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Exercice 1

Pour chaque entier naturel n, on définit la fonction fn par : ∀x ∈ [n,+∞[ , fn(x) =
∫ x

n
e
p

t dt .

1. Étude de fn .

(a) Montrer que fn est de classe C 1 sur [n,+∞[ puis déterminer f ′
n(x) pour tout x de [n,+∞[. Donner

le sens de variation de fn .

En introduisant une primitive F de t 7→ e
p

t sur R+, on a fn(x) = F(x)−F(n). F est C 1 car t 7→ e
p

t est
continue ; en dérivant on trouve : ∀x ∈ [n,+∞[, f ′

n(x) = F′(x) = e
p

x .
On voit immédiatement que f ′

n est toujours strictement positive : fn est strictement croissante sur
[n,+∞[.

(b) En minorant fn(x), établir que lim
x→+∞ fn(x) =+∞.

Pour minorer une intégrale, on minore la fonction à intégrer. Comme on est sur R+, les exponen-
tielles sont Ê 1.
On peut écrire : ∀ t ∈ [n, x], e

p
t Ê 1. En intégrant sur [n, x] (bornes dans l’ordre croissant) :

fn(x) =
∫ x

n
e
p

t dt Ê
∫ x

n
1dt = (x −n)

lim
x→+∞(x −n) =+∞, donc lim

x→+∞ fn(x) =+∞.

(c) En déduire que pour chaque entier naturel n, il existe un unique réel, noté un , élément de [n,+∞[,
tel que fn(un) = 1.

fn est continue et strictement croissante sur [n,+∞[. fn(n) =
∫ n

n
e
p

t dt = 0 et lim
x→+∞ fn(x) =+∞. Par

le théorème de la bijection, f réalise une bijection de [n,+∞[ sur R+.
1 ∈R+, donc il existe un unique un ∈ [n,+∞[ tel que fn(un) = 1.

2. Étude de la suite (un).

(a) Montrer que lim
n→+∞un =+∞.

∀n ∈N, un Ê n (car il est dans [n,+∞[ !!).
Pour n →+∞, n →+∞ (!) donc par minoration, un →+∞.

(b) Montrer que : ∀n ∈N , e−
p

un É un −n É e−
p

n .

un est défini par : ∫ un

n
e
p

t dt = 1

Encadrons cette intégrale : par croissance de t 7→ e
p

t sur [n,un], on peut écrire :

∀ t ∈ [n,un], e
p

n É e
p

t É e
p

un

ce qui donne en intégrant sur [n,un] (bornes rangées dans le bon ordre car un Ê n) :∫ un

n
e
p

n dt É
∫ un

n
e
p

t dt É
∫ un

n
e
p

un dt

e
p

n
∫ un

n
1dt É

∫ un

n
e
p

t dt É e
p

un

∫ un

n
1dt
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et donc

e
p

n(un −n) É
∫ un

n
e
p

t dt É e
p

un (un −n)

On obtient donc :
∀n ∈N, e

p
n(un −n) É 1 É e

p
un (un −n)

De e
p

n(un −n) É 1 on tire (avec e
p

n > 0) que un −n É e−
p

n ;
et de 1 É e

p
un (un −n) on tire e−

p
un É un −n.

On a bien l’encadrement recherché.

3. (a) Utiliser la question 2b) pour compléter la fonction approx(eps) suivante qui renvoie un entier
naturel n pour lequel un −n est inférieur ou égal à 10−4.

D’après la majoration un −n É e−
p

n , pour que un −n < 10−4 il suffit que e−
p

n < 10−4. On écrit donc
:

def approx (eps ):
n = 0
while np.exp(-np.sqrt(n)) >10**( -4)

n = n+1
return n

(b) La commande

print( approx (10**( -4))

affiche l’une des trois valeurs 55, 70 ou 85. Préciser laquelle en admettant que ln(10) ≃ 2,3.

Ce script trouve en fait le premier n tel que e−
p

n < 10−4, ce qui équivaut par stricte croissance du ln
à :−pn <−4ln(10) ou encore n > 16

(
ln(10)

)2. Avec 16×(2.3)2 ≃ 84.6, la valeur recherchée est n = 85.

4. On pose vn = un −n.

(a) Montrer que lim
n→+∞vn = 0 .

