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Variables aléatoires à densité

On étudie dans ce chapitre des variables aléatoires pouvant prendre une infinité continue de valeurs (par ex-
emple X(Ω) =R ou R+).
La distribution de probabilité est alors modélisée différemment : la plupart du temps, il ne s’agira plus de ma-
nipuler la probabilité qu’une variable X soit égale à une valeur donnée (intuitivement, on peut se convaincre
qu’une telle probabilité sera presque toujours nulle) ; mais la probabilité que X appartienne à un intervalle
donné. Cette information sera fournie par la fonction de répartition, qui caractérise complètement la loi d’une
variable.

1 Rappels

1.1 Définitions : espace probabilisé, variable aléatoire

On dispose dans tout ce cours d’un espace probabilisé (Ω,A ,P). Dans cette notation, Ω est « l’univers » (on ne
rentrera jamais dans les détails), A est l’ensemble des événements (parties de l’univers dont on peut calculer la
probabilité), et P est la fonction probabilité, qui à un événement A ∈A associe sa probabilité P(A).

Comme dans le cas des variables discrètes, on définit alors une variable aléatoire comme une fonction définie
sur l’univers : à chaque issue ω ∈Ω est associé une valeur de la variable X, notée X(ω).
On demande quand même une propriété pour pouvoir effectuer des calculs :

Définition 1. On appelle variable aléatoire réelle (en abrégé : var) toute fonction X définie surΩ, à valeurs
dans R telle que :

∀x ∈R,
{
ω ∈Ω ∣∣ X(ω) É x

}
est un événement.

On introduit traditionnellement des raccourcis de notation pour désigner les événements utilisés dans les cal-
culs : si x ∈R, on note :

(X É x) = {
ω ∈Ω ∣∣ X(ω) É x

}
(X Ê x) = {

ω ∈Ω ∣∣ X(ω) Ê x
}

(X = x) = {
ω ∈Ω ∣∣ X(ω) = x

}
Dit en français : l’événement (X É x) est l’ensemble des issues ω telles que la valeur prise par X pour cette issue
est inférieure ou égale à x.

Les propriétés d’un espace probabilisé assurent que si tous les (X É x) sont des événements, alors tous les
(X Ê x), (X < x), (X > x), (X = x)... plus généralement tous les (X ∈ I) où I est un intervalle de R sont aussi des
événements.
Tout ceci pose les fondements de la théorie de la mesure, ce qui n’est pas vraiment le propos dans ce cours. Pour
nous, cela assure simplement que :

Si X est une variable aléatoire, toutes les probabilités P(X ∈ I), avec I un intervalle de R, sont bien définies.

La fonction de répartition est ici l’objet mathématique qui donne la loi d’une variable :

Définition 2. Soit X une variable aléatoire. On appelle fonction de répartition de X la fonction FX définie
sur R par :

∀x ∈R, FX(x) =P(X É x)
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Remarque 1. Attention, une fonction de répartition est toujours définie sur R, même si X(Ω) n’est pas égal à R
entier. Dans le cas très fréquent où X(Ω) =R+, FX est bel et bien définie sur R∗− ; et on a : ∀x < 0, FX(x) = 0.
On peut plus généralement voir que si X(Ω) ⊂ [a,b] :

• ∀x < a, FX(x) = 0 (car si x < a, l’événement (X É x) est impossible) ;

• ∀x Ê b, FX(x) = 1 (car si x Ê b, l’événement (X É x) est certain).

Ceci servira très souvent en pratique.

De manière rigoureuse, la loi d’une variable aléatoire est donnée par l’ensemble des P(X ∈ A), où A est une par-
tie pouvant être écrite comme une réunion dénombrable d’intervalles. C’est assez peu maniable. Le théorème
suivant montre que la fonction de répartition contient toute l’information pour définir la loi de X :

Théorème 1. La donnée de la fonction de répartition FX caractérise la loi de la variable aléatoire X.
En particulier, pour tous (a,b) ∈R2 tels que a < b, on a

P(a < X É b) = FX(b)−FX(a)

Remarque 2. Faire attention à la position des inégalités < et É dans la formule précédent.

Démonstration. Le premier point est admis.
On a : (X É b) = (X É a)⊔ (a < X É b) ; d’où en passant aux probabilités : P(X É b) =P(X É a)+P(a < X É b). On obtient bien
P(a < x É b) =P(X É b)−P(X É a) = FX(b)−FX(a).

Rappelons les propriétés d’une fonction de répartition. Certaines d’entre elles sont issues des théorèmes de
limite monotone rappelés en annexe (mais hors-programme, ainsi que les démonstrations qui les utilisent).

Proposition 2. Soit X une variable aléatoire de fonction de répartition FX. Alors :

• FX est croissante sur R.

• FX est continue à droite en tout point de R (c’est-à-dire, en tout point x, P(X É x) = lim
t→x+ FX(t )).

• lim
x→−∞FX(x) = 0.

• lim
x→+∞FX(x) = 1.

• En tout point x, P(X < x) = lim
t→x− FX(t ).

• En tout point x, P(X = x) = lim
t→x+ FX(t )− lim

t→x− FX(t ).

En particulier, FX est continue en x si et seulement si P(X = x) = 0.

Démonstration. En annexe.

1.2 Problème inverse : quand une fonction est-elle une fonction de répartition ?

Nous avons jusqu’ici considéré comme point de départ une variable aléatoire X ; puis défini sa fonction de ré-
partition ; puis, à l’aide des propriétés d’une probabilité, obtenu des propriétés sur cette fonction. On souhaite
ici effectuer l’opération inverse : une fonction de R dans R étant donnée, à quelle condition peut-on affirmer
que c’est la fonction de répartition d’une certaine variable aléatoire ?
Ce résultat sera admis.
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Théorème 3. Soit F une fonction de R dans R :

• croissante sur R ;

• telle que lim
x→−∞F(x) = 0 et lim

x→+∞F(x) = 1

• continue à droite en tout point de R.

