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Intégrales impropres
Exercices

Exercice 1. Montrer que les intégrales suivantes convergent, et les calculer.

1. Indispensables : (*)∫ +∞

0
e−t/4 dt

∫ +∞

1

2

x
p

x
dx

∫ +∞

0
te−t 2

dt
∫ +∞

1

1

x(x +1)
dx

2. IPP et changements de variable :∫ +∞

0
te−t dt (*)

∫ +∞

0

1

(3x +2)2 dx
∫ +∞

0

1

1+e t dt (poser u = e t ) (*)

∫ +∞

0
e−

p
t dt (poser u =p

t )
∫ +∞

1

ln(x)

xn dx (n ∈N, n Ê 2)

Exercice 2. Discuter la convergence des intégrales suivantes :

1. Indispensables : (*) ∫ +∞

0

1

1+ t 3 dt
∫ +∞

1

(1+x)1/3 −1

x5/3
dx∫ +∞

1

t

e t −1
dt

∫ +∞

0
xne−λx dx (λ> 0,n ∈N)

∫ +∞

−∞
xne−λx2

dx (λ> 0, n ∈N)

2. Plus difficile :

∫ +∞

2

1

ln(1+ t )
dt

∫ +∞

1

(
ln(t )

)n

t 3 dt

Exercice 3. Soit n ∈N ; on pose In =
∫ +∞

1

(t −1)n

t n+2 dt .

1. Montrer que In est convergente.

2. En posant u = 1

t
, calculer In .

Exercice 4. Soit, pour n ∈N, In =
∫ +∞

0
une−u du.

1. (a) Trouver une relation de récurrence sur les In (l’existence a été montrée dans l’exercice 2)

(b) En déduire : ∀n ∈N, In = n!.

2. En déduire, pour tous λ> 0 et n ∈N, la valeur de
∫ +∞

0
une−λu du.

Exercice 5 (Parités).
Cet exercice contient des observations qui seront très utiles lors de l’étude de variables à densité.
Soit g une fonction continue sur R.
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1. On suppose que g est paire.

Montrer que si
∫ +∞

0
g (t )dt converge, alors

∫ 0

−∞
g (t )dt et

∫ +∞

−∞
g (t )dt convergent aussi.

Montrer que dans ce cas :∫ 0

−∞
g (t )dt =

∫ +∞

0
g (t )dt et

∫ +∞

−∞
g (t )dt = 2

∫ +∞

0
g (t )dt

2. On suppose maintenant que g est impaire.

Montrer que si
∫ +∞

0
g (t )dt converge, alors

∫ 0

−∞
g (t )dt converge aussi.

Montrer que dans ce cas :
∫ 0

−∞
g (t )dt =−

∫ +∞

0
g (t )dt .

Que vaut alors
∫ +∞

−∞
g (t )dt ?

3. Soit f une fonction paire, continue sur R ; soit n ∈N.
Discuter en fonction de n la parité de la fonction : t 7→ t n f (t ). On suppose que pour tout n ∈N, l’intégrale∫ +∞

−∞
t n f (t )dt converge. En déduire que :

• si n est impair, alors
∫ +∞

−∞
t n f (t )dt = 0 ;

• si n est pair, alors
∫ +∞

−∞
t n f (t )dt = 2

∫ +∞

0
t n f (t )dt

Exercice 6. On note f la fonction définie, pour tout réel x strictement positif, par f (x) = e
1
x

x2 .

1. Pour tout entier naturel n supérieur ou égal à 1 , on pose In =
∫ +∞

n
f (x)dx.

(a) Montrer que l’intégrale In est convergente et exprimer In en fonction de n.

(b) En déduire que In ∼
n→+∞

1

n
.

2. Montrer que la série de terme général un = f (n) est convergente.

3. (a) Établir que pour tout k ∈N∗, f (k +1) É
∫ k+1

k
f (x)dx É f (k).