On a montré dans la question précédente :

∀n ∈N, e−
p

un É vn É e−
p

n

Pour n →+∞, e−
p

n → 0 ; et on a aussi un →+∞, et donc e−
p

un → 0. Par théorème des gendarmes
on en déduit que lim

n→+∞vn = 0.

(b) Établir que, pour tout réel x supérieur ou égal à −1, on a :
p

1+x É 1+ x

2
.

On étudie le signe de la fonction f (x) =p
1+x −1− x

2
sur [−1,+∞[.

Cette fonction est définie et dérivable sur ]−1,+∞[ ; on a sur cet intervalle

f ′(x) = 1

2
p

1+x
− 1

2
= 1−p

1+x

2
p

1+x

Le signe de f ′ est celui de son numérateur ; on trouve que

f ′(x) Ê 0 ⇔ 1 Êp
1+x ⇔ 1 Ê 1+x ⇔ x É 0

de sorte que f est croissante sur ]−1,0] et décroissante sur [0,+∞[. Elle atteint donc son maximum
en 0 ; et ce max vaut f (0) = 0.

f est donc négative sur ]−1,+∞[, ce qui donne l’inégalité recherchée.
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(c) Vérifier ensuite que : ∀n ∈N∗, e−
p

un Ê e−
p

n exp

(
− vn

2
p

n

)
.

Indication : on commencera par montrer que
p

un Ép
n

(
1+ vn

2n

)
.

Commençons par montrer l’inégalité de l’indication : pour n ∈N∗, on a :

p
un =p

vn +n =p
n

√
1+ vn

n

Comme
vn

n
Ê 0,

√
1+ vn

n
É 1+ vn

2n
d’après la question précédente, et, avec

p
n Ê 0, on obtient

p
un =p

n

√
1+ vn

n
Ép

n
(
1+ vn

2n

)
On en déduit : pour tout n ∈N∗,

−pun Ê−pn
(
1+ vn

2n

)
=−pn − vn

2
p

n

e−
p

un Ê e−
p

n exp

(
− vn

2
p

n

)
(croissance de exp)

(d) Déduire de l’encadrement obtenu en 2b) que : un −n ∼
n→+∞ e−

p
n .

Rassemblons les résultats montrés dans les question précédentes. On a vu que

∀n ∈N, e−
p

un É vn É e−
p

n

et

∀n ∈N∗, e−
p

un Ê e−
p

n exp

(
− vn

2
p

n

)
On déduit donc :

∀n ∈N∗, e−
p

n exp

(
− vn

2
p

n

)
É vn É e−

p
n

En divisant par e−
p

n > 0 on obtient

exp

(
− vn

2
p

n

)
É vn

e−
p

n
É 1

Or comme vn → 0,
vn

2
p

n
→ 0 et donc exp

(
− vn

2
p

n

)
→ 1.

Par théorème des gendarmes, lim
n→+∞

vn

e−
p

n
= 1 ; ce qui donne bien vn ∼+∞ e−

p
n .

Exercice 2

Pour n ∈N∗, on pose

Jn =
∫ +∞

0

1(
1+x3

)n dx

1. Montrer que l’intégrale définissant Jn est bien convergente.

x 7→ 1(
1+x3

)n est continue sur R+ ; de plus on a l’équivalent

1(
1+x3

)n ∼
x→+∞

1

x3n

n Ê 1 donc 3n > 1 et
∫ +∞

1

1

x3n dx converge (Riemann) ; par comparaison de fonctions positive l’intégrale

Jn est bien convergente.

2. Soit A Ê 0, et n ∈N∗.
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(a) Montrer que ∫ A

0

x3

(1+x3)n+1 dx =− A

3n(1+A3)n + 1

3n

∫ A

0

1

(1+x3)n dx

On a, pour A Ê 0 : ∫ A

0

x3

(1+x3)n+1 dx = 1

3

∫ A

0
x

3x2

(1+x3)n+1 dx

On va effectuer une IPP.

On pose u(x) = x et v(x) = 3x2

(1+x3)n+1 = 3x2(1+ x3)−(n+1) ; alors u′(x) = 1 et V(x) = − 1

n

1

(1+x3)n .

Les fonctions en jeu sont C 1.

