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Variables aléatoires a densité

On étudie dans ce chapitre des variables aléatoires pouvant prendre une infinité continue de valeurs (par ex-
emple X(Q) =R ou R,).

La distribution de probabilité est alors modélisée différemment : la plupart du temps, il ne s’agira plus de ma-
nipuler la probabilité qu'une variable X soit égale a une valeur donnée (intuitivement, on peut se convaincre
qu'une telle probabilité sera presque toujours nulle) ; mais la probabilité que X appartienne a un intervalle
donné. Cette information sera fournie par la fonction de répartition, qui caractérise complétement la loi d'une
variable.

1 Rappels

1.1 Définitions : espace probabilisé, variable aléatoire

On dispose dans tout ce cours d'un espace probabilisé (2, «/,[P). Dans cette notation, Q est «]'univers » (on ne
rentrera jamais dans les détails), o/ est]’ensemble des événements (parties de 'univers dont on peut calculer la
probabilité), et P est la fonction probabilité, qui a un événement A € «f associe sa probabilité P(A).

Comme dans le cas des variables discretes, on définit alors une variable aléatoire comme une fonction définie
sur l'univers : a chaque issue w € Q) est associé une valeur de la variable X, notée X(w).
On demande quand méme une propriété pour pouvoir effectuer des calculs :

Définition 1. On appellevariable aléatoire réelle (en abrégé : var) toute fonctionX définie sur(, a valeurs
dansR telle que :
VxeR, {0€Q|X(w) < x} est un événement.

On introduit traditionnellement des raccourcis de notation pour désigner les événements utilisés dans les cal-
culs: si x € R, on note:

X<x)={0eQ|X(w) <x}
X=x) ={oeQ|X(w)=x}
X=x)={0eQ|X(w) =x}

Dit en francgais : 'événement (X < x) est’ensemble des issues w telles que la valeur prise par X pour cette issue
est inférieure ou égale a x.

Les propriétés d'un espace probabilisé assurent que si tous les (X < x) sont des événements, alors tous les
X=x), X<x), X>x), X=x)... plus généralement tous les (X € I) ot I est un intervalle de R sont aussi des
événements.

Tout ceci pose les fondements de la théorie de la mesure, ce qui n’est pas vraiment le propos dans ce cours. Pour
nous, cela assure simplement que :

Si X est une variable aléatoire, toutes les probabilités P(X € I), avec I un intervalle de R, sont bien définies.

La fonction de répartition est ici 'objet mathématique qui donne la loi d’'une variable :

Définition 2. Soit X une variable aléatoire. On appelle fonction de répartition de X la fonction Fx définie
surR par :
VxeR, Fx(x) =PX<x)




Remarque 1. Attention, une fonction de répartition est toujours définie sur R, méme si X(Q2) n’est pas égal a R
entier. Dans le cas tres fréquent o1 X(Q) = R,, Fx est bel et bien définie sur R* ; etona: V x <0, Fx(x) =0.
On peut plus généralement voir que si X(Q) < [a, b] :

* Vx<a, Fx(x) =0 (carsi x < a, 'événement (X < x) est impossible) ;
e Vx=b, Fx(x) =1 (carsi x = b, 'événement (X < x) est certain).
Ceci servira trés souvent en pratique.
De maniere rigoureuse, la loi d'une variable aléatoire est donnée par I’ensemble des P(X € A), ol1 A est une par-

tie pouvant étre écrite comme une réunion dénombrable d’intervalles. C’est assez peu maniable. Le théoreme
suivant montre que la fonction de répartition contient toute I'information pour définir la loi de X :

Théoreéme 1. La donnée de la fonction de répartition Fx caractérise la loi de la variable aléatoire X.
En particulier, pour tous (a, b) € R? tels quea<b,ona

P(a <X < b) =Fx(b) -Fx(a)

Remarque 2. Faire attention a la position des inégalités < et < dans la formule précédent.

Démonstration. Le premier point est admis.
Ona: Xsbh) =Xs<a)u(a<X<b);douen passant aux probabilités : P(X < b) =P(X < a) + P(a < X < b). On obtient bien
Pla<x<b) =PX<b)-PX< a) =Fx(b) -Fx(a). O

Rappelons les propriétés d'une fonction de répartition. Certaines d’entre elles sont issues des théoremes de
limite monotone rappelés en annexe (mais hors-programme, ainsi que les démonstrations qui les utilisent).

Proposition 2. SoitX une variable aléatoire de fonction de répartition Fx. Alors :
e Fx est croissante surR.
* Fx est continue a droite en tout point deR (c’est-a-dire, en tout point x, P(X < x) = lim+ Fx(1)).
t—Xx
e lim Fx(x)=0.
X——00
e lim Fx(x)=1.
X—+00
e Entout point x, PX < x) = tlim_ Fx(1).
—X

e Entout point x, P(X = x) = lim Fx(#) — lim Fx(#).
t—xt I—x"

En particulier, Fx est continue en x si et seulement siP(X = x) = 0.

Démonstration. En annexe. O

1.2 Probleme inverse : quand une fonction est-elle une fonction de répartition ?

Nous avons jusqu’ici considéré comme point de départ une variable aléatoire X ; puis défini sa fonction de ré-
partition ; puis, a’aide des propriétés d’'une probabilité, obtenu des propriétés sur cette fonction. On souhaite
ici effectuer I'opération inverse : une fonction de R dans R étant donnée, a quelle condition peut-on affirmer
que c’est la fonction de répartition d'une certaine variable aléatoire ?

