ECG2B Année scolaire 2025-2026
Lycée Marcelin Berthelot Informatique

Algorithmique des graphes

1 Représentations d'un graphe

On rappelle quelques définitions :

Définition 1. e Un graphe est donné par un ensemble de n sommets (numérotés usuellement, en informa-
tique, de 0 a n—1) ; et un ensemble d'arétes qui relient ces sommets.

* En version non orientée, une aréte relie deux sommets i et j : on la représente alors par 'ensemble {i, j}.

* En version orientée, une aréte va d'un sommet i a un sommet j. Lordre importe donc ; on représente une
aréte par le couple (i, j)

e On dit que 2 sommets i et j sont voisins s'il existe une aréte {i, j} (cas non orienté) ou une aréte (i, j) (cas
orienté). Ainsi, dans le cas non-orienté :

i estvoisinde j < j estvoisindei

alors qu'en orienté ce n'est pas forcément le cas.
Pour représenter un graphe a n sommets en Python il existe principalement deux structures de données :

* La matrice d’adjacence : elle appartient a .4, (R), et son coefficient vaut 1 ssi les sommets i et j sont
voisins.
On voit que dans un graphe non orienté la matrice d’adjacence est symétrique ; ce n’est pas forcément le
cas si le graphe est orienté.

* Les listes d’adjacence : le graphe est représenté par une liste de n listes ; la liste d’indice i contient alors
I'ensemble des sommets voisins du sommet i.

Chaque structure a son intérét ; il faut savoir passer de I'une a 'autre.
Exercice 1.

1. Coder une fonction mat_vers_listes qui prend en argument la matrice d’adjacence (codée par un
np.array) d'un certain graphe ; et renvoie les listes d’adjacence de ce graphe.

2. Coderune fonction 1istes_vers_mat qui prend en argument les listes d’adjacence d'un certain graphe;
et renvoie la matrice d’adjacence de ce graphe.

Munis de ces structures nous allons nous intéresser a deux problemes algorithmiques sur les graphes (maisil y
en a plein d’autres !) : la recherche de composantes connexes, et le tri topologique.

2 Connexité

Un graphe est dit connexe si on peut relier deux sommets quelconques de ce graphe peuvent étre reliés par une
chaine (cas non orienté) ou un chemin (cas orienté).

Si i est un sommet du graphe, on appelle composante connexe de i 'ensemble des sommets reliés a i par une
chaine (ou un chemin). Si un graphe est connexe, la composante connexe de tout sommet est le graphe entier ;
sinon il existe plusieurs composantes connexes disjointes.

Un probléme algorithmique est donc de savoir si un graphe donné est connexe ; et, s’il ne 'est pas, de déter-
miner ses composantes connexes.

Nous allons donner deux manieres de procéder : une maniére «brutale» ; et une maniere plus fine qui nous
permettra d’'introduire les méthodes de parcours d'un graphe.

2.1

Algo brutal

On propose l'algorithme suivant :

initialement on étiquette les sommets de la maniere suivante : le sommet i al’étiquette i.

on effectue ensuite 'opération suivante : on parcourt toutes les arétes du graphe ; et quand on rencontre
deux sommets voisins i et j on leur donne I'étiquette min(z, j). Ainsi ces deux sommets, reliés par une
aréte, ont maintenant la méme étiquette.

on répete cette opération tant qu'un parcours des arétes meéne encore a une modification des étiquettes.

A l'issue de cet algo, deux sommets reliés par un chemin auront forcément la méme étiquette : sinon en empruntant un chemin qui va de I'un a I'autre on
parcourt a un moment une aréte qui relie deux sommets d’étiquette différente, ce qui est absurde car I'algo a terminé.

Et deux sommets qui ne sont pas reliés par un chemin auront des étiquettes différentes. Considérons en effet deux sommets i et j avec i # j. S'ils se retrouvent
avec la méme étiquette k a la fin de I'algo, ils ont « hérité » cette étiquette du sommet k ; les étiquettes se propageant le long des arétes il ya une chaine reliant
i et k et une chaine reliant j et k. On en déduit une chaine reliant i et j.

Par contraposée, s'il n'y a pas de chaine reliant i et j ils n’auront pas la méme étiquette.

Mettons en ceuvre cet algorithme sur un graphe représenté par sa matrice d’adjacence.

Si M est la matrice d’adjacence du graphe, 1en (M) est son nombre de lignes ; ce qui permet de récupérer
le nombre n de sommets. On numérote les sommetsde0an— 1.

