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Exercice 1

X
Pour chaque entier naturel 7, on définit la fonction f, par: Vx € [n, +oo[, f,,(x) = f eVidr .
n

1. Etude de f;,.

(a)

(b)

(©

Montrer que f;, est de classe € sur [11, +oo[ puis déterminer [}, (x) pour tout x de [7, +oo[. Donner
le sens de variation de f;,.

En introduisant une primitive F de t — eV surR*, ona fn(x) =F(x) —F(n). Fest ¢! car t — eV est
continue ; en dérivant on trouve : Vx € [n, +ool, f1(x) = F'(x) = eV

On voit immédiatement que f;, est toujours strictement positive : f;, est strictement croissante sur
[n, +o0l.

En minorant f;,(x), établir que XEI}_lOO fn(x) = +o0.

Pour minorer une intégrale, on minore la fonction a intégrer. Comme on est sur R,, les exponen-
tielles sont = 1.
On peut écrire: V t € [n, x], eV'>1.En intégrant sur [n, x] (bornes dans 'ordre croissant) :

fn(x)zf e\/fdraf 1dt=(x-n)
n n

lim (x—n)=+oo,donc lim f;(x)=+oco.
— 400 X—+00

En déduire que pour chaque entier naturel 7, il existe un unique réel, noté u,,, élémentde [, +oo|,
tel que f;,(u,) =1.
n
[n est continue et strictement croissante sur [n, +oo[. f,(n) = f eVidr=0et xlirp [n(x) = +00. Par
—+00

n
le théoreme de la bijection, f réalise une bijection de [n, +oo[ sur R,.
1 e R4, donc il existe un unique u, € [n, +oo[ tel que f, (uy) = 1.

2. Etude de la suite (u,,).

(a)

(b)

Montrer que lim u, = +oo.
n—+oo

VneN, u, =n (caril est dans [n, +oo[ !!).
Pour n — +o0, n — +oo (!) donc par minoration, u,, — +oco.

Montrerque: VneN, e Vi <u,-—n< eV,

uy, est défini par:
Un
f eVidr=1
n

Encadrons cette intégrale : par croissance de ¢ — eVl sur [n, uy], on peut écrire :
Vte[n uy,l, eV < eVl < Vi

ce qui donne en intégrant sur [n, u,] (bornes rangées dans le bon ordre car u, = n) :

Uun Up Uun
f e‘/ﬁdtsf e‘ﬁdtsf eVindr
n n n

Up Un Un
e‘/ﬁf 1dtsf e‘ﬁdtSe‘/LT"f 1dt
n n n



3. (a

(b)

et donc "
e‘/ﬁ(un—n)sf eVide < em(un—n)
n

On obtient donc :
VneN, e‘/ﬁ(un—n) <1<e¢7”(un—n)

De e\/ﬁ(un —n) <1 on tire (avec eV > 0)que u,—n< e Vn ;
etde 1< eV (u,—-n)ontire e V¥ < u, — n.

On a bien I'’encadrement recherché.

Utiliser la question 2b) pour compléter la fonction approx (eps) suivante qui renvoie un entier
naturel 7 pour lequel i, —  est inférieur ou égal 2 107%.

D’apres la majoration u,, —n < eV, pour que u, —n < 1074 il suffit que e~V <107%. On écrit donc

def approx(eps):

n =20
while np.exp(-np.sqrt(n))>10**(-4)
n = n+l

return n

La commande

print (approx (10**(-4))

affiche 'une des trois valeurs 55, 70 ou 85. Préciser laquelle en admettant que In(10) = 2,3.

Ce script trouve en fait le premier 7 tel que e V<1074, ce qui équivaut par stricte croissance du In
a:—y/n < -4In(10) ou encore n > 16(ln(10))2. Avec 16 x (2.3)% ~ 84.6, la valeur recherchée est nn = 85.

