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Intégrales impropres

Ce chapitre est, par beaucoup d’aspects, la « version continue » du chapitre sur les séries numériques : la

notion de somme infinie (
+∞∑
n=...

) est analogue à celle d’intégrale entre a et +∞ (
∫ +∞

a
).

1 Rappels : intégration sur un segment

On commence par rappeler les méthodes et théorèmes concernant l’intégration d’une fonction définie sur un
segment [a,b] (donc a et b réels non infinis, a É b, crochets fermés).

1.1 Définition

• On appelle primitive de f sur [a,b] toute fonction F telle que : ∀x ∈ [a,b], F′(x) = f (x). Une fonction
continue f admet plusieurs primitives, toutes égales à une constante près : autrement dit, si F1 et F2 sont
deux primitives de f , il existe k ∈R telle que ∀x ∈ [a,b], F2(x) = F1(x)+k.

• Si f est continue, elle admet des primitives (nous admettons ce résultat). On se placera toujours dans ce
cas de figure.
On peut alors définir1, avec les notations du point précédent :∫ b

a
f (t )dt = F(b)−F(a)

(NB : cette définition est aussi valable si b É a).
F désigne ici n’importe quelle primitive de f : on obtiendra toujours le même résultat. Ainsi :

Si f est continue sur [a,b], l’intégrale
∫ b

a
f (t )dt est bien définie.

1.2 Linéarité, positivité, croissance, Chasles

• Comme la dérivation, l’intégration est linéaire : si f et g sont continues, elles admettent deux primitives
que l’on note F et G ; pour tout λ ∈ R, λF+G est alors une primitive de λ f + g . Au niveau des intégrales,
cela donne (avec f et g continues sur [a,b]) :∫ b

a
(λ f (t )+ g (t ))dt = λ

∫ b

a
f (t )dt +

∫ b

a
g (t )dt

• Si les bornes sont rangées dans l’ordre croissant (a É b), l’intégrale d’une fonction positive est positive.
Cette propriété est appelée positivité de l’intégrale :

Si : ∀ t ∈ [a,b], f (t ) Ê 0, alors :
∫ b

a
f (t )dt Ê 0

En combinant cela à la linéarité, on obtient la croissance de l’intégrale :

Si : ∀ t ∈ [a,b], f (t ) É g (t ), alors :
∫ b

a
f (t )dt É

∫ b

a
g (t )dt

Bien noter l’apparition du quantificateur «∀ t ∈ [a,b] » , qui devra être mis en évidence sur une copie.

1Dans le cadre de notre programme. En fait, la théorie de l’intégration est basée sur le chemin inverse : on commence par définir
l’intégrale par d’autres moyens, et on en déduit l’existence de primitives et la formule de calcul.
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• La relation de Chasles permet de découper une intégrale en morceaux : si f est définie sur un intervalle
I, et si a,b,c sont trois points quelconques de I, alors

∫ b

a
f (t )dt =

∫ c

a
f (t )dt +

∫ b

c
f (t )dt

Notons qu’il n’est pas nécessaire d’avoir a É b É c pour écrire cette dernière relation.

1.3 Tableau de primitives

Cas particulier : intégrale d’une fonction constante Si m est un réel quelconque, l’intégrale de la fonction
constante x 7→ m est assez rapide : ∫ b

a
m dx = m(b −a)

(NB : d’où un des intérêts de tenir un dx dans ses calculs ; l’intégrale
∫ b

a
m dm donnerait un tout autre résultat).

Voici les fonctions que vous devez savoir intégrer :

Fonction Primitive Ensemble de définition

xn (n ∈N)
xn+1

n +1
sur tout segment [a,b]

1

xn = x−n (n ∈N, n ̸= 1)
x−n+1

−n +1
sur tout segment [a,b] ne contenant pas 0

xα (α non entier)
xα+1

α+1
sur tout segment [a,b] ⊂R∗+ (voir remarque ci-dessous)

1

x
ln |x| sur tout segment [a,b] ⊂R∗+ ou [a,b] ⊂R∗−

eax
(
a ∈R∗) 1

a
eax R

Remarque 1. Pour des puissances rationnelles positives telles que
p

x = x1/2, x2/3, etc. on peut considérer tout
segment [a,b] ⊂R+.

