Corrigé du DS n°3

le 15/10/2025Durée: 2h

— L'usage de la calculatrice n'est pas autorisé.

- La clarté et la précision des raisonnements interviendront pour une grande part dans la notation.
- Le résultat d'une question peut être admis afin de traiter une question suivante.
- On encadrera le résultat de chaque question.

Exercice 1

D'après EDHEC 2013

1. (a) On montre l'encadrement par récurrence.

Pour n=0, c'est bien vérifié car $u_0=0$. Supposons maintenant l'encadrement vrai à un rang n quel
conque fixé. Montrons qu'il est alors vrai au rang n+1 :

Comme $0 \le u_n \le 1$, on a $0 \le u_n^2 \le 1$ (par croissance de la fonction carrée sur \mathbb{R}_+). Donc $1 \le u_n^2 + 1 \le 2$. Et donc, en divisant par $2 : \frac{1}{2} \le u_{n+1} \le 1$. Par conséquent, on a bien $0 \le u_{n+1} \le 1$, ce qui termine la récurrence.

Conclusion : Pour tout $n \in \mathbb{N}$, on a $0 \le u_n \le 1$.

(b) Pour tout $n \in \mathbb{N}$, on a:

$$u_{n+1} - u_n = \frac{u_n^2 + 1}{2} - u_n = \frac{u_n^2 + 1 - 2u_n}{2} = \frac{(u_n - 1)^2}{2}$$

Par conséquent, $u_{n+1} - u_n \ge 0$ pour tout $n \in \mathbb{N}$.

On en déduit que la suite (u_n) est croissante.

(c) La suite (u_n) est croissante (question précédente) et majorée par 1 (question 1.(a)). D'après le théorème de la limite monotone, on en déduit que la suite (u_n) converge

Appelons ℓ sa limite. Alors, en passant à la limite dans l'égalité $u_{n+1} = \frac{u_n^2 + 1}{2}$, on obtient $\ell=\frac{\ell^2+1}{2}$. Donc (en multipliant par 2) : $2\ell=\ell^2+1$, c'est-à-dire $\ell^2+1-2\ell=0$, ou encore : $(\ell - 1)^2 = 0$.

-1-

On en déduit que $\ell - 1 = 0$, i.e $\ell = 1$.

Conclusion: $\lim_{n \to +\infty} u_n = 1$.

2. (a) On calcule les termes successifs à l'aide d'une boucle for :

```
def suite_u(n):
    res=0
    for i in range(1,n+1):
       res=(1+res**2)/2
    return res
```

(b) On fait une boucle while : tant que les 2 conditions ne sont pas réunies, on continue à calculer des termes :

```
u=0
n=0
while 1-u > 10**(-3):
    u = (1+u**2)/2
    n = n+1

print(n)
```

- 3. (a) Ce graphique représente la suite des sommes partielles associée à la série de terme général v_n .
 - (b) Le graphique semble indiquer que la suite des sommes partielles tend vers $+\infty$; ce qui indiquerait que la série de terme général v_n est divergente.
- 4. (a) Pour tout $k \in \mathbb{N}$, on a :

$$v_k - v_{k+1} = (1 - u_k) - (1 - u_{k+1})$$

$$= u_{k+1} - u_k$$

$$= \frac{u_k^2 + 1}{2} - u_k$$

$$= \frac{u_k^2 + 1 - 2u_k}{2}$$

$$= \frac{(u_k - 1)^2}{2}$$

C'est-à-dire :
$$v_k - v_{k+1} = \frac{v_k^2}{2}$$
.

(b) Soit $n \in \mathbb{N}^*$. Alors:

$$\sum_{k=0}^{n-1} (v_k - v_{k+1}) = \sum_{k=0}^{n-1} v_k - \sum_{k=0}^{n-1} v_{k+1}$$

$$= \sum_{k=0}^{n-1} v_k - \sum_{k=1}^{n} v_j \quad \text{(changement d'indice : } j = k+1)$$

$$= v_0 + \sum_{k=1}^{n-1} v_k - \sum_{k=1}^{n-1} v_j - v_n \quad \text{(on sort des termes des sommes)}$$

Les sommes se simplifient. Il reste alors $\sum_{k=0}^{n-1} (v_k - v_{k+1}) = v_0 - v_n$. Or, $v_0 = 1 - u_0 = 1$.