L’IPP donne : ∫ A

0

x3

(1+x3)n+1 dx = 1

3

([
− 1

n

x

(1+x3)n+1

]A

0
−

∫ A

0
1×− 1

n

1

(1+x3)n dx

)
∫ A

0

x3

(1+x3)n+1 dx =− A

3n(1+A3)n+1 + 1

3n

∫ A

0

1

(1+x3)n dx

(b) Montrer que Jn − Jn+1 = 1

3n
Jn ; puis que

∀n ∈N∗, Jn+1 = 3n −1

3n
Jn

On observe que

Jn − Jn+1 =
∫ +∞

0

(
1

(1+x3)n − 1

(1+x3)n+1

)
dx

=
∫ +∞

0

x3

(1+x3)n+1 dx (qui converge !)

Ça ressemble assez violemment avec ce qui a été vu à la question précédente !
Faisons alors tendre A →+∞ dans la formule précédente.

A

(1+A3)n ∼
A→+∞

1

A3n−1 → 0 ; et donc

∫ +∞

0

x3

(1+x3)n+1 dx = 1

3n

∫ +∞

0

1

(1+x3)n dx

(les intégrales convergent) ; ce qui donne Jn − Jn+1 = 1

3n
Jn ; puis

Jn+1 =
(
1− 1

3n

)
Jn = 3n −1

3n
Jn .

3. On admet que J1 = 2π

3
p

3
.

(a) Écrire en Python une fonction liste_J(n) prenant en argument un entier n et qui renvoie la
liste des n premiers termes de la suite (Jn)n∈N∗ .

On construit L = [J1, J2, ..., Jn] de proche en proche. Initialement, L =
[

2π

3
p

3

]
; puis on ajoute chaque

nouveau terme s’exprimant en fonction du précédent.

def liste_J (n):
L=[2* np.pi /(3* np.sqrt (3))]
for k in range (1,n):

L. append ((3*k -1)/(3* k)*L[ -1])
return L

(b) On exécute ensuite le code :
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N = np.array ([k for k in range (1 ,51)])
J = np.array( liste_J (50))
plt. scatter (N,N*J**3)
plt.show ()

et on obtient le tracé suivant :

Expliquer ce qui est représenté sur ce tracé. Que peut-on conjecturer ?

Ce tracé représente les valeurs de nJ3
n en fonction de n. Il semble que cette suite converge : ∃α >

0, nJ3
n → α.

On tire de cela nJ3
n ∼

n→+∞α ; puis J3
n ∼

α

n
; et enfin

Jn ∼
n→+∞

β

n1/3

4. Soit α> 0 ; on définit, pour n ∈N∗, un = nαJn .

(a) Calculer ln

(
un+1

un

)
.

Pour tout n ∈N∗ :

un+1

un
=

(
n +1

n

)α Jn+1

Jn

=
(

n +1

n

)α 3n −1

3n

=
(
1+ 1

n

)α (
1− 1

3n

)
Donc

ln

(
un+1

un

)
= α ln

(
1+ 1

n

)
+ ln

(
1− 1

3n

)
.

(b) À l’aide du développement limité de ln(1+x) en 0, déterminer un équivalent de ln

(
un+1

un

)
(on dis-

cutera suivant les valeurs de α).

Pour n →+∞,
1

n
→ 0 et − 1

3n
→ 0 donc on développe les ln :

ln

(
1+ 1

n

)
= 1

n
− 1

2n2 +o

(
1

n2

)
,

ln

(
1− 1

3n

)
=− 1

3n
− 1

2

(
− 1

3n

)2

+o

(
1

n2

)
=− 1

3n
− 1

18n2 +o

(
1

n2

)
.

Donc

ln

(
un+1

un

)
=

(
α− 1

3

)
1

n
+

(
−α

2
− 1

18

)
1

n2 +o

(
1

n2

)
.
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(c) En déduire que la série de terme général ln

(
un+1

un

)
converge si et seulement si α= 1

3
.

• Si α ̸= 1

3
, le DL précédent donne l’équivalent :

ln

(
un+1

un

)
∼

n→+∞

(
α− 1

3

)
1

n

Donc si α> 1

3
par comparaison de séries à termes positifs, à une série de Riemann divergente

(harmonique) on conclut que
∑

ln

(
un+1

un

)
diverge ; et si α> 1

3
on passe par les séries opposées

pour appliquer le théorème de comparaison de SATP ; on en déduit que
∑(

− ln

(
un+1

un

))
diverge

; et donc
∑

ln

(
un+1

un

)
diverge également.