Ce résultat sera admis.



Théoréme 3. Soit F une fonction deR dansR :
e croissante surR ;
e telle que xl_igl@F()C) =0et XEIPOOF(x) =1
* continue a droite en tout point deR.

Alors Fest une fonction de répartition, c’est-a-dire qu'il existe une variable aléatoire X dont F est la fonction
de répartition.

1.3 Rappel: fonction de répartition d'une VAD

La notion de fonction de répartition n’est pas spécifique aux variables a densité : elle existe aussi pour les
variables discretes. Il est d’ailleurs utile de se souvenir de quelques résultats a ce propos :
¢ Fonction de répartition d’'une variable certaine égale a a.

Si (X = a) est certain, alors I'événement (X < x) est de proba nulle si x < a, et de proba 1 si x = a. La
fonction de répartition de X est alors un créneauen a:

* Fonction de répartition d’'une variable de Bernoulli : si X vaut 0 avec une proba 1-p et 1 avec une proba
p, et x € R, alors on voit que :
-six<0,PX<x)=0
- Si0sx<l,alorisPX<x)=PX=0=1-p

- Six=1,alorsPX<x)=1

On obtient cette fois un «double créneau» :

¢ De maniere générale, la fonction de répartition d'une variable discrete se présente comme un escalier,
dont les marches sont situées aux valeurs de X(Q2) (donc éventuellement en nombre infini). Voici par ex-
emplelareprésentation graphique de la fonction de répartition d'une variable suivant une loi géométrique
(p=0.4):
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Les tailles des marches correspondent a la loi de proba %(0.4) :
e PX=1)=(0.6)°x04=04
e PX=2)=(0.6)! x0.4=0.24

e etc...

1.4 Variables a densité

Soit X une variable aléatoire, et Fx sa fonction de répartition.

La proposition 2 montre que si a est tel que P(X = a) > 0, alors Fx est discontinue en a.
Si au contraire Fx est continue, on en déduit que pour tout réel x on a P(X = x) = 0. Les P(X = x) ne sont donc
pas, ici, les quantités pertinentes pour effectuer des calculs de probabilité.

On a par contre vu qu'on pouvait déduire de Fx la probabilité que X soit dans un intervalle [x, y]. Si cet in-
tervalle est petit, on obtient une probabilité que X soit «treés proche de x» : ce sera Fx(x + h) — Fx(x), avec h
«infiniment petit ».

Si on suppose enfin que Fx est dérivable, cette derniere probabilité peut s’approximer par hFj (x) : on voit
donc qu’on peut estimer la probabilité que X soit autour de x a I'aide de F§.. Lorsque cette dérivée existe, on la
nomme densité.

Définition 3. Soit X une variable aléatoire. On dit que X est a densité (ou : X admet une densité) ssi sa
fonction de répartition Fx est :

s continue surR;
o declasse €' surR, sauf éventuellement en un nombre fini de points.

On appelle alors densité de X toute fonction f définie sur R telle que Fy = f, sauf éventuellement en un
nombre fini de points.




Méthode :

¢ Pour montrer qu'une fonction donnée est une fonction de répartition, il faudra montrer que
cette fonction :

— est croissante sur R;

— vérifie lim F(x)=0et lim F(x)=1;
X——00 X—+00

— est continue a droite en tout point de R.

¢ Pour montrer qu'une fonction donnée est la fonction de répartition d’'une variable a densité, il
faudra ajouter les propriétés supplémentaires mentionnées dans la définition 3. Donc:

— croissante sur R ;

— lim F(x)=0et lim F(x)=1;
X——00 X—+00
- continue sur R et de classe ¢ sauf en un nombre fini de points.

* Pour montrer qu'une variable X donnée est une variable a densité, il faudra montrer que sa
fonction de répartition est :

— continue sur R ;

- declasse €' sauf en un nombre fini de points.
(NB : pour gagner du temps, on pourra montrer quelle est €' sur R sauf en un nombre fini
de points ; et qu’en ces points « problématiques » elle est continue.

Remarque 3. Remarquer ce critére du «sauf éventuellement en un nombre fini de points». Il interviendra
souvent en pratique et ne doit pas étre traité a la 1égere.

Définition 4. SoitX une variable aléatoire admettant une densité. On dit que fx est une densité de X ssi :
* fx estdéfinie surR, a valeurs positives ;

* F = fx sauf éventuellement en un nombre fini de points.

Remarque 4. Onvoit donc qu'une densité est continue sur R, sauf éventuellement en un nombre fini de points.

Remarque 5. Une variable aléatoire admet une unique fonction de répartition (qui définit sa loi) ; mais une
variable a densité admet plusieurs densités car on peut changer la valeur de fx en un nombre fini de points
(arbitraires) et obtenir une autre fonction qui vérifie aussi les propriétés demandées.

En pratique ceci intervient aux points ot Fx n’est pas dérivable : on ne peut pas définir fx(a) = Fy(a), et on
pose alors fx(a) = a ol « est un réel quelconque. Sa valeur n’aura aucune influence sur les valeurs de diverses
probabilités : il faut plutdt voir une densité comme un outil de calcul. Pour des raisons de régularité que nous
évoquerons dans la remarque 8, on aura intérét a prolonger par continuité (au moins d'un c6té) la densité
obtenue.