Alors F est une fonction de répartition, c’est-à-dire qu’il existe une variable aléatoire X dont F est la fonction
de répartition.

1.3 Rappel : fonction de répartition d’une VAD

La notion de fonction de répartition n’est pas spécifique aux variables à densité : elle existe aussi pour les
variables discrètes. Il est d’ailleurs utile de se souvenir de quelques résultats à ce propos :

• Fonction de répartition d’une variable certaine égale à a.

Si (X = a) est certain, alors l’événement (X É x) est de proba nulle si x < a, et de proba 1 si x Ê a. La
fonction de répartition de X est alors un créneau en a :

• Fonction de répartition d’une variable de Bernoulli : si X vaut 0 avec une proba 1−p et 1 avec une proba
p, et x ∈R, alors on voit que :

– si x < 0, P(X É x) = 0

– Si 0 É x < 1, alors P(X É x) =P(X = 0) = 1−p

– Si x Ê 1, alors P(X É x) = 1

On obtient cette fois un « double créneau » :

• De manière générale, la fonction de répartition d’une variable discrète se présente comme un escalier,
dont les marches sont situées aux valeurs de X(Ω) (donc éventuellement en nombre infini). Voici par ex-
emple la représentation graphique de la fonction de répartition d’une variable suivant une loi géométrique
(p = 0.4) :
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Les tailles des marches correspondent à la loi de proba G (0.4) :

• P(X = 1) = (0.6)0 ×0.4 = 0.4

• P(X = 2) = (0.6)1 ×0.4 = 0.24

• etc...

1.4 Variables à densité

Soit X une variable aléatoire, et FX sa fonction de répartition.

La proposition 2 montre que si a est tel que P(X = a) > 0, alors FX est discontinue en a.
Si au contraire FX est continue, on en déduit que pour tout réel x on a P(X = x) = 0. Les P(X = x) ne sont donc
pas, ici, les quantités pertinentes pour effectuer des calculs de probabilité.

On a par contre vu qu’on pouvait déduire de FX la probabilité que X soit dans un intervalle [x, y]. Si cet in-
tervalle est petit, on obtient une probabilité que X soit « très proche de x » : ce sera FX(x +h)−FX(x), avec h
« infiniment petit ».

Si on suppose enfin que FX est dérivable, cette dernière probabilité peut s’approximer par h F′
X(x) : on voit

donc qu’on peut estimer la probabilité que X soit autour de x à l’aide de F′
X. Lorsque cette dérivée existe, on la

nomme densité.

Définition 3. Soit X une variable aléatoire. On dit que X est à densité (ou : X admet une densité) ssi sa
fonction de répartition FX est :

• continue sur R ;

• de classe C 1 sur R, sauf éventuellement en un nombre fini de points.

On appelle alors densité de X toute fonction f définie sur R telle que F′
X = f , sauf éventuellement en un

nombre fini de points.
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Méthode :

• Pour montrer qu’une fonction donnée est une fonction de répartition, il faudra montrer que
cette fonction :

– est croissante sur R ;

– vérifie lim
x→−∞F(x) = 0 et lim

x→+∞F(x) = 1 ;

– est continue à droite en tout point de R.

• Pour montrer qu’une fonction donnée est la fonction de répartition d’une variable à densité, il
faudra ajouter les propriétés supplémentaires mentionnées dans la définition 3. Donc :

– croissante sur R ;

– lim
x→−∞F(x) = 0 et lim

x→+∞F(x) = 1 ;

– continue sur R et de classe C 1 sauf en un nombre fini de points.

• Pour montrer qu’une variable X donnée est une variable à densité, il faudra montrer que sa
fonction de répartition est :

– continue sur R ;

– de classe C 1 sauf en un nombre fini de points.
(NB : pour gagner du temps, on pourra montrer qu’elle est C 1 surR sauf en un nombre fini
de points ; et qu’en ces points « problématiques » elle est continue.

Remarque 3. Remarquer ce critère du « sauf éventuellement en un nombre fini de points ». Il interviendra
souvent en pratique et ne doit pas être traité à la légère.

Définition 4. Soit X une variable aléatoire admettant une densité. On dit que fX est une densité de X ssi :

• fX est définie sur R, à valeurs positives ;

• F′
X = fX sauf éventuellement en un nombre fini de points.

Remarque 4. On voit donc qu’une densité est continue surR, sauf éventuellement en un nombre fini de points.

Remarque 5. Une variable aléatoire admet une unique fonction de répartition (qui définit sa loi) ; mais une
variable à densité admet plusieurs densités car on peut changer la valeur de fX en un nombre fini de points
(arbitraires) et obtenir une autre fonction qui vérifie aussi les propriétés demandées.
En pratique ceci intervient aux points où FX n’est pas dérivable : on ne peut pas définir fX(a) = F′

X(a), et on
pose alors fX(a) = α où α est un réel quelconque. Sa valeur n’aura aucune influence sur les valeurs de diverses
probabilités : il faut plutôt voir une densité comme un outil de calcul. Pour des raisons de régularité que nous
évoquerons dans la remarque 8, on aura intérêt à prolonger par continuité (au moins d’un côté) la densité
obtenue.

Méthode :
Pour déterminer une densité d’une variable dont on connaît la fonction de répartition, il faut :

• dériver cette fonction de répartition aux endroits où c’est possible (donc partout sauf en un
nombre fini de points) ;

• et compléter en ces points par des valeurs de notre choix.
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Exemple 1. Soit X une variable aléatoire dont la fonction de répartition est FX : t 7→
{

0 si t < 0

1−e−t si t Ê 0
.

Montrer que X est une variable à densité, et en donner une densité.

L’existence d’une densité permet d’utiliser le calcul intégral pour déterminer les quantités utiles :

Proposition 4 (Propriétés des variables à densité).
Soit X une variable aléatoire admettant une densité f . On a les propriétés suivantes :

• Pour tout x ∈R, P(X = x) = 0.