4. Onpose v, = U, —n.

(@)

(b)

Montrer que lim v, =0.
n—+oo
On a montré dans la question précédente :
VneN, e Vin g UHSe_‘/ﬁ

Pour n — +oo, e Vi ; eton a aussi u, — +oo, et donc e~ V¥ — 0. Par théoreme des gendarmes
on en déduitque lim v, =0.
n—+oo

P X
Etablir que, pour tout réel x supérieur ou égala —1,ona: v1+x<1+ >

On étudie le signe de la fonction f(x) =v1+x—-1— g sur [—1, +ool.

Cette fonction est définie et dérivable sur ] — 1, +oo[ ; on a sur cet intervalle

1 1_1—\/1+x
2V1+x 2 2V1+x

Le signe de [’ est celui de son numérateur ; on trouve que

flx)=

fl=z0elzVi+txeolzl+xeox<0

de sorte que f est croissante sur | —1,0] et décroissante sur [0, +ool. Elle atteint donc son maximum
en 0; et ce max vaut f(0) =0.

[ est donc négative sur ] — 1, +ool, ce qui donne 'inégalité recherchée.



v
(c) Vérifier ensuite que: V7 e N*, e”Vin > eV exp (——”)
2v/n
. Un
Indication : on commencera par montrer que /i, < /7 (1 + 2—)
n

Commengons par montrer I'inégalité de I'indication : pour n e N*, on a:
v
Vin=vVin+n=vny/1+—=
n
Un Un Un ., N . L .
Comme — =0,,/1+— <1+ o d’apres la question précédente, et, avec v/n = 0, on obtient
n n n

14 14
Vin=vn 1+—”<\/ﬁ(1+—”)
n

On en déduit : pour tout n € N*,

Un Un
= = — 1+ —|=- -
tn ‘/ﬁ( Zn) vn 2vn
VT 5 gV (_ Un ) :
e =e €X] croissance de ex;
P NG ( p)

(d) Déduire de 'encadrement obtenu en 2b) que: u, — n it e Vn,
—+00

Rassemblons les résultats montrés dans les question précédentes. On a vu que
VnelN, e Vin < vnse_‘/ﬁ
et
v
VneN*, e Vin > e_‘/ﬁexp (——")
2vn

On déduit donc:

Vnel\l*,e_‘/ﬁexp(— )svnSe_‘/ﬁ

Un
2vn

En divisant par e~V > 0 on obtient

e ( Un ) < Un <1
X —_—— < <
P\"ovn) S v

Un Un
Or comme v, — 0, —— — 0 et donc ex (——) — 1.
nT S P\"ovm

Un . . _
7 =1; ce qui donne bien v, ~; € v
n

Par théoreme des gendarmes, lim
n—+00 p—

Exercice 2
Pour n € N*, on pose

+00 1
Y A
T /0 (1+x3)"

1. Montrer que I'intégrale définissant ], est bien convergente.

1
X — ———; est continue sur R, ; de plus on al’équivalent
(1+x3)

1 1

(1 +x3)n PR x3n

+00
nzldonc3n>1let f —5,, dx converge (Riemann) ; par comparaison de fonctions positive I'intégrale
1 X

], est bien convergente.

2. SoitA =0, et neN*,



(a) Montrer que

fA x3 d A . 1 fA 1 d
—_— s _— —dax
o (1+x3)n+l 3n(1+A3)" 3nJo (1+x3)7

fA x3 d 1 fA 3x2 d
——ax == X———ax
0 a1+ x3)n+1 3Jo (1 + x3)n+1

On pose u(x) = x et v(x) = L =3x2(1 +x3)" "D alors v/ (x) = 1 et V(x) = —l;
(1+x3)n+1 ’ n (1+x3)”
Les fonctions en jeu sont €.

LIPP donne:
A i3 1 A rA 11
f—dx=_ _f P
0 (1+x3)n+t 3 o Jo n(1+x3)n

fA x3 d A . 1 fA 1 d
—_— s _— —dax
0o (1+4x3)n+l 3n(1+A3)"*L  3nJy (1+x3)7

Ona, pourA=0:

On va effectuer une IPP.