On initialise une liste d’étiquettes T : initialement |'étiquette de chaque sommet est égale a son numéro.

Le parcours des arétes du graphe se fera en parcourant toute la matrice d’adjacence du graphe (avec 2
boucles for) ; si on rencontre un coefficient M[i,j] égala 1, et T[i] est différent de T[j], on donne a
T[i] etT[j] lavaleurmin(T[i],T[j]).

La partie la moins intuitive est la gestion de la condition de poursuite de I'algorithme : «tant qu'une
modification a été effectuée, on continue» .

Pour faire cela on pourra maintenir un booléen modif et introduire une boucle while modif == True:
(en fait élégamment raccourci en while modif:).

Au début modif vaudra True pour qu'on démarre la boucle ! Ensuite a chaque tour de boucle on com-
mence par donner amodif la valeur False ; et on le remet a True dés qu'une modification est effectuée.

Exercice 2. Coder cet algorithme.

2.2 Algo élégant : parcours de graphe
De maniere générale, parcourir un graphe consiste a :
* considérer un sommet du graphe, qu'on marque comme « visité »

e étant sur un sommet visité, aller visiter ses voisins (en se promenant sur les arétes du graphe).

11 existe deux types de parcours :

1. Le parcours en largeur (BFS : Breadth-First Search) : une fois qu'un sommet est visité, on visite tous ses
voisins immédiats!® ;
2. Le parcours en profondeur (DFS : Depth-First Search) : une fois qu'un sommet est visité, on visite un de

ses voisins, puis un voisin de ce voisin, etc.

Ces deux algorithmes permettent de recenser tous les sommets «accessibles » depuis le sommet de départ :
c’est-a-dire sa composante connexe. Les sommets sont découverts dans un ordre différent, et suivant les prob-
lémes posés un algorithme peut étre plus efficace que 'autre. Par exemple, BFS est meilleur pour calculer le
plus court chemin entre deux sommets ; alors que DFS sera plus indiqué pour sortir d'un labyrinthe.

On va déterminer les composantes connexes d'un graphe donné a I'aide d’'un parcours en largeur.
On considére un graphe a n sommets, non orienté, modélisé par ses listes d’adjacence (pour changer). On
définit le parcours en largeur d'un graphe par I'algorithme suivant.

On crée une liste visites qui associe a chaque sommet un statut : la composante de cette liste est nulle si le
sommet n'est pas visité, et vaut 1 s’il est visité.

On crée une liste a_explorer, initialement vide, qui contiendra les sommets visités, a partir desquels il faut
continuer I'exploration.

On choisit un sommet i non visité du graphe ; on le marque comme visité et on I'ajoute a la liste a_explorer.

Tant que la liste a_explorer n'est pas vide :
* onretire son premier élément ;

* si des voisins de ce sommet n'ont pas encore été visités, on les marque visités et on les ajoute a la fin de
laliste a_explorer

ATissue de ces opérations, les sommets marqués comme visités forment exactement la composante connexe
dei.

Ensuite on repart d'un sommet non encore visité (s'il y en a un), et on récupére de méme sa composante
connexe. Quand tous les sommets ont été visités, on a ainsi toutes les composantes connexes.

1C’est celui sur lequel est basé le probleme d’algorithmique ' ECRICOME 2023.

2.2.1 Composante connexe d’'un sommet donné

Compléter la fonction suivante qui prend pour arguments les listes d’adjacence d’'un graphe a n sommets, et
un sommet i € [0,n — 1], et renvoie la liste des sommets formant la composante connexe de i.

def comp_conn(L,i):
""" composante connexe du sommet i, du graphe avec listes d’ajacence L"""
n = len(L) ## nb de sommets
visites = ## statut d’un sommet (visité ou pas)
initialement aucun sommet n’est visité
................ ## on marque 1 comme visité

a_explorer = ## et on l1’ajoute a la liste "a explorer'
while len(a_explorer)>0:
j=a_explorer.pop (0) ## commande HP : retire le premier sommet de la lis

a_explorer, et stocke sa valeur dans une variabl
1ici on déclare visités les voisins de j qui ne 1’étaient pas encore
et on les ajoute a la liste a_explorer

return [i for i in range(n) if visites[il==1] ## on renvoie la liste
des sommets visités

[te
P J

2.2.2 Obtention de toutes les composantes connexes

Enfin il faut une derniere étape : retirer les sommets de cette composante connexe du graphe, et lancer une
nouvelle recherche de composante connexe sur un des sommets restants... ceci tant qu’il reste des sommets
non explorés.