Remarque 2. On remarque qu’au niveau des formules, les première et deuxième lignes du tableau précédent
ne sont que des cas particuliers de la troisième ; la différence a lieu sur les ensembles de définition.

Remarque 3. L’ensemble ci-dessus vous suffira, sous réserve de savoir vous y ramener dans certains cas où ils

n’apparaissent pas de manière évidente. Des manipulations telles que :
1p
x
= x−1/2, 2x = ex ln(2), doivent être

effectuées de manière sûre.

Il faut aussi savoir repérer des formes usuelles de fonctions composées pour savoir en déterminer une primitive :

Fonction Primitive Conditions

u′(x).
(
u(x)

)α (
u(x)

)α+1

α+1
α ̸= −1 ; voir conditions détaillées ci-dessous

u′(x)

u(x)
ln |u(x)| sur tout intervalle où u ne s’annule pas

u′(x).eu(x) eu(x) toujours valable

Si u est C 1 sur I intervalle de R, la fonction u′.uα est définie et admet une primitive :

• sur I lorsque α ∈N;

• sur tout intervalle où u ne s’annule pas lorsque α ∈Z, α< 0;

• sur tout intervalle où u est strictement positive lorsque α ∉Z.

2



1.4 Intégration par parties (IPP)

Soient f de classe C 1 sur [a,b], et g continue sur [a,b]. Notons G une primitive de g . D’après les lois usuelles
sur la dérivation, et en utilisant G′ = g , on a ( f G)′ = f ′G+ f g ; la fonction f G est donc une primitive de la
fonction f ′G+ f g . On a donc ∫ b

a

(
f (x)g (x)+ f ′(x)G(x)

)
dx = [

f (x)G(x)
]b

a

ce qui permet d’obtenir le théorème d’intégration par parties :

Théorème 1. Soient f de classe C 1 sur [a,b], et g continue sur [a,b]. Notons G une primitive de g . On a
alors ∫ b

a
f (x)g (x)dx =

[
f (x)G(x)

]b

a
−

∫ b

a
f ′(x)G(x)dx

Lorsqu’on effectue une IPP, il se pose la question du choix de la fonction à intégrer, et de celle à dériver. Il
n’existe pas de règle absolue à ce sujet ; on peut par contre dégager des règles pratiques (classées par ordre de
priorité) :

• Quasi-systématiquement, on dérivera la fonction « ln » présente dans l’expression à intégrer ;

• Assez souvent, il est bon de chercher à faire baisser le degré des polynômes en les dérivant ;

• Une expression de type x 7→ eαx n’est modifiée qu’à une constante près que ce soit par intégration ou par
dérivation : en termes de complexité du calcul ce dernier choix est donc indifférent.

Remarque 4 (Rédaction). L’utilisation de l’IPP demande une certaine régularité des fonctions mises en jeu :
f , f ′, g ,G doivent être continues sur [a,b].
Une condition suffisante2 pour cela est que toutes les fonctions en jeu soient C 1 : ceci devra être mentionné
(même rapidement) sur une copie.

1.5 Changement de variable

Le théorème de changement de variable repose sur la formule de dérivation d’une fonction composée : si F et
ϕ sont des fonctions de classe C 1, on a (F◦ϕ)′ =ϕ′×(F′◦ϕ) ; ce qui donne, en intégrant sur un intervalle [a,b] :∫ b

a
F′(ϕ(t )

)
ϕ′(t )dt = F

(
ϕ(b)

)−F
(
ϕ(a)

)= ∫ ϕ(b)

ϕ(a)
F′(t )dt

En notant f la dérivée de F, ce calcul donne le théorème du changement de variables :

Théorème 2. Soit ϕ de classe C 1 sur [a,b], et f continue sur ϕ
(
[a,b]

)
. On a∫ b

a
f
(
ϕ(t )

)
ϕ′(t )dt =

∫ ϕ(b)

ϕ(a)
f (t )dt

Remarque 5. Il n’est pas utile de connaître la formule précédente : voir ci-dessous pour l’utilisation pratique.