1 X
n (1 + x3)n+1

1
(b) Montrer queJ, —J;+1 = 3—],, ; puis que
n

3n—-1
3n

VneNJu = In

On observe que

+00 1 1
— = - d
Jn=Jn+1 \/(; ((1+x3)n (1+ x3)n+1 X
+00 3
= fo de (qui converge !)

Caressemble assez violemment avec ce qui a été vu a la question précédente !

Faisons alors tendre A — +oo dans la formule précédente.
A

(1+A3)7 A—-too A3R1

— 0; etdonc

+00 x3 1 +00 1
——dx= —f —dx
fo (14 x3)n+l 3nJo @A+x3)n

1
(les intégrales convergent) ; ce qui donne J,, —J ;41 = 3—],, ; puis
n

| _(1 1)]_3n—1
n+l — 35 n— 3n

Tn.

2n
3. Onadmetque]; = —.

3v3

(a) Ecrire en Python une fonction liste_J(n) prenant en argument un entier 7 et qui renvoie la
liste des 7 premiers termes de la suite (J,;) ;,en+ -

2
On construit L = [Jy,]J»,...,J ;] de proche en proche. Initialement, L = [—n

3V3

; puis on ajoute chaque

nouveau terme s’exprimant en fonction du précédent.

def liste_J(n):
L=[2*np.pi/(3*np.sqrt (3))]
for k in range(l,n):
L.append ((3*k-1)/(3*k)*L[-1])
return L

(b) On exécute ensuite le code:



N = np.array([k for k in range(1,51)])
J = np.array(liste_J(50))

plt.scatter (N,N*J*%3)

plt.show ()

et on obtient le tracé suivant :
1.8 A

1.6 1
1.4 A
1.2 4

1.0 1

wo] e

0 10 20 30 40 50

Expliquer ce qui est représenté sur ce tracé. Que peut-on conjecturer ?

Ce tracé représente les valeurs de nJ5 en fonction de n. 1l semble que cette suite converge : Jo >
0, nJ3 —a.

. . (04
Ontirede celan]> ~ a;puis]d ~ = ;etenfin
n—+oo n
" oo pll3

4. Soit o > 0 ; on définit, pour n € N*, u,, = n®J,,.

(a) CalculerIn (@ ) .

Un

Pour tout n e N* :

Donc

IH(M) :(xln(1+l)+ln(1—i).
Up n 3n

(b) APaide du développement limité de In(1 + x) en 0, déterminer un équivalent de In (M

) (on dis-
Up
cutera suivant les valeurs de o).

1 1
Pour n — +oo0, — —0Oet “3n 0 donc on développe les In :
n n

1 1 1 1
In{1+— =—--—=+ol—|
n n 2n n

1 1 1( 1)\? 1 1 1 1
Infl-—|=-—--|-—] +0|5|=—7—- +o|l—|.
3n 3n 2\ 3n n?2 3n 18n? n?

Donc



Un+1

1
(c) En déduire que la série de terme général In ( ) converge si et seulement si o = 3

Un

1
* Sia# 3 le DL précédent donne I'équivalent :

Up+1 1)1
In|Z) ~ |a-=|=
u, )n—+oo 3/n
Doncsia > 3 par comparaison de séries a termes positifs, a une série de Riemann divergente

(harmonique) on conclut que Zln( Un+l
u

. . 1 .
) diverge ; et si o > 5 On passe par les séries opposées
n
Un+1

pour appliquer le théoreme de comparaison de SATP ; on en déduit que ). (— In ( )) diverge

Un

;etdonc ) In (M) diverge également.
u

n

. 1 . 1 . . a s
e sia= 3’ le terme dominant en — disparait et on al’équivalent
n

(un+1) ( o 1) 1 2
1Y fias U P
u, |n—+o\ 2 18)n? 9n?