Méthode :

Pour déterminer une densité d’'une variable dont on connait la fonction de répartition, il faut :

¢ dériver cette fonction de répartition aux endroits o1 c’est possible (donc partout sauf en un
nombre fini de points) ;

¢ et compléter en ces points par des valeurs de notre choix.




0sir<0

Exemple 1. Soit X une variable aléatoire dont la fonction de répartition est Fx : t — { ) ‘. 0
—e'sit=

Montrer que X est une variable a densité, et en donner une densité.

Lexistence d'une densité permet d’utiliser le calcul intégral pour déterminer les quantités utiles :

Proposition 4 (Propriétés des variables a densité).
Soit X une variable aléatoire admettant une densité f. On a les propriétés suivantes :

e PourtoutxeR,PX=x)=0.

e Silest un intervalle de R, la quantité P(X € 1) ne change pas si on ouvre ou ferme les crochets aux
bornes de I.

e Pourtoutx €R,
X

Fx(x) =PX=< x):[FD(X<x)=f fde

e Pour tout x € R, .
o0
[P’(X?x)zlP(X>x)=1—FX(x)=[ f®de
X

e Pour tous (a,b) e R? telsquea<b :

b
P(asxsb)=lP>(a<xsb):P(asx<b):P(a<x<b):f fde
a

+o00
f f(©)dt converge, et est égale a 1.
—00

Démonstration. En annexe. O

Remarque 6. On voit dans cet encadré justifie que dans beaucoup de calculs de probabilités faisant intervenir
des variables a densité, on peut remplacer les inégalités larges par des strictes, et inversement.

Attention par contre : si X et Y sont deux variables a densité, on n’a pas forcément PX <Y) =PX <Y) !! (contre-
exemple : prendre Y = X).

+00
Remarque 7. La derniere propriété f f(x)dx =1 est I'analogue continu de la propriété ) PX=x) =1
—o0 xeX(Q)
vue pour des variables discretes.



X
Remarque 8 (Subtile mais importante !). La propriété Fx(x) = f f(t)dt laisse penser, en se souvenant du
—00

théoreme fondamental de I'analyse, que Fy = fx. Mais on voit apparaitre une contradiction : la fonction de
répartition d'une variable aléatoire est unique, alors qu'une densité ne I'est pas (on peut la modifier arbitraire-
ment en un nombre fini de points).

11 faut donc prendre plusieurs précautions :

* Siladensité fx utilisée est continue sur R, alors le TFA affirme bien que Fx est €' surR;

¢ Cela fonctionne en fait localement : en tout point x ou la densité fx est continue, la fonction de réparti-
tion est €*, et F (x) = fx (x).

Réciproquement, si notre point de départ est la fonction de répartition (¢°, €' sauf en un nombre fini de
points) : en tout point a ou Fx est ¢! on prendra fx(a) = F%(a) ; et en le nombre fini de points ou1 on n’a pas le
caractére €', on prendra la valeur de fx la moins embétante possible (voir exemples).

Remarque 9. Le troisieme point de la proposition 4 montre que :

Si deux variables aléatoires admettent une méme densité, alors elles suivent la méme loi.

On a une réciproque de ce résultat : si une fonction f possede les propriétés d’'une densité, on peut effective-
ment définir une variable X dont f sera une densité.

Proposition 5. (Définition / proposition)
On appelle densité toute fonction f définie surR :

* positive;
* continue sauf éventuellement en un nombre fini de points ;

+00
* telle que f f(x)dx converge et est égale a 1.

Si f est une densité, il existe une variable aléatoire X, admettant f pour densité.

X
Démonstration. Admis. Cette variable a alors pour fonction de répartition Fx : x — f fHdze. O
—00

Méthode:

Pour montrer qu'une fonction donnée est une densité de probabilité, il faudra montrer que cette
fonction vérifie les trois propriétés énoncées dans la proposition 5.

1.5 Parenthese: intégrales de fonctions continues sauf en un nombre fini de points

On manipule dans la section précédente des intégrales de fonctions non continues, ce qui nous place hors
du formalisme habituel du calcul intégral (ce sera en plus tres fréquent en pratique). La solution est alors de
découper l'intégrale : soient a < ¢ < b (a et b pouvant étre infinis) et f continue sur [a, b] (éventuellement
crochets ouverts si les bornes sont impropres), sauf en c¢. On définit :

b c b
ff(r)dr:f f(r)dt+f fode
a a c



0six<O

La borne c est en fait impropre dans une des deux intégrales : par exemple si f(x) = { x , on écrira

e six>0

(les intégrales qui suivent convergent) :

+00 0 +oo +oo
f f(x)dxzf 0dx+f e‘xdxzf e “dx
—00 —00 0 0

Mais dans la deuxiéme intégrale, on intégre sur ]0, +oo[ ce qui pose le probléme de la borne impropre f .
0
En fait dans ce cas', la fonction x — e~* définie sur R* se prolonge par continuité sur R, car elle a une limite

finie en 0. Lintégrale a calculer est alors égale a celle du prolongement? : on fait comme si on intégrait sur
[0, +o0l.

Moralité : la maniere «raisonnable» de traiter ces intégrales fonctionne. De plus vous pourrez passer tout cela
sous silence sur une copie et faire vos calculs sans inquiétude.

0sir<l1
Exemple 2. Soit f:x—< 1
P f ?Sl t=1

Montrer que f est une densité de probabilité. Soit X une variable admettant f pour densité ; donner la fonction
de répartition de X.