• Si I est un intervalle de R, la quantité P(X ∈ I) ne change pas si on ouvre ou ferme les crochets aux
bornes de I.

• Pour tout x ∈R,

FX(x) =P(X É x) =P(X < x) =
∫ x

−∞
f (t )dt

• Pour tout x ∈R,

P(X Ê x) =P(X > x) = 1−FX(x) =
∫ +∞

x
f (t )dt

• Pour tous (a,b) ∈R2 tels que a É b :

P(a É x É b) =P(a < x É b) =P(a É x < b) =P(a < x < b) =
∫ b

a
f (t )dt

•
∫ +∞

−∞
f (t )dt converge, et est égale à 1.

Démonstration. En annexe.

Remarque 6. On voit dans cet encadré justifie que dans beaucoup de calculs de probabilités faisant intervenir
des variables à densité, on peut remplacer les inégalités larges par des strictes, et inversement.
Attention par contre : si X et Y sont deux variables à densité, on n’a pas forcémentP(X É Y) =P(X < Y) !! (contre-
exemple : prendre Y = X).

Remarque 7. La dernière propriété
∫ +∞

−∞
f (x)dx = 1 est l’analogue continu de la propriété

∑
x∈X(Ω)

P(X = x) = 1

vue pour des variables discrètes.
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Remarque 8 (Subtile mais importante !). La propriété FX(x) =
∫ x

−∞
f (t )dt laisse penser, en se souvenant du

théorème fondamental de l’analyse, que F′
X = fX. Mais on voit apparaître une contradiction : la fonction de

répartition d’une variable aléatoire est unique, alors qu’une densité ne l’est pas (on peut la modifier arbitraire-
ment en un nombre fini de points).
Il faut donc prendre plusieurs précautions :

• Si la densité fX utilisée est continue sur R, alors le TFA affirme bien que FX est C 1 sur R ;

• Cela fonctionne en fait localement : en tout point x où la densité fX est continue, la fonction de réparti-
tion est C 1, et F′

X(x) = fX(x).

Réciproquement, si notre point de départ est la fonction de répartition (C 0, C 1 sauf en un nombre fini de
points) : en tout point a où FX est C 1 on prendra fX(a) = F′

X(a) ; et en le nombre fini de points où on n’a pas le
caractère C 1, on prendra la valeur de fX la moins embêtante possible (voir exemples).

Remarque 9. Le troisième point de la proposition 4 montre que :

Si deux variables aléatoires admettent une même densité, alors elles suivent la même loi.

On a une réciproque de ce résultat : si une fonction f possède les propriétés d’une densité, on peut effective-
ment définir une variable X dont f sera une densité.

Proposition 5. (Définition / proposition)
On appelle densité toute fonction f définie sur R :

• positive ;

• continue sauf éventuellement en un nombre fini de points ;

• telle que
∫ +∞

−∞
f (x)dx converge et est égale à 1.

Si f est une densité, il existe une variable aléatoire X, admettant f pour densité.

Démonstration. Admis. Cette variable a alors pour fonction de répartition FX : x 7→
∫ x

−∞
f (t )dt .

Méthode :
Pour montrer qu’une fonction donnée est une densité de probabilité, il faudra montrer que cette

fonction vérifie les trois propriétés énoncées dans la proposition 5.

1.5 Parenthèse : intégrales de fonctions continues sauf en un nombre fini de points

On manipule dans la section précédente des intégrales de fonctions non continues, ce qui nous place hors
du formalisme habituel du calcul intégral (ce sera en plus très fréquent en pratique). La solution est alors de
découper l’intégrale : soient a < c < b (a et b pouvant être infinis) et f continue sur [a,b] (éventuellement
crochets ouverts si les bornes sont impropres), sauf en c. On définit :∫ b

a
f (t )dt =

∫ c

a
f (t )dt +

∫ b

c
f (t )dt
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La borne c est en fait impropre dans une des deux intégrales : par exemple si f (x) =
{

0 si x É 0

e−x si x > 0
, on écrira

(les intégrales qui suivent convergent) :∫ +∞

−∞
f (x)dx =

∫ 0

−∞
0dx +

∫ +∞

0
e−x dx =

∫ +∞

0
e−x dx

Mais dans la deuxième intégrale, on intègre sur ]0,+∞[ ce qui pose le problème de la borne impropre
∫

0
.

En fait dans ce cas1, la fonction x 7→ e−x définie sur R∗+ se prolonge par continuité sur R+ car elle a une limite
finie en 0+. L’intégrale à calculer est alors égale à celle du prolongement2 : on fait comme si on intégrait sur
[0,+∞[.
Moralité : la manière « raisonnable » de traiter ces intégrales fonctionne. De plus vous pourrez passer tout cela
sous silence sur une copie et faire vos calculs sans inquiétude.

Exemple 2. Soit f : x 7→
0 si t < 1

1

t 2 si t Ê 1
.

Montrer que f est une densité de probabilité. Soit X une variable admettant f pour densité ; donner la fonction
de répartition de X.

1Et dans le cadre du programme ce sera toujours ainsi.
2Ce n’est pas évident.
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1.6 Lois usuelles

Nous donnons ici les définitions et propriétés des lois à densité que nous rencontrerons le plus souvent :

Loi uniforme

Définition 5. Soient a < b deux réels. On dit que X suit la loi uniforme sur [a,b] ssi X est une variable à
densité, dont une densité est donnée par :

f : x 7→
{

0 si x < a ou x > b
1

b −a
si a É x É b

Dans ce cas, on note : X ,→U ([a,b]).