• si α= 1

3
, le terme dominant en

1

n
disparaît et on a l’équivalent

ln

(
un+1

un

)
∼

n→+∞

(
−α

2
− 1

18

)
1

n2 =− 2

9n2

et par comparaison de − ln

(
un+1

un

)
au terme général

2

9n2 d’une série cv (Riemann encore) on a

la convergence de
∑

ln

(
un+1

un

)
.

5. On suppose jusqu’à la fin du problème que α= 1

3
.

(a) Montrer que la suite
(

ln(un)
)

n∈N∗ converge ; puis que (un)n∈N∗ converge vers une limite stricte-
ment positive.

Classique : la série
∑

ln

(
un+1

un

)
est téléscopique.

Pour N Ê 1 on écrit :

N∑
n=1

ln

(
un+1

un

)
=

N∑
n=1

(
ln(un+1)− ln(un)

)= ln(uN)− ln(u1)

Cette somme ayant une limite finie pour N →+∞ on peut conclure que la suite
(

ln(un)
)

n∈N∗ con-
verge vers ℓ ∈R.
Dès lors, un = exp(ln(un)) → eℓ > 0.

(b) On note K = lim
n→+∞un . Déterminer un équivalent de Jn pour n →+∞.

On rappelle que α= 1

3
; donc un = n1/3Jn → K ̸= 0 ce qui donne aussi n1/3Jn ∼

n→+∞ K et donc

Jn ∼
n→+∞

K

n1/3

ce qui valide bien la conjecture effectuée plus haut.

Exercice 3

1. Montrer que, pour tout x ∈ ]0,+∞[, l’intégrale
∫ +∞

0

e−t

x + t
dt converge.

Pour x → 0 fixé, t 7→ e−xt

x + t
est continue sur R+.

Pour tout t Ê 1, x + t Ê t Ê 1 donc

0 É e−t

x + t
É e−t
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Comme
∫ +∞

1
e−t dt converge, par comparaison de fonctions positives :

∫ +∞

0

e−t

x + t
dt converge.

On note f :]0+∞[→R l’application définie, pour tout x ∈]0,+∞[, par : f (x) =
∫ +∞

0

e−t

x + t
dt .

2. (a) Montrer : ∀x ∈]0,+∞[, f (x) Ê
∫ 1

0

e−1

x + t
dt .

Comme on intègre une fonction positive, f (x) =
∫ +∞

0

e−t

x + t
dt Ê

∫ 1

0

e−t

x + t
dt .

De plus, 0 É t É 1 ⇒ e−t Ê e−1 ; donc

∀ t ∈ [0,1],
e−t

x + t
Ê e−1

x + t

et en intégrant sur [0,1] :

f (x) Ê
∫ 1

0

e−t

x + t
dt Ê

∫ 1

0

e−1

x + t
dt

(b) En déduire : f (x)
x→0+−−−−→+∞.

On calcule cette dernière intégrale :∫ 1

0

e−1

x + t
d t = e−1

∫ 1

0

1

x + t
dt = e−1

∫ 1

0

1

x + t
dt = e−1 [ln(x + t )]1

0 = e−1( ln(x +1)− ln(x)
)

Donc f (x) Ê e−1
(

ln(x +1)− ln(x)
)
. Or lim

x→0+
e−1( ln(x +1)− ln(x)︸ ︷︷ ︸

→−∞

)=+∞ ; et donc par minoration

lim
x→0+

f (x) =+∞

3. (a) Montrer : ∀x ∈]0,+∞[, 0 < f (x) É 1

x
. En déduire : f (x)

x→+∞−−−−−→ 0.

f étant l’intégrale sur R+ d’une fonction positive, continue, non nulle, elle est > 0.
Ensuite on majore, comme d’habitude, la fonction dans l’intégrale.
Pour tout t Ê 0, x + t Ê q ; et en passant à l’inverse (strictement décroissante sur R∗+) puis en multi-
pliant par e−t > 0, on trouve :

∀ t Ê 0,
e−t

x + t
É e−t

x

On intègre sur R+ (les intégrales convergent, vu avec les comparaisons plus haut) :∫ +∞

0

e−t

x + t
dt É 1

x

∫ +∞

0
e−t dt

Or
∫ +∞

0
e−t dt = 1 (calcul direct avec une borne A →+∞, ou intégrale de la densité usuelle de E (1))

; ce qui donne le résultat.