. Up+1 . 2 , L. .
et par comparaison de —In au terme général 9z d’une série cv (Riemann encore) on a
Up n
Un+1
la convergence de }_ In| ——|.
Un

1
5. On suppose jusqu’a la fin du probléme que o = 3

(a) Montrer que la suite (ln( un)) Leny+ Converge ; puis que (uy) en+ CcONverge vers une limite stricte-
ment positive.

Un+1

Classique : la série }_In ( ) est téléscopique.

Un
Pour N =1 on écrit :

N N
> ln(M) =Y (In(up+1) = In(up)) = In(un) - In(uy)
n=1 Un n=1

Cette somme ayant une limite finie pour N — +oco on peut conclure que la suite (ln(un))neN* con-

verge vers £ € R.
Des lors, u, = exp(In(uy)) — el>o.

(b) OnnoteK = lirP Up. Déterminer un équivalent de J,, pour n — +o0.
n—+o00

1
On rappelle que o = 3 ; donc uy, = n'’3J,, — K # 0 ce qui donne aussi n'/3],, ia Ketdonc
—+00

K

" ioo pll3

ce qui valide bien la conjecture effectuée plus haut.

Exercice 3

-t

+00
1. Montrer que, pour tout x € ]0, +oo[, intégrale f P dt converge.
0

+t

—-Xxt

. e .
Pour x — 0 fixé, t — est continue sur R,..

X
Pourtoutt=1,x+t=t=1donc




+00
Comme f e~ 'dt converge, par comparaison de fonctions positives :
1

+00
On note [ :]0 + oo[— R I'application définie, pour tout x €]0, +oo[, par: f(x) = f
0

2. (a)
(b)
3. (@
(b)

+o00 e—t
f dt converge.
0 X+t

e—t

X+t

dz.

-1

dz.

1
e

Montrer : Vx €]0, +ool, f(x) zf
0o X+t

+o00 ,—t 1 -t
e
Comme on integre une fonction positive, f(x) = f dt= f dr.
0 X+t 0 X+t

Deplus,0<st<l=e’=e"!;donc
—t
2_

X+t Xx+t

1 -t 1 -1
f(x);f ¢ dt;f ° _dr
0o X+t 0 X+t

Viel0,1],

et en intégrant sur [0,1] :

x—07F

En déduire: f(x)

+00.

On calcule cette derniere intégrale :

1 -1 1 1
f ¢ dtze_lf —dt:e_lf ——dr=e'In(x+ t)](l):e_l[ln(x+1)—ln(x))
0o X+t 0o X+t 0o X+t

Donc f(x) = e !(In(x+ 1) - In(x)). Or lir{)l e (In(x+1) —In(x)) = +o0o; et donc par minoration
xX— + N, et

——00

lim f(x)=+oc0
x—0+

1 .
Montrer : Vx €]0, +ool, 0 < f(x) < —. En déduire : f(x) X=* ).
X

f étant I'intégrale sur R, d’'une fonction positive, continue, non nulle, elle est > 0.
Ensuite on majore, comme d’habitude, la fonction dans I'intégrale.
Pour tout £ =0, x+ ¢ = g ; et en passant a 'inverse (strictement décroissante sur R}) puis en multi-
pliant par e~!>0, on trouve :
-t -t
e e
V=0, < —
X+t X

On integre sur R (les intégrales convergent, vu avec les comparaisons plus haut) :

+00 e—t 1 +00 B
f dts—f e 'dt
0 X+t x Jo
+00

Or e~ tdr =1 (calcul direct avec une borne A — +00, ou intégrale de la densité usuelle de &(1))

0
; ce qui donne le résultat.

+oo
Montrer que l'intégrale f te”'dt converge et que :
0

1 too pet 1
Vx€]0,+oo[, 0<s ——f(x) = ——di< .
X o x(x+1) x
Pour la convergence on effectue un test de Riemann, ou on invoque I'existence de I'’espérance d'une
variable X — &(1).