2Une CNS est : f C 1, g C 0. Mais on sera presque toujours dans le cas de la CS.
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Le changement de variable dans une intégrale s’effectue de la manière suivante :

• On dispose d’une intégrale (ex :
∫ 2

1

(
ln(t )

)2dt ).

• On décide de poser une nouvelle variable fonction de la variable d’intégration : ici, u = ln(t ) (ou
encore, t = eu).

• On change les bornes : pour t = 1, u = 0; pour t = 2, u = ln(2). On obtiendra
∫ ln(2)

0
.

• On transforme le dt de la manière suivante : si t = ϕ(u), alors dt = ϕ′(u)du; ou inversement, si
u =ψ(t ), du =ψ′(t )dt . Ici, t = eu donne dt = eudu.

• On obtient ainsi : ∫ 2

1

(
ln(t )

)2dt =
∫ ln(2)

0
u2eu du

... qui se traite ensuite par IPP (il n’est pas rare d’avoir à enchaîner plusieurs méthodes !)

1.6 Encadrer, majorer, minorer une intégrale

Pas mal d’exercices impliquant des intégrales demandent de calculer des limites d’intégrales. Si on ne peut pas
calculer cette intégrale, une solution est de trouver des majorations / minorations / encadrements permettant
de déterminer la limite. On utilise pour cela la croissance de l’intégrale :

Pour majorer / minorer / encadrer
∫ b

a
f (x)dx, on cherche une majoration / une minoration / un

encadrement de f (x) valable pour tout x ∈ [a,b].

Exemple 1. Montrer que lim
n→+∞

(∫ 1

0

t n

1+ t
dt

)
= 0.

1.7 Dérivation d’une fonction des bornes de l’intégrale

Le théorème de base est le suivant :

Théorème 3 (Théorème fondamental de l’analyse). Si f est une fonction continue sur [a,b], c est un réel con-

stant (c ∈ [a,b]), alors la dérivée de I : x 7→
∫ x

c
f (t )dt est égale à f .

Une généralisation : fonctions de la forme

x 7→
∫ ϕ(x)

c
f (t )dt x 7→

∫ c

ϕ(x)
f (t )dt x 7→

∫ ϕ(x)

ψ(x)
f (t )dt

Il faut introduire une primitive de f , et revenir à l’expression de l’intégrale faisant intervenir cette primitive.

Par exemple, soit f continue sur R, et I : x 7→
∫ x2

0
f (t )dt . Si on note F une primitive de f , alors :

∀x ∈R, I(x) = F
(
x2)−F(0)

et donc par dérivation d’une composée :

∀x ∈R, I′(x) = 2xF′ (x2)= 2x f
(
x2)

Attention !!! le terme «−F(0) » dans I(x) est une constante : il est de dérivée nulle, et on n’a surtout pas
I′(x) = 2x f

(
x2

)− f (0)...
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Exemple 2. Dériver les fonctions suivantes :

f1 : R∗+ −→ R

x 7−→
∫ a

x
ln

(p
t +1

)
dt

(a > 0)

f2 : R −→ R

x 7−→
∫ x

−x
exp

(−t 2) dt

f3 : R −→ R

x 7−→
∫ ex

0

t

t 3 +1
dt

Exemple 3. Soient (u, v) ∈C 1(R,R)2 et f ∈C 0(R,R). Exprimer la dérivée de la fonction Φ définie sur R par

Φ(x) =
∫ v(x)

u(x)
f (t )dt

à l’aide de f , u, v et leurs dérivées.
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2 Intégrales impropres

La notion d’intégrale impropre, dans le cadre du programme de Maths Appliquées correspond à la possibilité
d’intégrer une fonction sur des intervalles de type [a,+∞[, ]−∞, a], ou R=]−∞,+∞[.
Dans les définitions qui suivent, a est un réel.

Définition 1. Soit f une fonction continue sur [a,+∞[. On dit que l’intégrale
∫ +∞

a
f (t )dt converge si et

seulement si lim
A→+∞

(∫ A

a
f (t )dt

)
existe et est finie. On note alors :

∫ +∞

a
f (t )dt = lim

A→+∞

(∫ A

a
f (t )dt

)

Exemple 4.
∫ +∞

0
e−t dt converge.