On part donc de la liste des sommets

somm = list(range(len(L)))

[¢)

t on initialise une liste de composante connexes (initialement vide, donc)

compo=[]

Tant que la liste des sommets n’est pas vide, on calcule la composante connexe du premier sommet de la liste ;
puis on retire tous les sommets obtenus de la liste somm (avec la méthode somm.remove(. . .)).

Coder cet algorithme.

3 Letritopologique

3.1 Algorithme de Kahn

On se place ici dans le cas d'un graphe orienté sans boucles, et sans cycle. On appelle tri topologique des
sommets du graphe une numérotation des sommets telles que toute aréte va d'un sommet i a un sommet j,
avec j > i.

On voit que si le graphe admet un cycle, un tel tri n’existe pas ; 'algorithme que nous allons coder montre que
si ce n’est pas le cas, un tri topologique existe.

Nous allons coder I'algorithme de Kahn. Le principe est le suivant.
* On initialise une liste vide.

* Dans le graphe, on cherche un sommet de degré entrant 0 (c’est-a-dire, il n’existe aucune aréte qui arrive
a ce sommet).
Un tel sommet existe si le graphe est acyclique. En effet, si tout sommet était le point d’arrivée d'une aréte : considérons un sommet quelconque et
déplagons-nous vers un de ses prédécesseurs. Par hypothése on peut répéter cette opération a I'infini ; comme le nombre de sommets du graphe est

fini on va repasser 2 fois par le méme sommet, formant ainsi un cycle. Contradiction.

* On retire ce sommet du graphe (ie : on retire le sommet, et toutes les arétes qui partent de lui ou qui'y
arrivent), et on I'ajoute a la liste.

e Dans le graphe restant, il existe encore un sommet de degré entrant O (sinon ce sous-graphe comporterait aussi un
cycle, qui serait alors un cycle dans le graphe d’origine : contradiction) : ON retire ce sommet et on l’ajoute a la fin de la liste.

e _.etc...

¢ alafin il ne reste qu'un seul sommet et plus d’arétes : ce sommet est ajouté en derniere position de la
liste et I'algo est terminé.

On justifie ici que cet algo fournit un tri topologique (ce qui, au passage, montre 'existence d’un tel tri).
Soit une aréte u — v : il s’agit de montrer que le numéro assigné a u est strictement inférieur a celui assigné a v.
Au cours de I'algorithme, a I’étape ou1 v regoit son numeéro il est de degré entrant 0, ce qui implique que I'aréte u — v a été retirée du graphe, et donc le sommet

u a déja été retiré. Ceci montre que le numéro de u est strictement inférieur a celui de v.

3.2 Aquoicasert?
On peut citer plusieurs applications :

¢ on veut effectuer une liste de taiches qui dépendent les unes des autres (ie : la tiche i ne peut étre en-
treprise que si la tache j a été effectuée — par exemple pour faire le toit d'une maison il faut avoir monté
les murs). On représente cette situation par un graphe dont les sommets sont les taches a accomplir, et
une aréte va de la tache 7 a la tache j ssila tache i doit étre effectuée avant la tache j. Le tri topologique
de ce graphe donne un ordre dans lequel accomplir les taches pour satisfaire les dépendances.

¢ En informatique, l'installation d'un logiciel peut demander, au préalable, que d’autres soient installés.
Le tri topologique donnera un ordre dans lequel effectuer les installations.

3.3 Mise en ceuvre

La petite Blanche C., 5 ans, s’habille seule tous les matins ; mais elle s’apercoit qu’elle ne peut pas mettre ses
vétements dans un ordre quelconque : par exemple elle doit mettre son pantalon avant ses chaussures. Nous
allons I'aider a trouver un ordre dans lequel passer ses vétements.

On considere la liste de vétements suivante :

0 1 2 3 4 5 6 7 8 9

manteau | chaussures | culotte | t-shirt | pull | montre | pantalon | bonnet | chaussettes | sacados

implémentée en Python par

vetements=[’manteau’,’chaussures’,’culotte’,
’t-shirt’,’pull’,’montre’,’pantalon’,
’bonnet’,’chaussettes’,’sac a dos’]

On représente ci-dessous un graphe dont les 10 sommets représentent les 10 vétements, et ol1 une aréte va de
i a j ssile vétement i doit étre passé avant le vétement j.