1
Ensuite on met T f(x) sous une forme utilisable : I'idée est ici de reprendre la forme sous laquelle

1 +00 e—t +00 e—t
__f(x):f —dt—f dt
X 0 X 0 X+t
+00 1 1
[Tt s - ar
0 X Xx+t
+00 te—t
- dt
0 x(x+1)
S . 1 , S .
La fonction a intégrer est positive donc — — f(x) = 0 ; pour 'autre inégalité on majore encore.
x

+00 te—t 1 +00
f dt < —zf te tdt
o x(x+1) x% Jo

(on peut se permettre d’aller un peu plus vite, ce sont les mémes techniques et arguments que la
question précédente !).

il est apparu. On a donc

Pour £ =0, x(x + ) = x% et donc

11 ne reste plus qu’a calculer f0+°° te~'dt. Pour A = 0, et avec une IPP, et une croissance comparée
pour la limite :

A A
f te"tdt=[-te "1} +f etdr=-Ae A —[e7]} =-Ae A —e P+l -1
0 0
Donc [, te~'d¢=1 et on a bien I'inégalité demandée.

(c) Endéduire: f(x) ~ l

x—+00 X

fx

On étudie le quotient Tz - xf(x). En reprenant 'encadrement précédent et en multipliant par
X
x>0:
0<s1-xf(x)=<

=

1
Pour x — 400, — — 0; donc par gendarmes 1 — x f(x) — 0 et enfin
X
Jim 50 =1
ce qui donne bien I'équivalent demandé.

+oo U

du.
u

(a) Montrer: Vx>0, f(x)= exf

X

On effectue le changement de variable u = x + ¢ (affine, on peut méme le faire sur I'intégrale impro-
pre).
Onaalorst=u—-xetdt=du;et f0+°°(...) dt devient f;oo(...) du.

Il vient

+oo o=t +00 o= (u=x)
= dt= d
f fo X+t fx u “

+00 —-Uu
e
=f e*—du
x u

+00 —Uu
e
= exf —du
x u

e* u
du est €' sur R}, et donner I'expression de R/(x) sur cet

+00
(b) Montrer que la fonctionR: x — f
x u

intervalle.



(©

Reste intégral !!
On cherche a appliquer le TFA mais il faut pour cela une intégrale sur un segment : donc on dé-

coupe.
+00 e—u +00 e—u X e—u
Vx>0,R(x):f du:f du—f —du
x u 1 u 1 u

=1

. e e .
I est une constante ; la fonction x — f — du est €' pr TFA (la fonction a intégrer étant continue)
u
e '
; et de dérivée x — —.
X
On conclut que :

—-X

e
Vx>0, R(x)=——
X

En déduire que f est une solution sur R’ de I'équation différentielle
E): y-y=—=
B :y-y X

f:x— e*R(x) estdonc € 1 - {1 suffit alors de dériver un produit.
! X Xp/ X eix 1
Vx>0, fi(x)=e’R(x)+e ' R'(x)=f(x)+e 5 :f(x)—;

. . , 1
ce qui montre que f est solutionde y' —y = -

5. On montre ici le résultat suivant : f estla seule solution de (E) de limite nulle en +oo.

(a)

(b)

(©

Donner les solutions de Péquation (Eg) : y'—y=0.

Cours : ce sont les fonctions de la forme ¢ — Kef, ou K € R.

La méthode de la variation de la constante consiste a chercher une solution particuliére de (E) en

faisant « varier la constante » de la question précédente : on pose y), : x — K(x)e*.
—X

Montrer que y, est solution de (E) si et seulementsi: Vx>0, K'(x) = ——.
X
Soit y, de la forme donnée. On a
1
yp solution de (E) & ¥ x>0, y;, (X) = ypx)=—=
X
1
Vx>0, K'(x)e"+K(x)e* -K(x)e* =-—
X
! X l
oVx>0 K(x)e =——
X
—-X
Vx>0, Kx)=-——
X
En déduire que les solutions de (E) sont les fonctions de la forme :
x o=t
x— (K—f —dt)ex
1 t
ou1 K est un nombre réel quelconque.

x( ot
On a besoin d'UNE solution particuliere : Kg : x — ——) df convient.