En effet, soit A Ê 0. ∫ A

0
e−t dt =

[
−e−t

]A

0
= 1−e−A A→+∞−−−−−→ 1

on a donc la convergence, et
∫ +∞

0
e−t dt = 1.

La propriété suivante montre que, dès que f est continue sur son domaine de définition, l’existence de l’intégrale∫ +∞

a
f (t )dt ne dépend que du comportement en +∞ :

Proposition 4. Si f est continue sur [a,+∞[, et c ∈]a,+∞[, alors∫ +∞

c
f (t )dt converge ssi

∫ +∞

a
f (t )dt converge

et en cas de convergence on a : ∫ +∞

a
f (t )dt =

∫ c

a
f (t )dt +

∫ +∞

c
f (t )dt

Démonstration.
Soit A Ê a : on écrit la relation de Chasles pour des intégrales classiques :∫ A

a
f (t )dt =

∫ c

a
f (t )dt +

∫ A

c
f (t )dt

L’intégrale
∫ c

a
f (t )dt étant un réel fixe, lim

A→+∞

(∫ A

a
f (t )dt

)
existe ssi lim

A→+∞

(∫ A

c
f (t )dt

)
existe, ce qui donne l’équivalence

des convergences.

Dans le cas convergent, le passage à la limite A →+∞ donne l’égalité entre intégrales annoncée.

On a une définition similaire sur la borne inférieure :

Définition 2. Soit f une fonction continue sur ]−∞, a]. On dit que l’intégrale
∫ a

−∞
f (t )dt converge si et

seulement si lim
A→−∞

(∫ a

A
f (t )dt

)
existe et est finie. On note alors :

∫ a

−∞
f (t )dt = lim

A→−∞

(∫ a

A
f (t )dt

)

6



Exemple 5.
∫ A

−∞
e t dt converge.

En effet, soit A É 0. ∫ 0

A
e−t dt =

[
e t

]0

A
= 1−eA A→−∞−−−−−→ 1

on a donc la convergence, et
∫ 0

−∞
e t dt = 1.

ou sur les deux bornes à la fois :

Définition 3. Soit f une fonction continue sur R, et a ∈R quelconque. On dit que l’intégrale
∫ +∞

−∞
f (t )dt

converge si et seulement si les deux intégrales
∫ a

−∞
f (t )dt et

∫ +∞

a
f (t )dt convergent. On a alors

∫ +∞

−∞
f (t )dt =

∫ a

−∞
f (t )dt +

∫ +∞

a
f (t )dt

(on notera parfois
∫
R

f (t )dt =
∫ +∞

−∞
f (t )dt ).

Dans le dernier cas, où on doit traiter un problème de convergence sur les deux bornes, il faudra séparer le

problème en deux. Par exemple, pour étudier la convergence de
∫ +∞

−∞
1

1+x2 dx, on étudiera successivement

la convergence de
∫ +∞

0

1

1+x2 dx et celle de
∫ 0

−∞
1

1+x2 dx (noter que la valeur 0 n’a pas particulièrement

d’importance et sert juste à effectuer la coupure en un point « non problématique » , c’est-à-dire un point où la
fonction est définie et continue).

Dans la suite de ce cours, on n’énoncera donc que des théorèmes concernant des intégrales à une seule
borne impropre, car c’est sur des intégrales à une seule borne impropre que vous devrez les appliquer.

Exemple 6.
∫ +∞

−∞
e−|t | dt converge. En effet :

•
∫ +∞

0
e−|t | dt =

∫ +∞

0
e−t dt converge (et vaut 1) ;

•
∫ 0

−∞
e−|t | dt =

∫ 0

−∞
e t dt converge (et vaut 1).

On a alors : ∫ +∞

−∞
e−|t | dt =

∫ 0

−∞
e−|t | dt +

∫ +∞

0
e−|t | dt = 2
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3 Propriétés de l’intégrale

3.1 Les propriétés fondamentales

Les trois propriétés fondamentales de l’intégrale (linéarité, positivité – et donc croissance –, relation de
Chasles) sont vérifiées dès que toutes les intégrales manipulées sont convergentes.