En intégrant cette dernière fonction, on retrouve la fonction de répartition :

Proposition 6. Si X ,→U ([a,b]), la fonction de répartition de X est

P(X É x) =


0 si x É a

x −a

b −a
si a É x É b

1 si x Ê b

Représentations graphiques :

Densité :

Fonction de répartition :
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Loi exponentielle

Définition 6. Soit λ un réel > 0. On dit que la variable aléatoire X suit la loi exponentielle de paramètre λ
ssi X est une variable à densité, dont une densité est donnée par

f : x 7→
{

0 si x < 0
λe−λx si x Ê 0

Dans ce cas, on note : X ,→ E (λ)

La fonction de répartition s’obtient ici aussi en intégrant :

Proposition 7. Si X ,→ E (λ), on a

P(X É x) =
{

0 si x É 0
1−e−λx si x Ê 0

Représentations graphiques :

Densité :

Fonction de répartition :
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Loi normale

Définition 7. Soient µ ∈ R, σ > 0. On dit que la variable aléatoire X suit la loi normale de paramètres
µ,σ2 ssi X est une variable à densité, dont une densité est donnée par

f : x 7→ 1p
2πσ2

exp

(
− (x −µ)2

2σ2

)
On note X ,→N (µ,σ2).

On dit que la variable est centrée si µ = 0, et centrée réduite si de plus σ = 1. La loi normale centrée
réduite a donc pour densité :

fred : x 7→ 1p
2π

exp

(
−x2

2

)

Dans le cas d’une loi normale, la fonction de répartition ne peut pas s’écrire à l’aide de fonctions usuelles : on
peut seulement utiliser la définition et écrire :

Proposition 8. Si X ,→N (µ,σ2), on a :

∀x ∈R, P(X É x) = 1p
2πσ2

∫ x

−∞
exp

(
− (t −µ)2

2σ2

)
dt

∀ (a,b) ∈R2, P(a É X É b) = 1p
2πσ2

∫ b

a
exp

(
− (t −µ)2

2σ2

)
dt

Notamment, dans le cas de la loi centrée réduite, la fonction de répartition est notée Φ et est donnée par :

Corollaire 9. Si X ,→N (0,1), on a :

∀x ∈R, Φ(x) =P(X É x) = 1p
2π

∫ x

−∞
exp

(
− t 2

2

)
dt

11



Représentations graphiques pour la loi normale

Densité :

Quelques indicateurs sur cette « cloche » :

• La proba que X s’écarte de son espérance d’au plus ±σ est ≃ 68%

• La proba que X s’écarte de son espérance d’au plus ±2σ est ≃ 95%

• La proba que X s’écarte de son espérance d’au plus ±3σ est ≃ 99.7%

• La « largeur typique » de la cloche est donnée par σ : en fait la largeur est ±σ à 60% de la hauteur de la
cloche.

Fonction de répartition :
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1.7 Espérance

Le calcul intégral permet de définir (sous réserve d’existence) l’espérance d’une variable à densité :

Définition 8. Soit X une variable aléatoire de densité f .

X admet une espérance si et seulement si l’intégrale
∫ +∞

−∞
x f (x)dx est absolument convergente, et on

définit alors :

E(X) =
∫ +∞

−∞
x f (x)dx

NB : même s’il faut examiner la convergence de
∫ +∞

−∞
|x| f (x)dx pour établir l’existence de E(X), on a E(X) =∫ +∞

−∞
x f (x)dx.

Théorème 10 (Espérances des lois usuelles).

• Si X ,→U ([a,b]), X admet une espérance, et on a E(X) = a +b

2

• Si X ,→ E (λ), X admet une espérance, et on a E(X) = 1

λ

• Si X ,→N (0,1), X admet une espérance, et on a E(X) = 0

Exercice : Retrouver ces valeurs.

2 Résultats additionnels : moments, transfert

2.1 Théorème de transfert

Le théorème suivant permet de calculer (sous réserve d’existence) l’espérance d’une fonction quelconque de
la variable X :

Théorème 11 (Théorème de transfert).
Soit X une variable aléatoire admettant une densité f . On suppose que

• f est nulle en dehors d’un intervalle ]a,b[ (a,b finis ou infinis) ;

• g est continue sur ]a,b[, sauf éventuellement en un nombre fini de points.

Alors g (X) admet une espérance ssi
∫ b

a
g (x) f (x)dx converge absolument, et dans ce cas :

E(g (X)) =
∫ b

a
g (x) f (x)dx

Exemple 3.

1. Soit X ,→U ([0,1]). Calculer E
(
X2

)
.

2. Soit Y ,→N (0,1). Calculer E
(
Y2

)
.
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2.2 Moments

On définit (sous réserve d’existence) de nouvelles quantités associées à une var :

Définition 9. Soit X une variable aléatoire sur (Ω,A ,P). On dit que X admet un moment d’ordre r ∈ N∗ si et

seulement si l’intégrale
∫ +∞

−∞
xr f (x)dx est absolument convergente, et on a alors :

mr (X) =
∫ +∞

−∞
xr f (x)dx

Remarque 10. On a donc : ∀r ∈N, mr (X) = E(Xr ).

Concernant l’existence de ces moments, on a un résultat similaire à celui sur les VAD :

Proposition 12. Soit X une variable aléatoire de densité f . Si f admet un moment d’ordre m ∈ N∗, alors elle
admet des moments d’ordre p pour tout p ∈ �1,m�.
Notamment, si une variable admet un moment d’ordre 2, elle admet une espérance.

Démonstration. En annexe.

Dans le cas de l’existence d’un moment d’ordre 2, on définit alors la variance d’une variable à densité :

Définition 10. Soit X une variable aléatoire de densité f admettant un moment d’ordre 2. Alors elle admet
une espérance ; et la variable (X−E(X))2 admet une espérance. On note

V(X) = E((X−E(X))2)
V(X) est appelée variance de X.