1Et dans le cadre du programme ce sera toujours ainsi.
2Ce n'est pas évident.



1.6 Lois usuelles

Nous donnons ici les définitions et propriétés des lois a densité que nous rencontrerons le plus souvent :

Loi uniforme

Définition 5. Soient a < b deux réels. On dit queX suit la loi uniforme sur [a, b] ssi X est une variable a
densité, dont une densité est donnée par :

Si asx<b

0 si x<aoux>b
fix— 1

b—a

Dans ce cas, on note : X — % ([a, b]).

En intégrant cette derniere fonction, on retrouve la fonction de répartition :

Proposition 6. SiX — % (la, b)), la fonction de répartition de X est

0 si x<a
xX—a .
PX<x)= b si asx<b
-a
1 si x=b

Représentations graphiques :

Densité :

Fonction de répartition :



Loi exponentielle

Définition 6. Soit A un réel > 0. On dit que la variable aléatoire X suit la loi exponentielle de parametre A
ssi X est une variable a densité, dont une densité est donnée par

Fix 0 si x<0
’ Ae™ si x=0

Dapns ce cas, on note : X — &(\)

La fonction de répartition s’obtient ici aussi en intégrant :

Proposition 7. SiX— &(A), ona

0 si x<0

P(sz):{ 1-e ™ si x=0

Représentations graphiques :

Densité :

Fonction de répartition :

10



Loi normale

Définition 7. Soient p € R, 0 > 0. On dit que la variable aléatoire X suit la loi normale de paramétres
W, ssi X est une variable a densité, dont une densité est donnée par

1 2
fix— exp(—(x W )
2n02 202

On noteX — A (4,02).

On dit que la variable est centrée si | = 0, et centrée réduite si de plus o = 1. La loi normale centrée
réduite a donc pour densité :

1 x?
Jred:x— \/T—T[BXP(—E)

Dans le cas d'une loi normale, la fonction de répartition ne peut pas s’écrire a ’aide de fonctions usuelles : on
peut seulement utiliser la définition et écrire :

Proposition 8. SiX — A (y, o), ona:

VieR PX<x) = — fx ex (—(t_p)z)dt
' h V2102 J-0 P 20?

b Y
V(ab) R, Pla<X<h) = — fexp(—(t W )dt
V2no? Ja 20?

Notamment, dans le cas de la loi centrée réduite, la fonction de répartition est notée ® et est donnée par :

Corollaire 9. SiX— A(0,1),0na:

X
VxeR, (D(x)zlP(sz):\/%f

T J-o00

2
exp (_E) dt

11



Représentations graphiques pour la loi normale

Densité :

Quelques indicateurs sur cette « cloche » :
¢ Laproba que X s’écarte de son espérance d’au plus +o est = 68%
* Laproba que X s’écarte de son espérance d’au plus +20 est = 95%
* Laproba que X s’écarte de son espérance d’au plus +30 est = 99.7%

* La «largeur typique» de la cloche est donnée par o : en fait la largeur est +o a 60% de la hauteur de la
cloche.

Fonction de répartition :

12



1.

7 Espérance

Le calcul intégral permet de définir (sous réserve d’existence) 'espérance d'une variable a densité :

Définition 8. SoitX une variable aléatoire de densité f.
+00
X admet une espérance si et seulement si l'intégrale f xf(x)dx est absolument convergente, et on
—00
définit alors :

+00
EX) = f xf(x)dx

(o¢]

+00

NB : méme s’il faut examiner la convergence de f |x| f(x)dx pour établir I'existence de E(X), on a EX) =

I

—00
+00

xf(x)dx.

o0

Théoreéme 10 (Espérances des lois usuelles).

a+b
e SiX— % (la, b)), X admet une espérance, et on aE(X) = —

1
e SiX— &(N), Xadmet une espérance, et on aE(X) = X

e SiX— AN(0,1), Xadmet une espérance, et on aE(X) =0

Exercice: Retrouver ces valeurs.

2

2.

Résultats additionnels : moments, transfert

1 Théoreme de transfert

Le théoreme suivant permet de calculer (sous réserve d’existence) 'espérance d'une fonction quelconque de

la

variable X :

Théoréme 11 (Théoréme de transfert).
Soit X une variable aléatoire admettant une densité f. On suppose que

* f est nulle en dehors d’'un intervalle]a, b| (a, b finis ou infinis) ;

* g estcontinue surla, b|, sauf éventuellement en un nombre fini de points.

b
Alors g(X) admet une espérance ssi f g(x) f(x) dx converge absolument, et dans ce cas :
a

b
E(gX)) =f gx) f(x)dx
a

Exemple 3.

1. SoitX — %([0,1]). Calculer E(X?).

2. Soit Y — .A4(0,1). Calculer E (Y?).

13



2.2 Moments
On définit (sous réserve d’existence) de nouvelles quantités associées a une var :

Définition 9. Soit X une variable aléatoire sur (Q,</,P). On dit que X admet un moment d’ordre r € N* si et
+00

seulement si l'intégrale f x" f(x) dx est absolument convergente, et on a alors :
—00

+00
m;(X) =f x" f(x)dx

o0
Remarque 10. Onadonc: VreN, m,(X) =EX").
Concernant 'existence de ces moments, on a un résultat similaire a celui sur les VAD :

Proposition 12. Soit X une variable aléatoire de densité f. Si f admet un moment d'ordre m € N*, alors elle
admet des moments d'ordre p pour tout p € [1, m].
Notamment, si une variable admet un moment d'ordre 2, elle admet une espérance.