(b) Montrer que l’intégrale
∫ +∞

0
te−t dt converge et que :

∀x ∈]0,+∞[, 0 É 1

x
− f (x) =

∫ +∞

0

te−t

x(x + t )
dt É 1

x2 .

Pour la convergence on effectue un test de Riemann, ou on invoque l’existence de l’espérance d’une
variable X ,→ E (1).
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Ensuite on met
1

x
− f (x) sous une forme utilisable : l’idée est ici de reprendre la forme sous laquelle

il est apparu. On a donc

1

x
− f (x) =

∫ +∞

0

e−t

x
dt −

∫ +∞

0

e−t

x + t
dt

=
∫ +∞

0
e−t

(
1

x
− 1

x + t

)
dt

=
∫ +∞

0

te−t

x(x + t )
dt

La fonction à intégrer est positive donc
1

x
− f (x) Ê 0 ; pour l’autre inégalité on majore encore.

Pour t Ê 0, x(x + t ) Ê x2 et donc ∫ +∞

0

te−t

x(x + t )
dt É 1

x2

∫ +∞

0
te−t dt

(on peut se permettre d’aller un peu plus vite, ce sont les mêmes techniques et arguments que la
question précédente !).

Il ne reste plus qu’à calculer
∫ +∞

0 te−t dt . Pour A Ê 0, et avec une IPP, et une croissance comparée
pour la limite :∫ A

0
te−t dt = [−te−t ]A

0 +
∫ A

0
e−t dt =−Ae−A − [

e−t ]A
0 =−Ae−A −e−A +1 → 1

Donc
∫ +∞

0 te−t dt = 1 et on a bien l’inégalité demandée.

(c) En déduire : f (x) ∼
x→+∞

1

x
.

On étudie le quotient
f (x)

1/x
= x f (x). En reprenant l’encadrement précédent et en multipliant par

x > 0 :

0 É 1−x f (x) =É 1

x

Pour x →+∞,
1

x
→ 0 ; donc par gendarmes 1−x f (x) → 0 et enfin

lim
x→+∞x f (x) = 1

ce qui donne bien l’équivalent demandé.

4. (a) Montrer : ∀x > 0, f (x) = ex
∫ +∞

x

e−u

u
du.

On effectue le changement de variable u = x+ t (affine, on peut même le faire sur l’intégrale impro-
pre).
On a alors t = u −x et dt = du ; et

∫ +∞
0 (...)dt devient

∫ +∞
x (...)du.

Il vient

f (x) =
∫ +∞

0

e−t

x + t
dt =

∫ +∞

x

e−(u−x)

u
du

=
∫ +∞

x
ex e−u

u
du

= ex
∫ +∞

x

e−u

u
du

(b) Montrer que la fonction R : x 7→
∫ +∞

x

e−u

u
du est C 1 sur R∗+, et donner l’expression de R′(x) sur cet

intervalle.
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Reste intégral !!
On cherche à appliquer le TFA mais il faut pour cela une intégrale sur un segment : donc on dé-
coupe.

∀x > 0, R(x) =
∫ +∞

x

e−u

u
du =

∫ +∞

1

e−u

u
du︸ ︷︷ ︸

=I

−
∫ x

1

e−u

u
du

I est une constante ; la fonction x 7→
∫ x

1

e−u

u
du est C 1 pr TFA (la fonction à intégrer étant continue)

; et de dérivée x 7→ e−x

x
.

On conclut que :

∀x > 0, R′(x) =−e−x

x

(c) En déduire que f est une solution sur R∗+ de l’équation différentielle

(E) : y ′− y =− 1

x

f : x 7→ ex R(x) est donc C 1 ; il suffit alors de dériver un produit.

∀x > 0, f ′(x) = ex R(x)+ex R′(x) = f (x)+ex
(
−e−x

x

)
= f (x)− 1

x

ce qui montre que f est solution de y ′− y =− 1

x
.

5. On montre ici le résultat suivant : f est la seule solution de (E) de limite nulle en +∞.

(a) Donner les solutions de l’équation (E0) : y ′− y = 0.

Cours : ce sont les fonctions de la forme t 7→ Ke t , où K ∈R.

(b) La méthode de la variation de la constante consiste à chercher une solution particulière de (E) en
faisant « varier la constante » de la question précédente : on pose yp : x 7→ K(x)ex .

Montrer que yp est solution de (E) si et seulement si : ∀x > 0, K′(x) =−e−x

x
.