Des résultats similaires ont lieu pour des intégrales de la forme
∫ a

−∞
ou

∫ +∞

−∞
.

• Linéarité : Soient f et g définies et continues sur [a,+∞[, et λ ∈ R : si
∫ +∞

a
f (t )dt et

∫ +∞

a
g (t )dt

convergent, alors
∫ +∞

a
(λ f (t )+ g (t ))dt converge et on a :

∫ +∞

a
(λ f (t )+ g (t ))dt = λ

∫ +∞

a
f (t )dt +

∫ +∞

a
g (t )dt

• Positivité : Si f est positive sur [a,+∞[, et
∫ +∞

a
f (t )dt converge, alors

∫ +∞

a
f (t )dt Ê 0.

• Croissance : Si f Ê g sur [a,+∞[, et
∫ +∞

a
f (t )dt et

∫ +∞

a
g (t )dt convergent, alors

∫ +∞

a
f (t )dt Ê∫ +∞

a
g (t )dt .

• Chasles : soient (a,b,c) ∈ (R∪ {−∞,+∞})3. Dès que les intégrales en jeu convergent,∫ c

a
f (t )dt =

∫ b

a
f (t )dt +

∫ c

b
f (t )dt

Remarque 6. Attention : prendre garde à ne pas séparer une intégrale convergente en deux intégrales diver-
gentes.

Par exemple, on vérifie aisément : ∀u Ê 1,
1

u(u +1)
= 1

u
− 1

u +1
; pour autant on ne peut pas écrire :

∫ +∞

1

1

u(u +1)
du =

∫ +∞

1

1

u
du −

∫ +∞

1

1

u +1
du

car les deux intégrales de droite divergent, et celle de gauche converge (tout ceci sera justifié dans ce qui suit).

On peut contourner cette difficulté en effectuant l’opération sur les intégrales
∫ A

1
(sur lesquelles il n’y a pas de

problématique de convergence), puis, en fin de calcul, en prenant la limite A →+∞.

3.2 Quelques remarques utiles

On mentionne ici quelques faits qui reviennent régulièrement dans les exercices. Ils doivent être redémontrés
dans une copie.

Proposition 5. Soit f continue sur [a,+∞[, avec
∫ +∞

a
f (t )dt convergente. On pose pour x Ê a :

R(x) =
∫ +∞

x
f (t )dt

Alors R est dérivable sur [a,+∞[, de dérivée − f ; et lim
x→+∞R(x) = 0.
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Démonstration. Les deux résultats reposent sur l’observation suivante :

On a R(x) =
∫ +∞

a
f (t )dt −

∫ x

a
f (t )dt

La première intégrale étant constante, la formule de dérivation d’une fonction des bornes de l’intégrale montre
que R est dérivable sur [a,+∞[, et que R′(x) =− f (x) ; de plus par définition de la convergence de l’intégrale :

lim
x→+∞

∫ x

a
f (t )dt =

∫ +∞

a
f (t )dt

ce qui donne lim
x→+∞R(x) = 0.

Remarque 7. Le résultat sur la limite peut être rapproché du fait que les restes partiels d’une série convergente
tendent vers 0 pour n →+∞.

Remarque 8. On peut donner une propriété similaire sur une borne impropre −∞ : Si f est continue sur

]−∞, a] alors R : x 7→
∫ x

−∞
f (t )dt a pour dérivée f , et est de limite nulle en −∞.

4 Intégrales de référence

4.1 Intégrales de Riemann

Soit α ∈R. Sur R∗+, une primitive de x 7→ 1

xα
est x 7→ 1

1−α
1

xα−1 dans le cas α ̸= 1 ; ou x 7→ ln(x) si α= 1.

On peut tenir le même raisonnement sur R∗− (avec la primitive x 7→ ln(−x) dans le cas α= 1).

On en déduit par une étude de limite la nature des intégrales de Riemann :

Théorème 6. Les intégrales
∫ +∞

1

1

tα
dt et

∫ −1

−∞
1

tα
dt sont convergentes ssi α> 1.