1
On sait ensuite que les solutions de (E) sont les fonctions de la forme yy + yp ol y;, est ci-dessus et
yu parcourt les solutions de I’équation homogene (Ey).

On trouve alors les fonctions de la forme
x gt
x—Ke* +Kp(x)e* = (K—f - dt) e*
1

ou1 K décrit R.



(d) Montrer que f estla seule solution de (E) de limite nulle en +co.

Par convergence de l'intégrale,
X p,—t +oo ,— 1
lim (K—f e—dt):K—f £ dr
X—+00 1t 1 t

+00 eft
SiK# f - dt, la parenthese dans I'expression générale tend vers une limite réelle non nulle, et
1

donc en multipliant par e* on tombe sur

X—+00

X p—t
lim (K - f eT dt) e’ = 400 (suivant le signe de )
1

—a#0

+oo ,—t
La seule solution qui ne tend pas vers 'infini s’obtient donc pour K = f e dz: c’estla fonction
1

X p—t +00 ,—t x ,—t +o00 ,—t
x»—»(K—f e—dt)ex:(f e—dt—f e—dt)exz(f e—dl‘)e’C
1t 1 t 1t x t

et on reconnait bien f!!
MAIS ATTENTION : I’étude précédente ne nous dit pas que cette solution est de limite nulle !
Mais on a montré en 3a que c’était bel et bien le cas ; ce qui permet de conclure.

Exercice 4

On lance indéfiniment une piéce donnant « Pile » avec la probabilité p et « Face » avec la probabilité g = 1—-p.
On suppose que p €]0, 1[ et on admet que les lancers sont mutuellement indépendants.

Pour tout entier naturel k, supérieur ou égal 2 2, on dit que le k*™® lancer est un changement s’il ameéne un
résultat différent de celui du (k — 1)*™€ lancer.

On note Py (resp. Fj) 'événement : «on obtient Pile (resp. Face) au k*™€ lancer » .

Pour ne pas surcharger I'écriture on écrira, par exemple, P, F, ala place de P; nF,.

Pour tout entier naturel 7 supérieur ou égal a 2, on note X, la variable aléatoire égale au nombre de change-
ments survenus durant les n premiers lancers.

Par exemple, si n = 7 et qu'on obtient la succession de tirages Pile,Pile,Face,Face,Pile,Face,Pile :

¢ leslancers 3,5,6,7 sont des changements ;

¢ onobtient X; = 4.

Partie 1 : Python.

1. On suppose le package numpy . random importé avec 'alias rd.
Justifier que la commande rd.binomial (1,p,n) renvoie une liste de » nombres aléatoires indépen-
dants, valant 0 avec probabilité 1 — p et 1 avec probabilité p.

Cette commande renvoie n tirages indépendants d’une variable suivant la loi binomiale (1, p) ; qui
n’est autre que la loi de Bernoulli Z(p).
On obtient bien la description demandée.

2. Compléter la fonction suivante qui renvoie un tirage de la variable X,, décrite plus haut.

La commande rd.binomial (1,p,n) modélise les n lancers ; que I'on considére que 1 vaut Pile et 0 vaut
Face, ou le contraire, le probléme est le méme : il faut compter le nombre de composantes de la liste L
différentes de celle qui les précedent.

On écrit par exemple :

def changements(n,p):
c = 0 # init compteur
L = rd.binomial(1,p,n)

10



for k in range(l,n): # on ne teste pas le ler lancer !
if L[k]!'=L[k-1] : # lancer différent du précédent
c = c+1
return c

3. Utiliser cette fonction pour écrire un code qui permet d’obtenir une approximation de E(X;o) dans le

3
casp=-.
5

Comme d’habitude il faut faire un grand nombre de tirages de la variable dont on souhaite approximer
I'espérance, et renvoyer la valeur moyenne. On peut proposer :

def esperance():
s =0
for k in range(10000):
s = s + changements (10,3/5)
return s/10000

Partie 2 : étude de quelques exemples.