Démonstration. En annexe. O

Dans le cas de I'existence d'un moment d’ordre 2, on définit alors la variance d’'une variable a densité :

Définition 10. SoitX unevariable aléatoire de densité f admettant un moment d’ordre 2. Alors elle admet
une espérance ; et la variable (X — E(X))?> admet une espérance. On note

VX) = E(X - E(X))?)

V(X) est appelée variance de X.

Sous les hypotheses ci-dessus, le calcul suivant est 1égitime :

+

E(X-EX)?) = f (x —EX))? f(x)dx

—00

+00 +00 +oo
=/ xzf(x)dx—Z[E(X)f xf(x)dx+[E(X)2f f(x)dx

(o0)

=EX?) - 2EX)EX) + E(X)?
E((X - E(X))?) = EX?) —EX)?

et on obtient :

Proposition 13 (Keenig-Huygens). Soit X une variable a densité admettant une variance. On a

V(X) = EX?) —EX)?

Théoréme 14 (Variances des lois usuelles).

(b-a)?
12

e SiX—9([a, b)), X admet une variance, et on aV(X) =

1
o SiX— &(N), Xadmet une variance, eton aV (X) = 2z

e SiX— A(0,1), Xadmet une variance, et on aV(X) =1

14



2.3 Valeurs d’intégrales usuelles

Les résultats précédents peuvent étre invoqués pour justifier I'existence d’intégrales et donner leur valeur.

¢ Par propriété d'une densité, celle de la loi exponentielle vérifie :

On en déduit que :

+00
YA>0, f Ae Mdx=1
0

+00

1
VA >0, l'intégrale f e Mdx converge et vaut X
0

+00 1

1
¢ X — &(A) admet une espérance égale a X On en déduit en effectuant le calcul que f Axe Mdx= =

ou encore

0 A

+o0o

1
VA >0, I'intégrale f xe Mdx converge et vaut e
0

1 2
¢ X— &(A) admet une variance égale a 2 OnadoncEX?) = VX) +EXX)% = z On en déduit en effectuant

+00

le calcul que f
0

_ 2
Ax?e M dx = —, ou encore

A2’

+00 2
VA >0, I'intégrale f x*e Mdx converge et vaut 3
0

Remarque 11. Ces trois derniers résultats s’appliqueront assez souvent dans le cas A = 1 ; il convient
alors de donner la justification.

Exemple de rédaction :

«Lintégrale f
0

+o00

xe~*dx donne I'espérance d’une variable X — &(1) ; elle converge donc, et est égale a 1. »

1
e Soit X — A (O, 5) Lintégrale sur R de la densité converge ; X admet une espérance (nulle) et une

variance ; on en déduit que :

+00 2 +00 5 +oo 5 2
Les intégrales f e ¥ dx ; f xe ¥ dx ; f x“e”* dx convergent

—00 o0 (o0]
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3 Densités associées a des transformations d’une var

Une problématique tres fréquente est, connaissant la loi d'une variable X, de déterminer la loi d'une fonction
de cette variable (exemple: Y=2X+1,Y= X2 Y =In(X), etc.)
La méthode a suivre est la suivante.

Méthode::

X est une variable aléatoire ; on définit une nouvelle variable Y = f(X).
Pour déterminer la loi de Y, on calcule sa fonction de répartition.

¢ Pour y € R, on exprime I'événement (Y < y) en fonction d’'un événement sur X ;
e comme on connait la fonction de répartition de X, on en déduit Fy(y) = P(Y < y).

¢ (optionnel) si on demande une densité de Y, on vérifie que Y est bien a densité et on en trouve
une densité par dérivation comme exposé dans la méthode page 5.

3.1 Exemple: transformation affine

Soit X une variable admettant une densité fx ; on poseY = —2X + 1.
Soit Fy la fonction de répartition de Y: on a, pour y € R,

1-y
Y<sy)=(-2X+1<y) = XZT
1_
On en déduit que Fy(y) =1 —-Fx Ty) (comme X est a densité, PX = x) =PX>x) =1-PX < x)).

Si on veut repasser aux densités, il suffit de dériver la fonction de répartition aux points ou c’est possible :
1-y 1-y
VyeR Fy()) =PY<y) =P X;T =1-Fx —

donne en dérivant par rapporta y :

1), (1-
VyeR, Fy(y) = —(—E)F;((Ty)

et finalement
1 1-y
VyeR, ft(y) = Efx (T)

donne une densité de Y en fonction d'une densité de X.
Ce résultat se généralise en :

Proposition 15. Soit X une variable aléatoire a densité fx, etY = aX + b, avec a # 0. Alors Y est a densité, et une

densité de Y est donnée par :

y—b
a

1
VyeR, fy(y)= mfx(

Cette formule n’est pas a connaitre, elle se redémontre au cas par cas.

Transformée affine d’une loi uniforme

Proposition 16.

o SoitX— % ([0,1]),eta<b. Alors a+ (b— a)X — % (a, b]).