Remarque 9. Les bornes « 1 » et «−1 » ne sont pas importantes ici : on a de manière équivalente la convergence

de
∫ +∞

a

1

tα
dt , et celle de

∫ −a

−∞
1

tα
dt , pour a > 0 quelconque.

4.2 Fonctions exponentielles

Les exponentielles en l’infini fournissent les autres intégrales de référence :

Théorème 7.

• L’intégrale
∫ 0

−∞
eλt dt est convergente ssi λ> 0.

• L’intégrale
∫ +∞

0
eλt dt est convergente ssi λ< 0.
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5 Outils d’étude de convergence

On donne ici des critères permettant de montrer la convergence d’une intégrale sans passer par le calcul ex-
plicite de la limite donnée par la définition (en pratique cette limite n’est pas toujours calculable). Nous allons
principalement utiliser des outils de comparaison.

5.1 Un premier critère pour les fonctions positives

On a le résultat suivant :

Proposition 8. Soit f une fonction continue et positive sur [a,+∞[.

L’intégrale
∫ +∞

a
f (t )dt est convergente ssi la fonction x 7→

∫ x

a
f (t )dt est majorée sur [a,+∞[.

(autrement dit, ssi : ∃M ∈R, ∀x ∈ [a,+∞[,
∫ x

a
f (t )dt É M).

Démonstration. En annexe.

On a un résultat similaire quand le problème de convergence intervient sur la borne inférieure ; la démonstra-
tion est similaire au cas précédent.

Proposition 9. Soit f une fonction continue et positive sur ]−∞, a] (avec a ∈R).

L’intégrale
∫ a

−∞
f (t )dt est convergente ssi la fonction x 7→

∫ a

x
f (t )dt est majorée sur ]−∞, a].

Une conséquence parfois utile de ce résultat est la suivante.

Proposition 10. Soit f continue et positive.

• si l’intégrale
∫ +∞

a
f (t )dt diverge, alors lim

x→+∞

∫ x

a
f (t )dt =+∞.

• si l’intégrale
∫ a

−∞
f (t )dt diverge, alors lim

x→−∞

∫ a

x
f (t )dt =+∞.

5.2 Comparaisons

On déduit de ce résultat les principaux théorèmes de comparaison, qui seront les plus utiles.

Théorème 11. Soient f et g continues sur [a,+∞[. On suppose : ∀ t ∈ [a,+∞[, 0 É f (t ) É g (t ). Alors :

• Si
∫ +∞

a
g (t )dt converge, alors

∫ +∞

a
f (t )dt converge ;

• Si
∫ +∞

a
f (t )dt diverge, alors

∫ +∞

a
g (t )dt diverge.

Démonstration. En annexe.

Remarque 10. La convergence de
∫ +∞

a
f (t )dt équivaut à celle de

∫ +∞

c
f (t )dt , pour tout c ∈ [a,+∞[. On en

déduit que pour que le théorème s’applique, il suffit d’avoir 0 É f (t ) É g (t ) au voisinage de +∞.

On déduit de ce résultat des critères utilisant les relations de comparaison au voisinage de b :

Théorème 12. Soient f et g continues et positives sur [a,+∞[, telles que f (t ) =
t→+∞ o

(
g (t )

)
.

Si
∫ +∞

a
g (t )dt converge, alors

∫ +∞

a
f (t )dt converge.

10



Démonstration. En annexe.

Théorème 13. Soient f et g continues et positives sur [a,+∞[, telles que f (t ) ∼
t→+∞ g (t ).

Alors les intégrales
∫ +∞

a
f (t )dt et

∫ +∞

a
g (t )dt sont de même nature.

Démonstration. En annexe.

Remarque 11. Tous ces résultats se transposent au cas d’intégrales
∫ a

−∞
; les théorèmes sont similaires.

Remarque 12. Dans les théorèmes de comparaison impliquant les relations o et∼, on peut remplacer « positives » par
« positives au voisinage de +∞ » ; et comme deux fonctions équivalentes sont de même signe (au voisinage du
point de comparaison) il suffit de connaître le signe de l’équivalent pour valider les hypothèses du théorème.