Sous les hypothèses ci-dessus, le calcul suivant est légitime :

E
(
(X−E(X))2)= ∫ +∞

−∞
(x −E(X))2 f (x)dx

=
∫ +∞

−∞
x2 f (x)dx −2E(X)

∫ +∞

−∞
x f (x)dx +E(X)2

∫ +∞

−∞
f (x)dx

= E(X2)−2E(X)E(X)+E(X)2

E
(
(X−E(X))2)= E(X2)−E(X)2

et on obtient :

Proposition 13 (Kœnig-Huygens). Soit X une variable à densité admettant une variance. On a

V(X) = E(X2)−E(X)2

Théorème 14 (Variances des lois usuelles).

• Si X ,→U ([a,b]), X admet une variance, et on a V(X) = (b −a)2

12

• Si X ,→ E (λ), X admet une variance, et on a V(X) = 1

λ2

• Si X ,→N (0,1), X admet une variance, et on a V(X) = 1

14



2.3 Valeurs d’intégrales usuelles

Les résultats précédents peuvent être invoqués pour justifier l’existence d’intégrales et donner leur valeur.

• Par propriété d’une densité, celle de la loi exponentielle vérifie :

∀λ> 0,
∫ +∞

0
λe−λx dx = 1

On en déduit que :

∀λ> 0, l’intégrale
∫ +∞

0
e−λx dx converge et vaut

1

λ

• X ,→ E (λ) admet une espérance égale à
1

λ
. On en déduit en effectuant le calcul que

∫ +∞

0
λxe−λx dx = 1

λ
,

ou encore

∀λ> 0, l’intégrale
∫ +∞

0
xe−λx dx converge et vaut

1

λ2

• X ,→ E (λ) admet une variance égale à
1

λ2 On a donc E(X2) = V(X)+E(X)2 = 2

λ2 . On en déduit en effectuant

le calcul que
∫ +∞

0
λx2e−λx dx = 2

λ2 , ou encore

∀λ> 0, l’intégrale
∫ +∞

0
x2e−λx dx converge et vaut

2

λ3

Remarque 11. Ces trois derniers résultats s’appliqueront assez souvent dans le cas λ = 1 ; il convient
alors de donner la justification.

Exemple de rédaction :

« L’intégrale
∫ +∞

0
xe−x dx donne l’espérance d’une variable X ,→ E (1) ; elle converge donc, et est égale à 1. »

• Soit X ,→ N

(
0,

1

2

)
. L’intégrale sur R de la densité converge ; X admet une espérance (nulle) et une

variance ; on en déduit que :

Les intégrales
∫ +∞

−∞
e−x2

dx ;
∫ +∞

−∞
xe−x2

dx ;
∫ +∞

−∞
x2e−x2

dx convergent
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3 Densités associées à des transformations d’une var

Une problématique très fréquente est, connaissant la loi d’une variable X, de déterminer la loi d’une fonction
de cette variable (exemple : Y = 2X+1, Y = X2, Y = ln(X), etc.)
La méthode à suivre est la suivante.

Méthode :
X est une variable aléatoire ; on définit une nouvelle variable Y = f (X).

Pour déterminer la loi de Y, on calcule sa fonction de répartition.

• Pour y ∈R, on exprime l’événement (Y É y) en fonction d’un événement sur X ;

• comme on connaît la fonction de répartition de X, on en déduit FY(y) =P(Y É y).

• (optionnel) si on demande une densité de Y, on vérifie que Y est bien à densité et on en trouve
une densité par dérivation comme exposé dans la méthode page 5.

3.1 Exemple : transformation affine

Soit X une variable admettant une densité fX ; on pose Y =−2X+1.
Soit FY la fonction de répartition de Y : on a, pour y ∈R,

(Y É y) = (−2X+1 É y) =
(
X Ê 1− y

2

)

On en déduit que FY(y) = 1−FX

(
1− y

2

)
(comme X est à densité, P(X Ê x) =P(X > x) = 1−P(X É x)).

Si on veut repasser aux densités, il suffit de dériver la fonction de répartition aux points où c’est possible :

∀ y ∈R, FY(y) =P(Y É y) =P
(
X Ê 1− y

2

)
= 1−FX

(
1− y

2

)
donne en dérivant par rapport à y :

∀ y ∈R, F′
Y(y) =−

(
−1

2

)
F′

X

(
1− y

2

)
et finalement

∀ y ∈R, fY(y) = 1

2
fX

(
1− y

2

)
donne une densité de Y en fonction d’une densité de X.
Ce résultat se généralise en :

Proposition 15. Soit X une variable aléatoire à densité fX, et Y = aX+b, avec a ̸= 0. Alors Y est à densité, et une
densité de Y est donnée par :

∀ y ∈R, fY(y) = 1

|a| fX

(
y −b

a

)

Cette formule n’est pas à connaître, elle se redémontre au cas par cas.

Transformée affine d’une loi uniforme

Proposition 16.

• Soit X ,→U ([0,1]), et a < b. Alors a + (b −a)X ,→U ([a,b]).

• Notamment : si X ,→U ([a,b]), alors
X−a

b −a
,→U ([0,1]).
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Démonstration. Par la formule précédente (avec b −a > 0), une densité de a + (b −a)X est donnée par

f : x 7→


1

b −a
si 0 É x −a

b −a
É 1

0 sinon
soit encore f : x 7→


1

b −a
si a É x É b

0 sinon

ce qui est bien la densité de U ([a,b]).

Transformée affine d’une loi normale

Proposition 17. Soit X ,→N (µ,σ2). Alors aX+b ,→N (aµ+b, a2σ2).
En particulier, on peut « réduire » une variable suivant une loi normale :

Si X ,→N (µ,σ2), alors
X−µ
σ

,→N (0,1)

Démonstration. C’est un cas particulier du théorème précédent; une densité de X est

fX : x 7→ 1√
2πσ2

exp

(
− (x −µ)2

2σ2

)
En notant Y = aX+b, on obtient :

∀ y ∈R, fY(y) = 1

|a|
1√

2πσ2
exp

−
(

y −b

a
−µ

)2

2σ2

= 1√
2πa2σ2

exp

(
−

(
y − (aµ+b)

)2

2a2σ2

)

et on obtient bien que Y ,→N (aµ+b, a2σ2).

