. Si la fonction est un peu compliquée, cela devient vite fastidieux, surtout
si on veut aller à l’ordre 2.

Une meilleure stratégie est d’additionner, multiplier et diviser les développements limités des différents termes
composant la fonction. Ces opérations fonctionnent comme les opérations usuelles ; il faut juste savoir gérer
l’ordre du développement.

Pour cela on utilisera des résultats déjà vus, tels que (en comparant au voisinage de 0) :
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• Si m et n sont deux entiers, xm ×o(xn) = o(xm+n) ;

• Si f (x)∼ xm , alors o( f (x)) = o(xm).

• Si m > n, tout o(xm) est aussi o(xn) ; mais la réciproque est fausse.
Par exemple, si f (x) = 3x +o(x3), on a aussi f (x) = 3x +o

(
x2

)
.

Par contre, si f (x) = 3x −x3, on peut écrire f (x) = 3x +o
(
x2

)
mais pas f (x) = 3x +o(x3).

Exemple 4. Donner les DL2(0) des fonctions suivantes :

f (x) = (1+x)ex g (x) = ln(1+x +x2)

2.4 Application aux études de fonction

Le développement limité d’une fonction est unique. Soit f une fonction définie au voisinage d’un point x0 (x0

compris) : si par divers moyens, on a montré que, pour h → 0, f (x0 +h) = a +bh + ch2 +o(h2), on en déduit
que :

• f est continue en x0 et f (x0) = a ;

• f est dérivable en x0 et f ′(x0) = b.
Les deux premiers termes du développement limité donnent alors l’équation de la tangente en x0.

• Le terme en h2 peut donner la position relative, au voisinage de x0, de la courbe de f et de sa tangente.
Si c > 0, C f sera au-dessus de la tangente ; si c < 0 elle sera en-dessous. Si c = 0 on ne peut pas conclure.

Exemple 5. À l’aide d’un développement limité, retrouver l’équation de la tangente en x = 0 à f (x) =p
2+x, et

déterminer la position relative de C f par rapport à celle-ci.

Ceci permettra aussi d’examiner ces propriétés pour des fonctions qui ne sont pas définies en x0 (mais seule-
ment au voisinage) :

Méthode : étude de prolongements

Soit f définie au voisinage de x0 mais pas en x0 ; on suppose que f (x0+h) = a+bh+ch2+o(h2). Alors :

• lim
x→x0

f (x) = lim
h→0

f (x0+h) = a ; donc on peut prolonger f par continuité en a0 en posant f (x0) = a ;

• avec ce prolongement :

lim
h→0

f (x0 +h)− f (x0)

h
= lim

h→0

bh + ch2 +o(h2)

h
= lim

h→0
b + ch +o(h) = b

donc le prolongement effectué est dérivable en a0, et f ′(x0) = b.

NB : ces deux calculs seront à refaire sur une copie, ils ne peuvent pas être utilisés sans démonstration.
Nous ferons ça en exercice.

2.5 Application aux études de suites et de séries

Les DL en 0 donnent le comportement d’une fonction dont la variable tend vers 0. On peut s’en servir pour
examiner des limites n →+∞ : on procède comme dans la section 1.5, en remplaçant la variable tendant vers

0 par une suite de limite nulle. Ainsi, comme
1

n
→ 0, on peut écrire

ln

(
1+ 1

n

)
=

n→+∞
1

n
− 1

2n2 +o

(
1

n2

)
ou encore √

1− 1

n2 =
n→+∞ 1+ 1

2

(
− 1

n2

)
− 1

8

(
− 1

n2

)2

+o

((
− 1

n2

)2)
= 1− 1

2n2 − 1

8n4 +o

(
1

n4

)
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développements qui peuvent ensuite s’additionner / multiplier / etc. pour obtenir limites ou équivalents ; ou
encore nature de séries.
Par exemple :

exp

(
1

2n

)
−1− ln

(
1− 1

2n

)
= 1− 1

2n
+ 1

8n2 +o

(
1

n2

)
−1−

(
1

2n
− 1

8n2 +o

(
1

n2

))
= 1

4n2 +o

(
1

n2

)
∼

n→+∞
1

4n2 Ê 0

et par comparaison de SATP, on déduit que la série de terme général exp

(
1

2n

)
−1− ln

(
1− 1

2n

)
converge.
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