Chapelfes
3
® i /6
V.
¢ o)
| v

& Pomath
d

/

S & dhos

o
3

(oui, croyez-moi, il est bien plus pratique de mettre ses chaussettes et son t-shirt avant son pantalon quand on a 5 ans)

On voit alors qu’un tri topologique des sommets de ce graphe donne un ordre possible dans lequel mettre ses
vétements.

Danslereste du TP il sera commode de numéroter les sommets de 0 a9, mais la liste précédente nous permettra
de remonter aux vétements auxquels ils font référence.

On va ici utiliser la représentation du graphe par matrice d’adjacence pour implémenter cet algorithme (exo :
le refaire avec les listes).

Exercice 3. Soit M € .#,(R) la matrice d’adjacence d'un graphe orienté acyclique, dont les sommets sont
numérotés de 0 a n — 1. Comment repérer, sur la matrice, un sommet de degré entrant 0 ?

Proposer une fonction deg_entrant_nul qui prend en argument M et renvoie le numéro d'un sommet de
degré entrant nul (ici on considere les sommets sont numérotés comme les indices de la matrice d’adjacence).

Exercice 4. On veut maintenant « enlever un sommet » au graphe. A quelle opération sur la matrice d’adjacence
cela correspond-il ?

Compléter la fonction suivante qui prend pour argument une matrice M et deux entiers i et j et renvoie la
matrice obtenue en retirant a M sa i-éme ligne et sa j-éme colonne.

def enlever_lignecol(M,i,j):

""" prend une matrice M et renvoie cette matrice privée de la

i-éme ligne et j-éme colonne
(n,p) = np.shape(M) # format de la matrice

L = e e e e # la liste [0,1,...,i-1,i+1,...,n-1]
C T e e e e e e e e e e e e e e # la liste [0,1,...,j-1,j+1,...,p-1]
return np.array([[M[i,j] for j in] for i im ...])

Piége : si on enléve un sommet au graphe, il ne faut pas que les numéros des sommets changent !

Par exemple, si on enléve le sommet 3 a un graphe de sommets 0,1,2,3,4, le graphe restant est représenté par

une matrice d’adjacence de .#4(R). Mais les sommets de ce nouveau graphe doivent étre numérotés 0,1,2,4 et
non 0,1,2,3 comme ils le seraient « par défaut » !

Dans notre code il faudra donc maintenir a jour la liste des numéros des sommets dans une variable l1iste_sommets
initialement égale a [0,1,2, . ..,n] ; alaquelle on enlévera les sommets au fur et a mesure qu'ils sont ajoutés
al'ordre topologique.

On rappelle pour cela que si L est une liste, la commande

del LI[i]

enléeve a la liste son élément d’indice i.

Nous sommes maintenant préts a coder le tri topologique ! Compléter la fonction suivante a cet effet.

def tri_topo(M):

""" effectue un tri topologique des sommets

d’un graphe orienté acyclique de matrice

d’adjacence M"""

tri=[] # contiendra la liste des sommets triés

n=np.shape (M) [0] # le nombre de sommets du graphe

liste_sommets = # contient initialement tous les sommets du graphe

for k in range(mn):
B@MTN = ccccoo0co0oo000000a0 # 1’indice d’un sommet de degré entrant nul
....................... # qu’on ajoute a la liste des sommets triés
....................... # on le retire ensuite du graphe
....................... # et de la liste de ses sommets

return tri

Si on passe en argument la matrice d’adjacence des vétements de Blanche, la fonction fournira en sortie une
liste contenant les entiers de 0 a 9 dans un certain ordre. Blanche est encore petite, et aimerait bien que
lordinateur lui fournisse une liste de vétements.

Exercice 5. Programmer une fonction qui prend en argument la liste renvoyée par la fonction tri_topo, et
renvoie la liste des vétements correspondants. Autrement dit, il faut renvoyer la liste des vetements [i] ol i
parcourt la liste des sommets ordonnés par I'ordre topologique.

3.4 Une variante inutile

Modifier les fonctions précédentes pour que, a chaque étape de 1'algorithme de Kahn, on retire un sommet
choisi de maniére aléatoire parmi ceux de degré entrant nul. Blanche aura ainsi plein d’ordres possibles dans
lequel enfiler ses vétements !