3.2 Un cas particulier important : simulation d’une loi exponentielle

On va démontrer le résultat suivant :

Proposition 18. Soit X ,→U ([0,1]), et Y =− 1

λ
ln(1−X), avec λ> 0. Alors Y ,→ E (λ).

Démonstration. Soit y ∈R. On a : Y É y ⇔ − 1

λ
ln(1−X) É y ⇔ X É 1−e−λy , et donc

∀ y Ê 0, FY(y) = FX
(
1−e−λy )

Or

FX(x) =


0 si x < 0

x si 0 É x É 1

1 si x > 1

Donc

FY(y) =


0 si 1−e−λy < 0 (1)

1−e−λy si 0 É 1−e−λy É 1 (2)

1 si 1−e−λy > 1 (3)

Éclaircissons ces conditions :

• (1) : 1−e−λy < 0 ⇔ e−λy > 1 ⇔−λy > 0 ⇔ y < 0

• (2) : 0 É 1−e−λy É 1 ⇔ 0 É e−λy É 1 ⇔−λy É 0 ⇔ y Ê 0

• (3) : 1−e−λy > 1 ⇔ e−λy < 0 : impossible.

Récapitulons : FY(y) =
{

0 si y < 0

1−e−λy si y Ê 0
. On reconnaît bien la fonction de répartition de E (λ) ; on peut

donc conclure Y ,→ E (λ).

Remarque 12. Cette démo est très usuelle, tombe souvent aux concours, et doit alors être effectuée de manière
très soigneuse, sans oublier d’étape...
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4 Cas de plusieurs variables aléatoires sur le même univers

4.1 Indépendance

Comme dans le cas de variables discrètes, on examine des situations où on a défini plus d’une variable aléatoire
sur un même espace probabilisé. Il se pose alors, notamment, des questions d’indépendance.

Définition 11. Soit (Ω,A ,P) un espace probabilisé, et X et Y deux variables aléatoires réelles définies sur Ω. On
dit que X et Y sont indépendantes si et seulement si :

pour tous intervalles I, J de R, P
(
[X ∈ I]∩ [Y ∈ J]

)=P(X ∈ I)×P(Y ∈ J)

Remarque 13. Ce critère équivaut à une équation similaire sur les fonctions de répartition.

X et Y sont indépendantes si et seulement si : ∀ (t , t ′) ∈R2, P
(
(X É t )∩ (Y É t ′)

)=P(X É t )×P(Y É t ′)

On peut immédiatement étendre cette définition au cas de n variables aléatoires :

Définition 12. Soit (Ω,A ,P) un espace probabilisé, et X1, ...,Xn n variables aléatoires définies sur Ω. On dit que
X1, ...,Xn sont mutuellement indépendantes si et seulement si :

pour tous intervalles I1, ..., In de R, P

(
n⋂

i=1
[Xi ∈ Ii ]

)
=

n∏
i=1

P(Xi ∈ Ii )

Remarque 14. De même, X1, ...,Xn sont mutuellement indépendantes si et seulement si :

∀ (t1, ..., tn) ∈Rn , P
(
X1 É t1,X2 É t2, ...,Xn É tn

)= n∏
k=1

P(Xk É tk )

On voit que si (X1, ...,Xn) sont indépendantes, tout sous-ensemble de variables aléatoires prises dans cet en-
semble vérifie la même propriété. Par contre, si pour tous i ̸= j , Xi et X j sont indépendantes, on ne peut pas
conclure que (X1, ...,Xn) sont mutuellement indépendantes.

On dispose aussi du lemme des coalitions :

Proposition 19. Si (X1, ...,Xn) sont mutuellement indépendantes, et f :Rk →R, g :Rn−k →R sont deux fonctions,
alors les variables aléatoires f (X1, ...,Xk ) et g (Xk+1, ...,Xn) sont indépendantes.

Remarque 15. On retrouve comme corollaire usuel que si X et Y sont indépendantes, et f et g sont deux
fonctions quelconques de R dans R, alors f (X) et g (Y) sont aussi indépendantes.

Toutes les formules suivantes sont similaires au cas des VAD. Leurs démonstrations nécessitent de disposer du
formalisme des intégrales doubles, qui est très loin du programme : nous les admettrons.
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Théorème 20 (Propriétés diverses). On désigne par X,Y,X1, ...,Xn des variables aléatoires à densité surΩ.

• Linéarité de l’espérance : si X et Y admettent des espérances, et λ ∈ R, alors λX + Y admet une
espérance, et

E(λX+Y) = λE(X)+E(Y)

On peut étendre au cas de n variables aléatoires admettant des espérances :

∀ (λ1, ...,λn) ∈Rn , E

(
n∑

i=1
λi Xi

)
=

n∑
i=1

λiE(Xi )

• Croissance de l’espérance : Si P(X É Y) = 1, alors E(X) É E(Y).
(Remarque : ce sera notamment le cas si on a toujours X É Y).

• Propriété de l’espérance d’un produit de variables aléatoire s indépendantes :
Si X et Y sont indépendantes et admettent des espérances, alors XY admet une espérance, et E(XY) =
E(X)E(Y).
Grâce au lemme des coalitions, on peut étendre au cas de n variables aléatoires mutuellement in-
dépendantes admettant des espérances :

si (X1, ...,Xn) sont mut. indép., E

(
n∏

i=1
Xi

)
=

n∏
i=1

E(Xi )

• Propriété de la variance d’une somme de variables indépendantes :
Si X et Y sont indépendantes et admettent des variances, alors X+Y admet une variance, et V(X+
Y) = V(X)+V(Y).
Grâce aux lemme des coalitions, on peut étendre au cas de n variables aléatoires mutuellement
indépendantes admettant des variances :

si (X1, ...,Xn) sont mut. indép., V

(
n∑

i=1
Xi

)
=

n∑
i=1

V(Xi )

Si les λi sont des réels, le caractère quadratique de la variance donne, pour des variables aléatoires
Xi mutuellement indépendantes :

V

(
n∑

i=1
λi Xi

)
=

n∑
i=1

λ2
i V(Xi )
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5 Propriétés additionnelles

5.1 Compléments sur la loi normale

Propriétés de la fonction de répartition

Proposition 21. Soit X une variable aléatoire suivant la loi normale centrée réduite. On rappelle que sa

fonction de répartition Φ vérifie : ∀x ∈R, Φ(x) = 1p
2π

∫ x

−∞
exp

(
− t 2

2

)
dt . On a :

• ∀x ∈R, Φ(−x) = 1−Φ(x).