(b) En déduire :

∀n ∈N∗,
+∞∑

k=n+1
uk É In É

+∞∑
k=n+1

uk +
e

1
n

n2

(c) Déduire des questions précédentes un équivalent simple, lorsque n est au voisinage de+∞, de
+∞∑

k=n+1

e
1
k

k2 .

Exercice 7. On considère la fonction R, définie sur R+ par R(x) =
∫ +∞

x
e−t 2

dt .

1. Montrer que, pour tout x ∈R+,R(x) est bien une intégrale convergente. Que vaut lim
x→+∞R(x) ?

2. Montrer :

R(x) = e−x2

2x
− 1

2

∫ +∞

x

e−t 2

t 2 dt

3. En déduire R(x) ∼
x→+∞

e−x2

2x
.
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Exercice 8 (Moments de la loi normale).

Soit n ∈N. On a montré dans l’exercice 2 que l’intégrale In =
∫ +∞

−∞
xne−x2

dx est convergente.

On admet dans cet exercice que
∫ +∞

−∞
e−x2

dx =p
π.

1. Montrer que si n est impair, alors In = 0.

2. Montrer : ∀n ∈N, I2n = 2
∫ +∞

0
x2ne−x2

dx.

3. Montrer : ∀n ∈N, I2n+2 = 2n +1

2
I2n .

4. En déduire : ∀n ∈N, I2n =p
π

(2n)!

22n n!
.

Exercice 9. Soit la fonction f définie par f (x) =
∫ +∞

1

t−x

1+ t
dt .

1. Déterminer l’ensemble de définition de f .

2. Pour (x, y) ∈ (R∗+)2 tels que x É y , donner le signe de f (x)− f (y). En déduire le sens de variation de f .

3. Pour x > 0, calculer f (x)+ f (x +1). En déduire : ∀x > 0,
1

2x
É f (x) É 1

x
; puis les limites de f en 0 et +∞.

Exercice 10. Soit f la fonction définie sur R par

∀x ∈R∗, f (x) = x

ex −1
et f (0) = 1

1. Pour tout entier naturel n, on pose : In =
∫ +∞

0
f (x)e−nx dx.

(a) Montrer que, pour tout n ∈N, l’intégrale In est convergente.

(b) Montrer que pour n Ê 1, on a : 0 É In É 1

n
. En déduire lim

n→+∞ In .

(c) Montrer que pour n Ê 1, on a: ∀x Ê 0, f (x) = f (x)e−nx +
n∑

k=1
xe−kx . En déduire que :

I0 =
∫ +∞

0
f (x)dx =

+∞∑
k=1

1

k2

2. On pose pour tout u > 0 : Ku =
∫ +∞

0

x

eux +1
dx.

(a) Montrer que, pour tout u > 0, l’intégrale Ku est convergente.

(b) Exprimer Ku en fonction de K1.

(c) Montrer que I0 −K1 =
∫ +∞

0
f (2x)dx

(d) Déduire des questions précédentes une relation simple entre I0 et Ku pour u > 0.

Exercice 11. Soit H(x) =
∫ +∞

x

e−t

1+ t
dt .

1. Montrer que H(x) est défini pour x >−1.

2. (a) Montrer que pour x ∈]−1,0],
∫ 0

x

e−t

1+ t
dt Ê− ln(1+x).
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(b) En déduire que lim
x→−1+

H(x) =+∞.

3. (a) Montrer que lim
x→+∞H(x) = 0.

(b) Montrer que pour tout n ∈N,
∫ +∞

0

t ne−t

1+ t
dt converge ; puis lim

x→+∞

(∫ +∞

x

t ne−t

1+ t
dt

)
= 0.

(c) En déduire : ∀n ∈N, lim
x→+∞xnH(x) = 0.