4. Donner laloide X;.

En 2 lancers on n’aura que 0 ou 1 changement : X, (Q) = {0, 1}
On a 0 changement si les lancers donnent P1P, ou F;F,. Par incompatibilité de ces deux issues, et in-
dépendance des lancers successifs, on a

P(Xz = 0) = P(P)P(Py) + P(F))P(Fy) = p* + ¢*

On a 1 changement si on obtient P1F, ou F1P». De méme :
PXz=1)=pqg+qp=2pq

NB : on vérifie que P(Xy = 0) + P(Xp = 1) = p?> + g* + 2pg = (p + g)> = 1 : C’est rassurant.

5. (a) Donner laloide Xs.

Cette fois X3(Q) ={0,1,2}.

P(X3 = 0) = P(P,PoP3) + P(F, FoF3) = p° + ¢°

P(X3 = 2) = P(F|P2F3) + P(P1FoP3) = g° p + p°q = pq(q + p) = pq
——
=1

P(X3 = 1) = P(P,P2F3)+P (P, FoF3) +P(F1 FoP3) +P(F1 PoP3) = p2 g+ pq*+q* p+qp* = pg(p+q+q+p) =2pq

(b) Vérifier quel (X3) =4pgetqueV (X3)=2pq(3—-8pq).

Aveclaformule EX)= ) kPX=k):
keX(Q)

EX3) =PX3=1)+2PX3=2)=2pg+2x pqg=4pq

et avec le théoreme de transfert, EX?) = Y. kKPX=k):
keX(Q)

EXD) =PX3=1)+4P(X3=2) =2pq+4x pq=6pq

et par Konig-Huygens : V(X3) = [E(st) - (E(X3))2 =6pq—16p>q*> =2pq(3—-8pq).
NB : toutes ces quantités existent bien, car X3 ne prend qu'un nombre fini de valeurs.
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Partie 3 : étude du cas p # g.
Dans cette partie,  désigne un entier naturel supérieur ou égala 2.
6. Déterminer X, (Q2).
Durant n lancers, il ne peut intervenir aucun changement ; ou chaque lancer peut donner un change-

ment (saufle ler bien stir!).
On voit ainsi que X, (Q2) = [1,n—-1].

7. Exprimer P (X;, = 0) en fonction de p, g et n.
X, =0 (aucun changement) a lieu pour les 2 successions P;P,...P, et F1F»...F,. Par indépendance des
lancers successifs, et incompatibilité de ces deux issues :

PX, =0) =P({P,P,...P,) +P(F1F2...F,) =p" +q"
8. En décomposant 'événement (X,, = 1) en une réunion d’événements incompatibles, montrer que

ZPCI n-1 n-1
PX,=1)=——"(q" -
n q_p( p")

On s’intéresse donc aux successions de n lancers ol il n'y a qu'un changement : celui-ci peut survenir au
lancer 2,3,... n. De plus on peut changer de pile vers Face, ou de Face vers Pile.

On obtient donc les possibilités
P1FyFs...F, P1PyFs5...F, ... P1P,P3...P,F,

et
F1PyP3...P, FF:P3...P, ... FiF:F3...F;,1P,

Pour la premiere ligne, les probabilités respectives sont

n-1 2 _n-2 n-1

pq p4q e P q

eton a ales sommer :

-1 n-1 p\"!
n-1 () pl—(g)n ) q (1_(3) )_ gL - p!
S k—q”k;(;) =", (2 =pq A-2) =pa—

ol on a utilisé la formule pour une somme géométrique FINIE de raison % #1 (p # q d’apres 'énoncé).