• En particulier, Φ(0) = 1

2
.

Démonstration. Par définition de la fonction de répartition :

1−Φ(x) = 1−P(X É x) =P(X > x) = 1p
2π

∫ +∞

x
exp

(
−x2

2

)
dt

Le changement de variable u =−t donne :

1−Φ(x) = 1p
2π

∫ +∞

x
exp

(
− t 2

2

)
dt = 1p

2π

∫ −x

−∞
exp

(
−u2

2

)
du =Φ(−x)

Remarque 16. Ce résultat subsiste si on suppose seulement la loi normale centrée (µ= 0, σ> 0 quelconque).

Représenter graphiquement ce résultat (pour x Ê 0 par exemple) :

Stabilité de la loi normale Il existe un résultat de stabilité pour une somme de variables indépendantes
suivant des lois normales. Ce théorème est admis.

Théorème 22. Soient X ,→ N (m1,σ2
1) et Y ,→ N (m2,σ2

2) deux variables aléatoires indépendantes. Alors
X+Y ,→N (m1 +m2,σ2

1 +σ2
2).

On peut étendre à une combinaison linéaire de n variables : si, pour tout i ∈ �1,n�, Xi ,→ N (mi ,σ2
i ),

λi ∈R, et les Xi sont mutuellement indépendantes, alors

n∑
i=1

λi Xi ,→N

(
n∑

i=1
λi mi ,

n∑
i=1

λ2
i σ

2
i

)
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5.2 Loi du min, loi du max de variables indépendantes

La méthode suivante intervient dans beaucoup d’exercices. Elle est similaire à celle vue dans le cas de variables
discrètes.

Soient X1, . . . ,Xn des variables aléatoires mutuellement indépendantes, de fonctions de répartition respectives
F1, . . . ,FN.
Soit S = max(X1,X2, . . . ,Xn) et I = min(X1,X2, . . . ,Xn). On peut obtenir les fonctions de répartition de S et I de la
manière suivante :

• Soit t ∈R. On a (S É t ) =
n⋂

k=1
(Xk É t ), soit par indépendance

FS(t ) =P(S É t ) =P
(

n⋂
k=1

(Xk É t )

)
=

n∏
k=1

P(Xk É t ) = F1(t )×F2(t )×·· ·×Fn(t )

Dans le cas où toutes les variables Xi suivent la même loi, et possèdent donc la même fonction de répar-
tition notée F, cette dernière formule donne :

∀ t ∈R, FS(t ) = (
F(t )

)n

• Soit t ∈R. On a (I > t ) =
n⋂

k=1
(Xk > t ), soit par indépendance

1−FI(t ) =P(I > t ) =P
(

n⋂
k=1

(Xi > t )

)
=

n∏
k=1

P(Xk > t ) = (1−F1(t ))× (1−F2(t ))×·· ·× (1−Fn(t ))

Ici aussi, dans le cas où toutes les Xi ont pour fonction de répartition F, on trouve :

∀ t ∈R, 1−FI(t ) = (
1−F(t )

)n
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Annexe (hors-programme) : théorèmes de limite monotone

Théorème 23.

• Soit (An) une suite croissante d’événements : alors

P

(+∞⋃
n=0

An

)
= lim

n→+∞P(An)

• Soit (Bn) une suite décroissante d’événements : alors

P

(+∞⋂
n=0

Bn

)
= lim

n→+∞P(Bn)

Démonstration. On rappelle qu’on dit qu’une suite d’événements (An) est croissante (pour l’inclusion) ssi :

∀n ∈N, An ⊂ An+1

Soit une telle suite (An) : pour n Ê 1, on pose Bn = An \ An−1 et B0 = A0. On vérifie alors que les Bi sont 2 à 2
disjoints, et que

∀n ∈N, An =
n⊔

k=0
Bk et

+∞⋃
n=0

An =
+∞⊔
k=0

Bk

Par propriété d’une probabilité, P

(+∞⋃
n=0

An

)
= P

(+∞⊔
k=0

Bk

)
=

+∞∑
k=0

P(Bk ) ; et P(AN) = P

(
N⊔

k=0
Bk

)
=

N∑
k=0

P(Bk ). En faisant

tendre N vers +∞,

lim
N→+∞

P(AN) =
+∞∑
k=0

P(Bk ) = P(
+∞⋃
n=0

An)

En conséquence :

Proposition 24. Pour toute suite d’événements (An), on a :

P

(+∞⋃
k=0

Ak

)
= lim

n→+∞P

(
n⋃

k=0
Ak

)

P

(+∞⋂
k=0

Ak

)
= lim

n→+∞P

(
n⋂

k=0
Ak

)

Démonstration. On applique les propositions précédentes :

• à la suite croissante d’événements

(
n⋃

k=0
Ak

)
n∈N

.

• à la suite décroissante d’événements

(
n⋂

k=0
Ak

)
n∈N

.
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Démonstrations

Proposition 2

Soit X une variable aléatoire de fonction de répartition FX. Alors :

• FX est croissante sur R.

• FX est continue à droite en tout point de R (c’est-à-dire, en tout point x, P(X É x) = lim
t→x+ FX(t )).

• lim
x→−∞FX(x) = 0.

• lim
x→+∞FX(x) = 1.