X _
o Notamment: siX — % ([a, b)), alors b a

— %([0,1]).
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Démonstration. Par la formule précédente (avec b — a > 0), une densité de a + (b — a)X est donnée par

si0< <1 siasx<b

1 X— 1
fix—< b-a b—a soitencore f:x— < b—a
0 sinon 0 sinon

ce qui est bien la densité de % ([a, b)). O

Transformée affine d’'une loi normale

Proposition 17. SoitX — A (u,02). Alors aX+ b — A (ap + b, a’c?).
En particulier, on peut « réduire » une variable suivant une loi normale :

X-p

SiX — N (u,0°), alors — AN(0,1)

Démonstration. C’est un cas particulier du théoréme précédent; une densité de X est
1 (x—w?
exp|— 5
\/ 27-[0-2 20°

fxix—

En notant Y = aX + b, on obtient :

VyeR, fy) = exp| - = a2

1 1
lal \/2ng2 202 V2na?o?

et on obtient bien que Y — A (ap + b, a*62). O

(y;b_”)z L (_(y—(awb))z)

3.2 Un cas particulier important : simulation d'une loi exponentielle

On va démontrer le résultat suivant :

1
Proposition 18. SoitX — %([0,1]), etY = Y In(1 —X), avec A > 0. AlorsY — &(A).

1
Démonstration. Soit yeR.Ona:Y<sy & - Xln(l -X)<y © X<1-e M, etdonc

Vy=0, Fy(y) =Fx(1-eV)

Or
0six<0
Fx(x)=qxsi0<x<1
1six>1
Donc

0si 1-e <0 (1)
Fy()) =41-e M sio<1-eM<l (2
lsil-eM>1 (3
Eclaircissons ces conditions :
e (1) : 1-eMN<0oeMN>le-Ay>0ey<0
e (2) : Osl—e*"ys1©0se*’\ys1©—)\ys0©y>0
e (3) : l—e”\y>1©e’)‘y<0:impossible.
0siy<O0

Récapitulons : Fy(y) =
P v 1-e M siy=0

. On reconnait bien la fonction de répartition de &(A) ; on peut
donc conclure Y — &(A).

Remarque 12. Cette démo est trés usuelle, tombe souvent aux concours, et doit alors étre effectuée de maniere
tres soigneuse, sans oublier d’étape...

O
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4 Cas de plusieurs variables aléatoires sur le méme univers

4.1 Indépendance

Comme dans le cas de variables discréetes, on examine des situations ou1 on a défini plus d'une variable aléatoire
sur un méme espace probabilisé. Il se pose alors, notamment, des questions d'indépendance.

Définition 11. Soit (Q0, </ ,P) un espace probabilisé, et X et Y deux variables aléatoires réelles définies sur Q. On
dit que X et Y sont indépendantes si et seulement si :

pour tous intervalles ,] de R, P([XeIIn[Y€]J]) =PXeD) xP(Ye])

Remarque 13. Ce critére équivaut a une équation similaire sur les fonctions de répartition.

X et Y sont indépendantes si et seulementsi: ¥ (¢, ') e R?, P(X< )N (Y <)) =PX <) xPY <)

On peut immédiatement étendre cette définition au cas de n variables aléatoires :

Définition 12. Soit (O, «/,P) un espace probabilisé, et X, ...,X,, n variables aléatoires définies sur Q. On dit que
X1,..,X; sont mutuellement indépendantes si et seulement si :

n
pour tous intervalles Iy, ...,I, de R, P

i=1 i=1

n
X; € Iil) =[[PX;el
Remarque 14. De méme, Xy,...,X,; sont mutuellement indépendantes si et seulement si :
n
V(1,0 ty) ER", P(Xy < 11,X2 < 12,000, Xy S 1) = [ PXKge < 1)
k=1

On voit que si (Xy,...,X;) sont indépendantes, tout sous-ensemble de variables aléatoires prises dans cet en-
semble vérifie la méme propriété. Par contre, si pour tous i # j, X; et X; sont indépendantes, on ne peut pas
conclure que (Xy, ..., X;) sont mutuellement indépendantes.

On dispose aussi du lemme des coalitions :

Proposition 19. Si (Xy,...,X,,) sont mutuellement indépendantes, et f : R - R, g: Rk R sont deux fonctions,
alors les variables aléatoires f(Xy,...,Xx) et §Xk+1,..,Xn) Sont indépendantes.

Remarque 15. On retrouve comme corollaire usuel que si X et Y sont indépendantes, et f et g sont deux
fonctions quelconques de R dans R, alors f(X) et g(Y) sont aussi indépendantes.

Toutes les formules suivantes sont similaires au cas des VAD. Leurs démonstrations nécessitent de disposer du
formalisme des intégrales doubles, qui est trés loin du programme : nous les admettrons.
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Théoréme 20 (Propriétés diverses). On désigne parX,Y, X1, ...,X, des variables aléatoires a densité sur Q.

e Linéarité de Uespérance : si X et Y admettent des espérances, et A € R, alors \XX +Y admet une
espérance, et
EAX+Y) = AEX) +E(Y)

On peut étendre au cas de n variables aléatoires admettant des espérances :

VA1, ..o Ap) €R™E

n
Y AiX;
i=1

n
=Y NEX))
i=1

* Croissance de Uespérance : SiP(X<Y) =1, alorsEX) < E(Y).
(Remarque : ce sera notamment le cas si on a toujoursX <Y).