Soit yp de la forme donnée. On a

yp solution de (E) ⇔∀x > 0, y ′
p (x)− yp (x) =− 1

x

⇔∀x > 0, K′(x)ex +K(x)ex −K(x)ex =− 1

x

⇔∀x > 0, K′(x)ex =− 1

x

⇔∀x > 0, K′(x) =−e−x

x

(c) En déduire que les solutions de (E) sont les fonctions de la forme :

x 7→
(
K−

∫ x

1

e−t

t
dt

)
ex

où K est un nombre réel quelconque.

On a besoin d’UNE solution particulière : K0 : x 7→
∫ x

1

(
−e−t

t

)
dt convient.

On sait ensuite que les solutions de (E) sont les fonctions de la forme yH + yP où yp est ci-dessus et
yH parcourt les solutions de l’équation homogène (E0).

On trouve alors les fonctions de la forme

x 7→ Kex +K0(x)ex =
(
K−

∫ x

1

e−t

t
dt

)
ex

où K décrit R.
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(d) Montrer que f est la seule solution de (E) de limite nulle en +∞.

Par convergence de l’intégrale,

lim
x→+∞

(
K−

∫ x

1

e−t

t
dt

)
= K−

∫ +∞

1

e−t

t
dt

Si K ̸=
∫ +∞

1

e−t

t
dt , la parenthèse dans l’expression générale tend vers une limite réelle non nulle, et

donc en multipliant par ex on tombe sur

lim
x→+∞

(
K−

∫ x

1

e−t

t
dt

)
︸ ︷︷ ︸

→α ̸=0

ex =±∞ (suivant le signe de α)

La seule solution qui ne tend pas vers l’infini s’obtient donc pour K =
∫ +∞

1

e−t

t
dt : c’est la fonction

x 7→
(
K−

∫ x

1

e−t

t
dt

)
ex =

(∫ +∞

1

e−t

t
dt −

∫ x

1

e−t

t
dt

)
ex =

(∫ +∞

x

e−t

t
dt

)
ex

et on reconnaît bien f !!
MAIS ATTENTION : l’étude précédente ne nous dit pas que cette solution est de limite nulle !
Mais on a montré en 3a que c’était bel et bien le cas ; ce qui permet de conclure.

Exercice 4

On lance indéfiniment une pièce donnant « Pile » avec la probabilité p et « Face » avec la probabilité q = 1−p.
On suppose que p ∈]0,1[ et on admet que les lancers sont mutuellement indépendants.
Pour tout entier naturel k, supérieur ou égal à 2 , on dit que le kème lancer est un changement s’il amène un
résultat différent de celui du (k −1)ème lancer.
On note Pk (resp. Fk ) l’événement : « on obtient Pile (resp. Face) au kème lancer » .
Pour ne pas surcharger l’écriture on écrira, par exemple, P1F2 à la place de P1 ∩F2.
Pour tout entier naturel n supérieur ou égal à 2 , on note Xn la variable aléatoire égale au nombre de change-
ments survenus durant les n premiers lancers.
Par exemple, si n = 7 et qu’on obtient la succession de tirages Pile,Pile,Face,Face,Pile,Face,Pile :

• les lancers 3,5,6,7 sont des changements ;

• on obtient X7 = 4.

Partie 1 : Python.

1. On suppose le package numpy.random importé avec l’alias rd.
Justifier que la commande rd.binomial(1,p,n) renvoie une liste de n nombres aléatoires indépen-
dants, valant 0 avec probabilité 1−p et 1 avec probabilité p.

Cette commande renvoie n tirages indépendants d’une variable suivant la loi binomiale B(1, p) ; qui
n’est autre que la loi de Bernoulli B(p).
On obtient bien la description demandée.

2. Compléter la fonction suivante qui renvoie un tirage de la variable Xn décrite plus haut.

La commande rd.binomial(1,p,n) modélise les n lancers ; que l’on considère que 1 vaut Pile et 0 vaut
Face, ou le contraire, le problème est le même : il faut compter le nombre de composantes de la liste L
différentes de celle qui les précèdent.
On écrit par exemple :

def changements (n,p):
c = 0 # init compteur
L = rd. binomial (1,p,n)
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for k in range (1,n): # on ne teste pas le 1er lancer !
if L[k]!=L[k -1] : # lancer différent du précédent

c = c+1
return c

3. Utiliser cette fonction pour écrire un code qui permet d’obtenir une approximation de E(X10) dans le

cas p = 3

5
.