Dans le cas de fonctions négatives, on pourra s’intéresser à la convergence de l’intégrale
∫ +∞

a

(− f (t )
)

dt (où − f est donc

maintenant une fonction positive) ; cette convergence équivaut à celle de
∫ +∞

a
f (t )dt .

On peut aussi examiner une convergence absolue : voir plus tard.

5.3 Exemples d’application

Exemple 7. Nature des intégrales suivantes :

•
∫ +∞

0

2x −7

x3 +x5 +1
dx.

•
∫ +∞

1

e−t

t
dt

5.4 Cas particulier : comparaison avec une intégrale de Riemann

On a l’équivalent continu du « test de Riemann » pour montrer la convergence de certaines intégrales :

Proposition 14. Soit f continue et positive sur [a,+∞[, telle que : ∃α> 1, lim
t→+∞ tα f (t ) = 0.

Alors
∫ +∞

a
f (t )dt est convergente.

On a un résultat similaire pour une borne impropre −∞.

(en effet, on a sous ces conditions : f (t ) =
t→+∞ o

(
1

tα

)
, l’intégrale de cette dernière fonction étant convergente

en +∞ car α> 1).

Exemple 8. Nature de
∫ +∞

1
t 2e−t dt .

6 Cas des fonctions de signe quelconque

Si la fonction à étudier n’est pas positive, on peut se ramener à une situation où les théorèmes s’appliquent de
deux manières :

• Si f est négative, − f est positive ; on étudie alors la nature de l’intégrale de − f , qui est identique à celle
de l’intégrale de f .

• On peut aussi étudier la fonction | f | et utiliser la convergence absolue.

On définit la convergence absolue de manière similaire aux séries :

11



Définition 4. Soit f continue sur [a,+∞[.

On dit que
∫ +∞

a
f (t )dt est absolument convergente ssi

∫ +∞

a

∣∣ f (t )
∣∣dt est convergente.

(et une définition similaire sur un intervalle ]−∞, a]).

et ici aussi, la convergence absolue est une condition suffisante de convergence :

Théorème 15. Si
∫ +∞

a
f (t )dt est absolument convergente, alors elle est convergente.

Démonstration. En annexe.

On dispose enfin de l’inégalité triangulaire :

Proposition 16. Si l’intégrale
∫ +∞

a
f (t )dt est absolument convergente, on a

∣∣∣∣∫ +∞

a
f (t )dt

∣∣∣∣É ∫ +∞

a

∣∣ f (t )
∣∣dt

7 Techniques de calcul

Les techniques de calcul vues sur un segment (intégration par parties, changement de variable) seront utilis-
ables ici, à la fois pour décider de la convergence d’une intégrale et pour la calculer.

7.1 Technique de base : passer sur un segment puis prendre une limite

Dans les cas « simples » où on peut primitiver la fonction, le calcul se fait en introduisant des bornes finies, puis,
dans un second temps, en les faisant tendre vers la limite désirée.

Exemple 9. Calculer
∫ +∞

2

2

t 3 dt .

(NB : on remarque qu’un tel calcul démontre au passage la convergence : il n’est pas nécessaire de la montrer
par d’autres moyens).

7.2 Changement de variable

La procédure de changement de variable est celle déjà vue dans le cas de l’intégration sur un segment ; elle
permet ici à la fois de discuter la convergence d’une intégrale et, le cas échéant, de la calculer.
Dans le cas général, il faudra d’abord repasser sur un segment pour effectuer ces manipulations, et dans un
second temps prendre les limites nécessaires pour obtenir la valeur de l’intégrale impropre.
Le programme autorise néanmoins, dans le cas d’un changement affine u = at +b (a ̸= 0,b ∈ R), à travailler
directement sur les intégrales impropres.

Exemple 10. Montrer que l’intégrale
∫ +∞

1

e−
p

t

p
t

dt existe, et donner sa valeur. On pourra poser u =p
t .

7.3 Intégration par parties

Les techniques sont celles rappelées en début de cours, valables sur un segment.

Ici aussi, il faudra d’abord repasser sur un segment pour effectuer ces manipulations, puis prendre les limites
nécessaires.