* Propriété de Uespérance d’un produit de variables aléatoire s indépendantes :
Si X et Y sont indépendantes et admettent des espérances, alors XY admet une espérance, et E(XY) =
EX)E(Y).
Grdce au lemme des coalitions, on peut étendre au cas de n variables aléatoires mutuellement in-
dépendantes admettant des espérances :

n
si (X1,..., Xp) sont mut. indép., E =[[EX))
i=1

i=

n
[1X:
i=1

* Propriété de la variance d’une somme de variables indépendantes :
Si X et Y sont indépendantes et admettent des variances, alors X +Y admet une variance, et V(X +
Y) =VX) +V(Y).
Grdce aux lemme des coalitions, on peut étendre au cas de n variables aléatoires mutuellement
indépendantes admettant des variances :

=) VX))

i=1

si (X1,...,X;) sont mut. indép., V

n
2 Xi
i=1

Si les A; sont des réels, le caractere quadratique de la variance donne, pour des variables aléatoires
X; mutuellement indépendantes :

\4

n
Z)\iXi
i=1

n
= Zl)\fwxi)
i=
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5 Propriétés additionnelles

5.1 Compléments sur la loi normale

Propriétés de la fonction de répartition

Proposition 21. Soit X une variable aléatoire suimnt la loi normale centrée réduite. On rappelle que sa

fonction de répartition ® vérifie: Vx e R, ®(x) = VT f exp (— —) dz.Ona :
e VXeER, O(—x) =1-D(x).

* En particulier, ®(0) = —

Démonstration. Par définition de la fonction de répartition :

X2
1-0(x)=1-PX<x)=PX>x) = f exp(——)dt
N

Le changement de variable u = —¢ donne :

1 +00 tZ 1 —-X uZ
1—<I>(x)zﬁfx exp(—E) dt:E[_m exp(—;) du=d(—x)
O

Remarque 16. Ce résultat subsiste si on suppose seulement la loi normale centrée (n =0, o > 0 quelconque).

Représenter graphiquement ce résultat (pour x = 0 par exemple) :

Stabilité de la loi normale Il existe un résultat de stabilité pour une somme de variables indépendantes
suivant des lois normales. Ce théoréme est admis.

Théoréme 22. SoientX — N (m;, 0%) etY — N (my, 05) deux variables aléatoires indépendantes. Alors
X+Y — N (my + mp, 0% +03).

On peut étendre a une combinaison linéaire de n variables : si, pour tout i € [1,n], X; — ,/V(mi,o?),
Ai €R, et lesX; sont mutuellement indépendantes, alors

n n n
Z ANX— N (Z Aimy, Z )\12-0'12-)
i=1 i=1 i=1

20



5.2 Loi dumin, loi du max de variables indépendantes

La méthode suivante intervient dans beaucoup d’exercices. Elle est similaire a celle vue dans le cas de variables
discretes.

Soient X, ...,X;, des variables aléatoires mutuellement indépendantes, de fonctions de répartition respectives
Fi,...,Fn.

Soit S = max(X;,Xo,...,X,) et I =min(Xy,Xs,...,X;). On peut obtenir les fonctions de répartition de S et I de la
maniere suivante :

n
e Soit re€R. Ona (S<1) =[] X< 1), soit par indépendance
k=1

Fs() =PS<t)=P

k=1 k=1

n
X; < t)) = [[PXr < ) =Fy(£) x Fa(£) x -+ x Fp(£)

Dans le cas ou toutes les variables X; suivent la méme loi, et possedent donc la méme fonction de répar-
tition notée E cette derniere formule donne :

VieR, Fs(1) = (F()"

n
e SoitteR.Ona(I>1t)= ﬂ (X > 1), soit par indépendance
k=1

n n
= [[PXe> 1) =1 -Fi(1) x A =Fa(0) x--- x (1= Fp (1))
k=1

1-Fi()=PI>1)=P Xi>1)

k=1

Ici aussi, dans le cas ol toutes les X; ont pour fonction de répartition E on trouve :

VteR, 1-Fi(t) = (1-F(n)"
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Annexe (hors-programme) : théorémes de limite monotone

Théoréme 23.

e Soit (A;) une suite croissante d’événements : alors

+00
P(U An) = ngrllmP(An)

n=0

e Soit (B,,) une suite décroissante d’événements : alors

+00
[

Démonstration. On rappelle qu’on dit qu’'une suite d’événements (A;) est croissante (pour I'inclusion) ssi :
VneN, Ay, cAna

Soit une telle suite (A;) : pour n =1, on pose B,, = A, \ A;_; et Bg = Ap. On vérifie alors que les B; sont 2 a 2
disjoints, et que
n +00 +00
vneN,A,=||Br et |JAn.=|]B«
k=0 n=0 k=0

+00
Par propriété d'une probabilité, P ( U An) =P

n=0

400 +00 N N
| IBx|=> P®Bi);etP(Ax) =P| | | Bx|=)_ P(By). En faisant
k=0 k=0 k=0 k=0

tendre N vers +oo,
+

+00 (e.0]
Jim P(Ay) = Y PB =P(JAn

k=0 n=0
O
En conséquence :
Proposition 24. Pour toute suite d'événements (A,), ona:
U U
P Ag]l= lim P Ap
k=0 nmree k=0
N N
P Ar|l= lim P Ap
k=0 n=reo \k=0
Démonstration. On applique les propositions précédentes :
n
* alasuite croissante d’événements | |_J Ax
k=0 neN
n
* ala suite décroissante d’événements | [] Ag
k=0 neN
O
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Démonstrations

Proposition 2

Soit X une variable aléatoire de fonction de répartition Fx. Alors :
¢ Fy est croissante sur R.
¢ Fx est continue a droite en tout point de R (c’est-a-dire, en tout point x, P(X < x) = lim+ Fx(1).
t—x

e lim Fx(x)=0.