4. Montrer que H est de classe C 1 sur ]−1,+∞[, et déterminer H′.

5. Montrer que I =
∫ +∞

0
H(x)dx est convergente ; à l’aide d’une IPP, montrer que I = 1−H(0).
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Indications

1 1. 4 ; 4 ;
1

2
; ln(2) (par recherche directe de primitive)

2. Rappel : IPP et changements de variables se font en passant sur un segment ([0, A] ou [1, A]) puis en faisant tendre A →+∞ à la
fin du calcul.

1 (IPP) ;
1

6
(en posant u = 3x +2 mais peut aussi se aire par recherche directe)

ln(2) (on retrouve une intégrale de la première section après changement de variable)
1 (on retrouve une intégrale de la première section après changement de variable)

2 NB : je ne mentionne pas à chaque fois les continuités sur l’intervalle d’intégration, mais vous devez le faire.

•
1

1+ t 3
∼

t→+∞
1

t 3
;
∫ +∞

1

1

t 3
dt converge (attention à la borne

∫
1 !!!) par Riemann donc on a la cv par comparaison de fonctions

positives.

•
(1+x)1/3 −1

x5/3
∼

x→+∞
1

x4/3

•
t

e t −1
∼

t→+∞ te−t puis test de Riemann

• Tests de Riemann pour les deux dernières.

Plus difficile :

•
1

t
=

t→+∞ o

(
1

ln(1+ t )

)
permet de conclure à la divergence.

• test de Riemann

• Test de Riemann encore

3 1.
(t −1)n

t n+2
∼

t→+∞
1

t 2
;

2. Le changement de variable u = 1

t
donne : ∫ A

1

(t −1)n

t n+2
dt =−

∫ 1/A

1
(1−u)n du

On peut poser v = 1−u :

−
∫ 1/A

1
(1−u)n du =

∫ 1−1/A

0
vn dv

Pour A →+∞ on obtient donc In =
∫ 1

0
vn dv = 1

n +1
.

4 1. (a) Une IPP (effectuée sur
∫ A

0 ; pour A → +∞ les termes entre crochets tendent verts 0 par croissance comparée) donne
In+1 = (n +1)In (ou In = nIn−1w suivant le calcul que vous choisissez de faire)

(b) Récurrence.

2. Changement de variable !

7 1. pour la limite, remarquer que c’est un « reste partiel » ... mais sous cette forme c’est HP il faut refaire la démo.

2. C’est un peu subtil.

3. Commencer par montrer que
∫ +∞

x
e−t 2

t 2
dt est négligeable devant

∫ +∞
x e−t 2

dt .

8 1. Parité !!

2. Re-parité !!

3. Pour A Ê 0 faire une IPP avec le produit x2n+2e−x2 = (
x2n+1)(

xe−x2 )
; pour A →+∞, par croissances comparées, et avec la conver-

gence des intégrales en jeu, on trouvera ∫ +∞
0

x2n+2e−x2
dx = 2n +1

2

∫ +∞
0

x2n e−x2
dx

Ensuite ... multiplier par 2 :)

4. Récurrence en se battant un peu avec des factorielles.

10 1. (a) Attention la continuité en 0 est à étudier !! La fonction à intégrer ∼
x→+∞ xe−(n+1)x : test de R.....

(b) ∀x ∈R, ex Ê 1+x permet de majorer la fonction à intégrer (mais contrôler à la main que cette majoration fonctionne encore
en x = 0).

(c) Pour x > 0 on peut par exemple partir de l’expression de la somme géométrique
n∑

k=1
xe−kx (de raison e−x ) ; et conclure

n∑
k=1

xe−kx = f (x)(1−e−nx )

Vérifier ensuite que la formule demandée est encore valable en x = 0.

2. (a) La fct à intégrer ∼
x→+∞ xe−ux

(b) Changement de variable t = ux

(c) On regroupe par linéarité et identité remarquable au dénominateur.

(d) K1 = 1

2
I0 avec un changement de variable dans la question précédente ; puis on a Ku en fonction de K1.
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