Exemple 11. Convergence et calcul de
∫ +∞

1

ln(x)

x2 dx.

12



8 Démonstrations

Proposition 8 (majoration et convergence)

Soit f une fonction continue et positive sur [a,+∞[.

L’intégrale
∫ +∞

a
f (t )dt est convergente ssi la fonction x 7→

∫ x

a
f (t )dt est majorée sur [a,+∞[.

(autrement dit, ssi : ∃M ∈R, ∀x ∈ [a,+∞[,
∫ x

a
f (t )dt É M).

Démonstration. Soit F : x 7→
∫ x

a
f (t )dt . On sait que F est dérivable sur [a,+∞[, avec F′(x) = f (x). Comme f est

positive, F est croissante sur [a,+∞[ : elle admet donc une limite finie en +∞ si et seulement si elle est majorée
sur cet intervalle.

Théorème 11 (comparaisons)

Soient f et g continues sur [a,+∞[. On suppose : ∀ t ∈ [a,+∞[, 0 É f (t ) É g (t ). Alors :

• Si
∫ +∞

a
g (t )dt converge, alors

∫ +∞

a
f (t )dt converge ;

• Si
∫ +∞

a
f (t )dt diverge, alors

∫ +∞

a
g (t )dt diverge.

Démonstration. Notons F : x 7→
∫ x

a
f (t )dt et G : x 7→

∫ x

a
g (t )dt . Si

∫ +∞

a
g converge, alors G est majorée sur

[a,+∞[. En intégrant l’inégalité sur f et g , on voit que F É G sur [a,+∞[, ce qui implique que F est aussi

majorée sur [a,+∞[ ; et donc que
∫ +∞

a
f (t )dt converge.

Le second point se déduit par contraposée.

Théorème 12 (comparaisons)

Soient f et g continues et positives sur [a,+∞[, telles que f (t ) =
t→+∞ o

(
g (t )

)
.

Si
∫ +∞

a
g (t )dt converge, alors

∫ +∞

a
f (t )dt converge.

Démonstration. De lim
x→+∞

f (x)

g (x)
= 0 on tire l’existence de c ∈ [a,+∞[ tel que : ∀x Ê c, 0 É f (x)

g (x)
É 1, ou encore

0 É f (x) É g (x) (par positivité de g ), ce qui permet de conclure avec le critère précédent.

Théorème 13 (comparaisons)

Soient f et g continues et positives sur [a,+∞[, telles que f (t ) ∼
t→+∞ g (t ).

Alors les intégrales
∫ +∞

a
f (t )dt et

∫ +∞

a
g (t )dt sont de même nature.

Démonstration. L’équivalence donne l’existence de c ∈ [a,+∞[ tel que : ∀x Ê c,
1

2
É f (x)

g (x)
É 2, d’où :

∃c ∈ [a,+∞[, ∀ t ∈ [c,+∞[,
1

2
g (t ) É f (t ) É 2g (t )

Si
∫ +∞ f converge, l’inégalité g É 2 f vraie au voisinage de b montre que

∫ +∞ g aussi ; si
∫ +∞ f diverge, alors

on utilise f É 2g .
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Théorème 15 (absolue convergence implique convergence)

Si
∫ +∞

a
f (t )dt est absolument convergente, alors elle est convergente.

Démonstration. On introduit les partie positive et partie négative de f :

∀ t ∈ [a,+∞[, f+(t ) = max( f (t ),0) et f−(t ) = max(− f (t ),0)

On vérifie alors :

• f+ et f− sont à valeurs positives ;

• Si f (t ) Ê 0, f (t ) = f+(t ) ;

• Si f (t ) É 0, f (t ) =− f−(t ) ;

• ∀ t ∈ [a,+∞[, f (t ) = f+(t )− f−(t ) et
∣∣ f (t )

∣∣= f+(t )+ f−(t ).

Si
∫ +∞ | f | converge, alors, des majorations f+ É | f | et f− É | f | valables sur [a,+∞[, on tire que

∫ +∞ f+ et
∫ +∞ f−

convergent aussi ; et donc que
∫ +∞ f = ∫ +∞( f+− f−) converge aussi.
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