X——00
e lim Fx(x)=1.

X—+00
¢ En tout point x, PX < x) = tlim Fx(1).

—X

¢ Entout point x, P(X = x) = lim Fx(f) — lim Fx(#).
t—xt t—x~

En particulier, Fx est continue en x si et seulement si P(X = x) = 0.

Démonstration. e Pour tous (x,y) € R? tels quex<y:F()-Fx)=PX<sy)-PX<sx)=Px<X<y=0.
F est donc croissante.

¢ Fx est monotone, et minorée par 0, donc admet une limite a droite en tout point réel. On a

1 1 +00
lim Fx(#) = lim Fx(x+—)= lim IP(sz+—)=IP(ﬂ(X<x+1/n) =PX<x)=Fx(x)
t—x* n—+oo n n—+oo n n=1

. . 2 z l
par décroissance de la suite d’événements (X <x+ —).
n

¢ Par monotonie et minoration lim Fx(x) existe et est comprise entre 0 et 1. On a alors
X——00

+00
lim Fx(x)= lim Fx(-n)= lim PX<-n)= I]J’(ﬂ X< —n)) =P(@)=0
X——00 n—+oo n—+oo n=0

par décroissance de la suite d’événements (X < —n).

¢ Par monotonie et majoration lirP Fx(x) existe et est comprise entre 0 et 1. On a alors
X—+00

+00
lim Fx(x)= lim Fx(n)= lim PX<n)= IP(U X< n)) =PQ)=1
X—+00 n—+oo n—+oo n=0
par croissance de la suite d’événements (X < n).
¢ Comme précédemment, tlim_ Fx (?) existe ; elle est donc égale a nhIP Fx(x—1/n).
—X —+00
Or
1 oo 1
lim Fx(x—1/n)= lim PX<x—--) =|F’(U sz——) =PX<x)
n—+o00 n—+oo n n=1 n

par croissance de la suite d’événements (X < x — %).

PX=x)=PX<x)-PX<x)=Fx(x) - tlir)rcl_ Fx () = lim Fx () - tlir)rcl_ Fx ()
— f—xt —
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Proposition 4

Soit X une variable aléatoire admettant une densité f. On a les propriétés suivantes :
¢ PourtoutxeR, PX=x)=0.

e Silestun intervalle de R, la quantité P(X € I) ne change pas si on ouvre ou ferme les crochets aux
bornes de I.

e Pour tout x € R, .
Fx(x) =PX < x)=|P(X<x)=f f(de

+o00o
f f(nde=1.

e Pour tout x € R,
+00

[P’(X?x)=IP(X>x)=1—FX(x)=f fode

X

e Pour tous (a, b) € R? tels queas<bh:

b
[P’(asxsb):P(a<xsb):|]3’(asx<b):P(a<x<b):[ fx)dx

Démonstration. Lexistence de points accidentels de non-continuité / non-dérivabilité rendant les discussions
complexes, nous allons supposer que Fx est €! sur R, et que f = F{. f est donc continue sur R.

e Onavu que si Fx est continue en x € R, alors P(X = x) = 0. Ici, Fx étant €1 sur R entier, on a:

VxeR, PX=x)=0

* Cette derniére propriété montre que P(X € I) ne change pas si les crochets de I sont ouverts ou fermés.

X
* Comme Fy = f, on a 'existence de a € R tel que : Vx € R, Fx(x) = a +f0 f@®dt. De plus, d’aprés la
—00
proposition 2, xlim Fx(x)=a+ f f(t)dt =0 (I'existence de cette limite justifiant la convergence de
oo o

0 X
I'intégrale impropre), ce qui donne a = f f(t)dt et finalement Fx (x) = f f(pdt.

+00
* La proposition 2 donne lirp Fx(x)=1= f f(®)dt d’apres le point précédent. (et on a prouvé au
X—+00 —00
passage la cv de cette intégrale).
e On utilise les résultats précédents pour écrire :

PX=x)=PX>x)=P(X<x)
=1-PX<x)

X
= 1-[ f(de
+Oo_oo

X
= f(t)dt—f f(ode

+o0o

= fwade

X
» L'égalité de ces quatre probas est donnée par le second point ; ensuite 1'égalité entre événements

X<sbh=Xsau(a<Xs<bh)
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donne PX< b) =PX<a)+P(a<X<b), puis

b a b
IP(a<Xsh):[P>(Xsb)—IP(Xsa):f f(t)dt—f f(t)dt:f f(nde

Proposition 12

Soit X une variable aléatoire de densité f. Si f admet un moment d’ordre m € N*, alors elle admet des mo-
ments d’ordre p pour tout p € [1, m].

Démonstration. Soit p € [1, m].

+00o +00

On sait que l'intégrale / |x™ f(x)| dx est convergente ; il s’agit de montrer que l'intégrale f |xP f(x)|dx
(e 9]

—00 —

est convergente.
On a vu (cf cours sur les variables discretes) : Vx € R, |x|P <1+ |x|™; d’oli en multipliant par f(x) =0:

VxeR, |xIPf(x) < f(x)+x|™f(x)

ou encore
VxeR, 0<|xPf(x)|< f(x)+|x™f(x)]

+00 +00
Par hypothese les intégrales f f(x)dx (intégrale de la densité !) et f |x" f(x)| dx convergent ; par majo-
—o0 —00
+00
ration on en déduit que / |x? f(x)| dx converge. O
—00
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