Comme d’habitude il faut faire un grand nombre de tirages de la variable dont on souhaite approximer
l’espérance, et renvoyer la valeur moyenne. On peut proposer :

def esperance ():
s = 0
for k in range (10000):

s = s + changements (10 ,3/5)
return s /10000

Partie 2 : étude de quelques exemples.

4. Donner la loi de X2.

En 2 lancers on n’aura que 0 ou 1 changement : X2(Ω) = {0,1}
On a 0 changement si les lancers donnent P1P2 ou F1F2. Par incompatibilité de ces deux issues, et in-
dépendance des lancers successifs, on a

P(X2 = 0) =P(P1)P(P2)+P(F1)P(F2) = p2 +q2

On a 1 changement si on obtient P1F2 ou F1P2. De même :

P(X2 = 1) = pq +qp = 2pq

NB : on vérifie que P(X2 = 0)+P(X2 = 1) = p2 +q2 +2pq = (p +q)2 = 1 : c’est rassurant.

5. (a) Donner la loi de X3.

Cette fois X3(Ω) = {0,1,2}.

P(X3 = 0) =P(P1P2P3)+P(F1F2F3) = p3 +q3

P(X3 = 2) =P(F1P2F3)+P(P1F2P3) = q2p +p2q = pq(q +p︸ ︷︷ ︸
=1

) = pq

P(X3 = 1) =P(P1P2F3)+P(P1F2F3)+P(F1F2P3)+P(F1P2P3) = p2q+pq2+q2p+qp2 = pq(p+q+q+p) = 2pq

(b) Vérifier que E (X3) = 4pq et que V (X3) = 2pq(3−8pq).

Avec la formule E(X) = ∑
k∈X(Ω)

kP(X = k) :

E(X3) =P(X3 = 1)+2P(X3 = 2) = 2pq +2×pq = 4pq

et avec le théorème de transfert, E(X2) = ∑
k∈X(Ω)

k2P(X = k) :

E(X 2
3 ) =P(X3 = 1)+4P(X3 = 2) = 2pq +4×pq = 6pq

et par Konig-Huygens : V(X3) = E(X 2
3 )− (E(X3))2 = 6pq −16p2q2 = 2pq(3−8pq).

NB : toutes ces quantités existent bien, car X3 ne prend qu’un nombre fini de valeurs.
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Partie 3 : étude du cas p ̸= q.

Dans cette partie, n désigne un entier naturel supérieur ou égal à 2 .

6. Déterminer Xn(Ω).

Durant n lancers, il ne peut intervenir aucun changement ; ou chaque lancer peut donner un change-
ment (sauf le 1er bien sûr !).
On voit ainsi que Xn(Ω) = �1,n −1�.

7. Exprimer P (Xn = 0) en fonction de p, q et n.
Xn = 0 (aucun changement) a lieu pour les 2 successions P1P2 . . .Pn et F1F2 . . .Fn . Par indépendance des
lancers successifs, et incompatibilité de ces deux issues :

P(Xn = 0) =P(P1P2 . . .Pn)+P(F1F2 . . .Fn) = pn +qn

8. En décomposant l’événement (Xn = 1) en une réunion d’événements incompatibles, montrer que

P (Xn = 1) = 2pq

q −p

(
qn−1 −pn−1)

On s’intéresse donc aux successions de n lancers où il n’y a qu’un changement : celui-ci peut survenir au
lancer 2,3,... n. De plus on peut changer de pile vers Face, ou de Face vers Pile.

On obtient donc les possibilités

P1F2F3 . . .Fn P1P2F3 . . .Fn . . . P1P2P3 . . .Pn−1Fn

et
F1P2P3 . . .Pn F1F2P3 . . .Pn . . . F1F2F3 . . .Fn−1Pn

Pour la première ligne, les probabilités respectives sont

pqn−1 p2qn−2 . . . pn−1q

et on a à les sommer :

n−1∑
k=1

pk qn−k = qn
n∑

k=1

(
p

q

)k

= qn p

q

1−
(

p
q

)n−1

1−
(

p
q

) = pq
qn−1

(
1−

(
p
q

)n−1
)

q
(
1− p

q

) = pq
qn−1 −pn−1

q −p

où on a utilisé la formule pour une somme géométrique FINIE de raison p
q ̸= 1 (p ̸= q d’après l’énoncé).