• En tout point x, P(X < x) = lim
t→x− FX(t ).

• En tout point x, P(X = x) = lim
t→x+ FX(t )− lim

t→x− FX(t ).

En particulier, FX est continue en x si et seulement si P(X = x) = 0.

Démonstration. • Pour tous (x, y) ∈ R2 tels que x É y : F(y)−F(x) = P(X É y)−P(X É x) = P(x < X É y) Ê 0.
F est donc croissante.

• FX est monotone, et minorée par 0, donc admet une limite à droite en tout point réel. On a

lim
t→x+ FX(t ) = lim

n→+∞FX(x + 1

n
) = lim

n→+∞P(X É x + 1

n
) =P

(+∞⋂
n=1

(X É x +1/n)

)
=P(X É x) = FX(x)

par décroissance de la suite d’événements

(
X É x + 1

n

)
.

• Par monotonie et minoration lim
x→−∞FX(x) existe et est comprise entre 0 et 1. On a alors

lim
x→−∞FX(x) = lim

n→+∞FX(−n) = lim
n→+∞P(X É−n) =P

(+∞⋂
n=0

(X É−n)

)
=P(∅) = 0

par décroissance de la suite d’événements (X É−n).

• Par monotonie et majoration lim
x→+∞FX(x) existe et est comprise entre 0 et 1. On a alors

lim
x→+∞FX(x) = lim

n→+∞FX(n) = lim
n→+∞P(X É n) =P

(+∞⋃
n=0

(X É n)

)
=P(Ω) = 1

par croissance de la suite d’événements (X É n).

• Comme précédemment, lim
t→x− FX(t ) existe ; elle est donc égale à lim

n→+∞FX(x −1/n).

Or

lim
n→+∞FX(x −1/n) = lim

n→+∞P(X É x − 1

n
) =P

(+∞⋃
n=1

X É x − 1

n

)
=P(X < x)

par croissance de la suite d’événements (X É x − 1
n ).

•
P(X = x) =P(X É x)−P(X < x) = FX(x)− lim

t→x− FX(t ) = lim
t→x+ FX(t )− lim

t→x− FX(t )
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Proposition 4

Soit X une variable aléatoire admettant une densité f . On a les propriétés suivantes :

• Pour tout x ∈R, P(X = x) = 0.

• Si I est un intervalle de R, la quantité P(X ∈ I) ne change pas si on ouvre ou ferme les crochets aux
bornes de I.

• Pour tout x ∈R,

FX(x) =P(X É x) =P(X < x) =
∫ x

−∞
f (t )dt

•
∫ +∞

−∞
f (t )dt = 1.

• Pour tout x ∈R,

P(X Ê x) =P(X > x) = 1−FX(x) =
∫ +∞

x
f (t )dt

• Pour tous (a,b) ∈R2 tels que a É b :

P(a É x É b) =P(a < x É b) =P(a É x < b) =P(a < x < b) =
∫ b

a
f (x)dx

Démonstration. L’existence de points accidentels de non-continuité / non-dérivabilité rendant les discussions
complexes, nous allons supposer que FX est C 1 sur R, et que f = F′

X. f est donc continue sur R.

• On a vu que si FX est continue en x ∈R, alors P(X = x) = 0. Ici, FX étant C 1 sur R entier, on a :

∀x ∈R, P(X = x) = 0

• Cette dernière propriété montre que P(X ∈ I) ne change pas si les crochets de I sont ouverts ou fermés.

• Comme F′
X = f , on a l’existence de a ∈ R tel que : ∀x ∈ R, FX(x) = a +

∫ x

0
f (t )dt . De plus, d’après la

proposition 2, lim
x→−∞FX(x) = a +

∫ −∞

0
f (t )dt = 0 (l’existence de cette limite justifiant la convergence de

l’intégrale impropre), ce qui donne a =
∫ 0

−∞
f (t )dt et finalement FX(x) =

∫ x

−∞
f (t )dt .

• La proposition 2 donne lim
x→+∞FX(x) = 1 =

∫ +∞

−∞
f (t )dt d’après le point précédent. (et on a prouvé au

passage la cv de cette intégrale).

• On utilise les résultats précédents pour écrire :

P(X Ê x) =P(X > x) = P
(
X É x

)
= 1−P(X É x)

= 1−
∫ x

−∞
f (t )dt

=
∫ +∞

−∞
f (t )dt −

∫ x

−∞
f (t )dt

=
∫ +∞

x
f (t )dt .

• L’égalité de ces quatre probas est donnée par le second point ; ensuite l’égalité entre événements

(X É b) = (X É a)⊔ (a < X É b)
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donne P(X É b) =P(X É a)+P(a < X É b), puis

P(a < X É b) =P(X É b)−P(X É a) =
∫ b

−∞
f (t )dt −

∫ a

−∞
f (t )dt =

∫ b

a
f (t )dt

Proposition 12

Soit X une variable aléatoire de densité f . Si f admet un moment d’ordre m ∈N∗, alors elle admet des mo-
ments d’ordre p pour tout p ∈ �1,m�.

Démonstration. Soit p ∈ �1,m�.

On sait que l’intégrale
∫ +∞

−∞
|xm f (x)|dx est convergente ; il s’agit de montrer que l’intégrale

∫ +∞

−∞
|xp f (x)|dx

est convergente.
On a vu (cf cours sur les variables discrètes) : ∀x ∈R, |x|p É 1+|x|m ; d’où en multipliant par f (x) Ê 0 :

∀x ∈R, |x|p f (x) É f (x)+|x|m f (x)

ou encore
∀x ∈R, 0 É |xp f (x)| É f (x)+|xm f (x)|

Par hypothèse les intégrales
∫ +∞

−∞
f (x)dx (intégrale de la densité !) et

∫ +∞

−∞
|xm f (x)|dx convergent ; par majo-

ration on en déduit que
∫ +∞

−∞
|xp f (x)|dx converge.
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