Pour la seconde ligne, on remarque qu’il suffit d’échanger les roles des Pile et des Face, donc de changer
p et getqen p:ontrouve alors la probabilité

n-1

ap pn—l _ qn 1 qn—l -p
-q -p

=prq
p q
La probabilité demandée s’obtient en additionnant les résultats des deux lignes, qui sont identiques :

n-1 n-1

9 ~—p

PX,=1)=2pq
" -p

9. En distinguant les cas n pair et n impair, exprimer P (X,, = n— 1) en fonction de p et q.
Ona (X, = n—1) ssiil y aun changement a chaque lancer (dés le 2éme).
Si n pair (on note n = 2k) on obtient donc :
Kp=n-1) = (P1F2)(PsFq) ... (Pag-1F21) U (F1P2) (F5P4) ... (F2-1P2k)

et par indépendance des lancers et incompatibilité :

PX,=n-1)=2(pq)* =2(pg)""?
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Si n impair (on note n = 2k + 1) on obtient cette fois :
XKp=n-1) = (P1F2)(P3Fy)... (Pog-1F21)P2k+1 U (F1P2) (F3P4) ... (For-1P2k)Fog+1

et par indépendance des lancers et incompatibilité :
- - k k. _ k _ k_ 2l
PXp=n-1D={@q " p+pa "q=pg" " (p+q9 =(pg"=(pqg) ?

10. Pour tout entier naturel k, supérieur ou égal 2 2, on note Z; la variable aléatoire qui vaut 1 si le k'¢"¢
lancer est un changement et 0 sinon (Z; est donc une variable de Bernoulli).
Ecrire X,, aaide de certaines des variables Z; et en déduire E (X,,).

C’est classique : X, compte le nombre de changements, donc est égal au nombre de Z valant 1 (pour
2< k< n). Les Z; valant 0 ou 1, il suffit donc de les sommer :

n
Xn=) Zg
k=2

n
On déduit de la linéarité de ’espérance : E(X;,) = Z E(Zy).
k=2

Pour conclure il faut la loi de Z.

71 (Q) ={0,1} clairement.

Ensuite, on a Zy = 1 ssi le k-ieme lancer est un changement, donc ssi on a Py_;Fx ou Fx_;Px. On en
déduit avec les mémes arguments que précédemment :

PZr=1)=2pq

OnadoncZy — BQ2pq) ; douE(Zy) =2pg et finalement :

n
EXn) =) EZy) =2(n—-1)pg
k=2

Partie 4 : étude ducas p = g.

11. Vérifier, en utilisant les résultats de la partie 2, que X3 suit une loi bindmiale.

1
On est donc ici dans le cas d'une piéce équilibrée: p =g = >

D’apres la partie 2 :
* X3()=1{0,1,2}
e PX3=0)=p3+q°=

=

+

x|~
Q| =

1
L] P(ngz):pqzé—l

° P(X3 = 1) zzpq:

N | =

et on reconnait X — % (2, 5)
12. Soit k € [0,n — 1]. Dénombrer les successions de 7 lancers de piece présentant k changements. En

1
déduire que X,, — % (n -1, 5)

On a déja justifié que X, (Q) = [0, n —1].
Ah, du dénombrement ! Que doit-on choisir pour construire une suite P/F comprenant k changements ?

¢ la position des k changements parmi les n — 1 derniers lancers (le premier ne pouvant étre un

changement) : (n K ) choix.

¢ les valeurs des lancers : en fait il suffit de choisir le résultat du premier lancer, ensuite tout le reste
est fixé par la position des changements ! Donc 2 choix.
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n
Au total, il existe 2 K successions de n lancers qui présentent k changements. Or il y a en tout 2"

successions de n lancers possibles.
Par équiproba (la piece est équilibrée !) :

a(n-1 _ k n-l1-k
Vkelo,n—1], PKy = k) = (zz):(”kl)(%) (%)

1
et on obtient bien X;, — % (n -1, 5)
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