Pour la seconde ligne, on remarque qu’il suffit d’échanger les rôles des Pile et des Face, donc de changer
p et q et q en p : on trouve alors la probabilité

qp
pn−1 −qn−1

p −q
= pq

qn−1 −pn−1

q −p

La probabilité demandée s’obtient en additionnant les résultats des deux lignes, qui sont identiques :

P(Xn = 1) = 2pq
qn−1 −pn−1

q −p

9. En distinguant les cas n pair et n impair, exprimer P (Xn = n −1) en fonction de p et q.
On a (Xn = n −1) ssi il y a un changement à chaque lancer (dès le 2ème).
Si n pair (on note n = 2k) on obtient donc :

(Xn = n −1) = (P1F2)(P3F4) . . . (P2k−1F2k )∪ (F1P2)(F3P4) . . . (F2k−1P2k )

et par indépendance des lancers et incompatibilité :

P(Xn = n −1) = 2(pq)k = 2(pq)n/2
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Si n impair (on note n = 2k +1) on obtient cette fois :

(Xn = n −1) = (P1F2)(P3F4) . . . (P2k−1F2k )P2k+1 ∪ (F1P2)(F3P4) . . . (F2k−1P2k )F2k+1

et par indépendance des lancers et incompatibilité :

P(Xn = n −1) = (pq)k p + (pq)k q = (pq)k (p +q) = (pq)k = (pq)
n−1

2

10. Pour tout entier naturel k, supérieur ou égal à 2 , on note Zk la variable aléatoire qui vaut 1 si le k i ème

lancer est un changement et 0 sinon (Zk est donc une variable de Bernoulli).
Écrire Xn à l’aide de certaines des variables Zk et en déduire E (Xn).

C’est classique : Xn compte le nombre de changements, donc est égal au nombre de Zk valant 1 (pour
2 É k É n). Les Zk valant 0 ou 1, il suffit donc de les sommer :

Xn =
n∑

k=2
Zk

On déduit de la linéarité de l’espérance : E(Xn) =
n∑

k=2
E(Zk ).

Pour conclure il faut la loi de Zk .
Zk (Ω) = {0,1} clairement.
Ensuite, on a Zk = 1 ssi le k-ième lancer est un changement, donc ssi on a Pk−1Fk ou Fk−1Pk . On en
déduit avec les mêmes arguments que précédemment :

P(Zk = 1) = 2pq

On a donc Zk ,→B(2pq) ; d’où E(Zk ) = 2pq et finalement :

E(Xn) =
n∑

k=2
E(Zk ) = 2(n −1)pq

Partie 4 : étude du cas p = q.

11. Vérifier, en utilisant les résultats de la partie 2, que X3 suit une loi binômiale.

On est donc ici dans le cas d’une pièce équilibrée : p = q = 1

2
.

D’après la partie 2 :

• X3(Ω) = {0,1,2}

• P(X3 = 0) = p3 +q3 = 1

8
+ 1

8
= 1

4

• P(X3 = 2) = pq = 1

4

• P(X3 = 1) = 2pq = 1

2
.

et on reconnaît X3 ,→B

(
2,

1

2

)
.

12. Soit k ∈ �0,n − 1�. Dénombrer les successions de n lancers de pièce présentant k changements. En

déduire que Xn ,→B

(
n −1,

1

2

)
.

On a déjà justifié que Xn(Ω) = �0,n −1�.
Ah, du dénombrement ! Que doit-on choisir pour construire une suite P/F comprenant k changements ?

• la position des k changements parmi les n − 1 derniers lancers (le premier ne pouvant être un

changement) :

(
n −1

k

)
choix.

• les valeurs des lancers : en fait il suffit de choisir le résultat du premier lancer, ensuite tout le reste
est fixé par la position des changements ! Donc 2 choix.
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Au total, il existe 2

(
n −1

k

)
successions de n lancers qui présentent k changements. Or il y a en tout 2n

successions de n lancers possibles.
Par équiproba (la pièce est équilibrée !) :

∀k ∈ �0,n −1�, P(Xn = k) = 2
(n−1

k

)
2n =

(
n −1

k

)(
1

2

)k (
1

2

)n−1−k

et on obtient bien Xn ,→B

(
n −1,

1

2

)
.
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