Donc finalement:

$$\sum_{k=0}^{n-1} (v_k - v_{k+1}) = 1 - v_n$$

(c) Soit $N \in \mathbb{N}$. Alors:

$$\sum_{k=0}^{N} v_k^2 = 2 \sum_{k=0}^{N} (v_k - v_{k+1}) \quad \text{(question 3.(a))}$$
$$= 2(1 - v_{N+1}) \quad \text{(question précédente)}$$

Or,
$$v_{N+1} \underset{N \to +\infty}{\longrightarrow} 0$$
 (car $u_n \underset{N \to +\infty}{\longrightarrow} 1$ d'après la question 1.(c)). Donc $\sum_{k=0}^{N} v_k^2 \underset{N \to +\infty}{\longrightarrow} 2$.

Conclusion : La série de terme général v_n^2 converge et $\sum_{n=0}^{+\infty} v_n^2 = 2$.

Exercice 2:

1. On désigne par A (resp B)l'événement "le serveur A (resp B) est choisi". Le serveur A est choisi dans 70% des cas donc P(A) = 0.7. Le serveur B est choisi dans 30% des cas donc P(B) = 0.3

(a) On désigne par E l'événement :"il y a une erreur de transmission lors de l'envoi d'un courrier". On sait que $P_A(E) = 0.1$ et $P_B(E) = 0.05$. Par complémentarité des événements A et B :

$$P(E) = P(E \cap A) + P(E \cap B) = P_A(E) \times P(A) + P_B(E) \times P(B)$$

donc $P(E) = 0.1 \times 0.7 + 0.05 \times 0.3 = 0.085$

- (b) On veut calculer $P_E(A)$. Par la formule de Bayes, $P_E(A) = \frac{P_A(E) \times P(A)}{P(E)}$, donc $P_E(A) = \frac{0.1 \times 0.7}{0.085} = \frac{70}{85} = \frac{14}{17}$
- 2. (a) On recommence la même épreuve de Bernoulli de paramètre p = P(A) = 0.7, de façon indépendante, jusqu'à obtenir un 1er succès et T_1 compte le nombre de réalisations nécessaires donc T_1 suit la loi géométrique de paramètre p = 0.7.

On a donc $\forall k \geq 1$, $P(T_1 = k) = (0.3)^{k-1} \times 0.7$, son espérance mathématique $E(T_1) = \frac{1}{p} = \frac{10}{7}$ et sa variance $V(T_1) = \frac{1-p}{p^2} = \frac{30}{49}$

- (b) On a $T_2(\Omega) = \{n \in \mathbb{N}, n \geq 2\}.$
- (c) Remarquons que l'événement $\overline{A_i}$ correspond à : " le serveur B a été utilisé le i-ème jour ". Pour k > 2,

$$(T_1 = j) \cap (T_2 = k) = \overline{A_1} \cap \cdots \cap \overline{A_{j-1}} \cap A_j \cap \overline{A_{j+1}} \cap \cdots \cap \overline{A_{k-1}} \cap A_k ;$$

et donc, en utilisant l'indépendance des A_i , $i \geq 1$,

(d) On remarque que pour $k \geq 2$,

$$(T_2 = k) \subset (T_1 \le k - 1) = \bigcup_{i=1}^{k-1} (T_1 = i)$$
;

cette dernière union étant disjointe. On a donc

$$(T_2 = k) = (T_2 = k) \bigcap (T_1 \le k - 1) = \bigcup_{i=1}^{k-1} (T_1 = i) \cap (T_2 = k)$$
;

cette union étant disjointe et donc, en utilisant le résultat de la question précédente,

$$P(T_2 = k) = \sum_{i=1}^{k-1} P((T_1 = i) \cap (T_2 = k)) = (k-1)0, 7^2 \cdot 0, 3^{k-2}.$$

Remarque : on pouvait, comme cela a été fait en cours, utiliser la formule des probabilités totales, qui est une méthode plus générale.

(e) La série de terme général $k(k-1)0, 7^2$ $0, 3^{k-2}$ converge absolument car c'est une série dérivée (deux fois) de géométrique de raison strictement comprise entre -1 et 1. On a donc

$$E(T_2) = \sum_{k=2}^{+\infty} kP(T_2 = k) = 0, 7^2 \sum_{k=2}^{+\infty} k(k-1)0, 3^{k-2}$$

$$E(T_2) = 0,7^2 \frac{2}{(1-0,3)^3} = 0,7^2 \frac{2}{(0,7)^3} = \frac{2}{0,7}.$$

3. On recommence n fois la même épreuve de Bernoulli de paramètre p=P(A)=0.7, de façon indépendante et N_n compte le nombre de succès obtenus donc N_n suit la loi binomiale de taille n et paramètre p=0.7.

Ainsi $N_n(\Omega) = [[0, n]]$ et $\forall i \in N_n(\Omega), P(N = i) = \binom{n}{i} (0.7)^i (0.3)^{n-i}$.

De plus son espérance mathématique $E(N_n) = np = 0.7n$ et sa variance $V(N_n) = np(1-p) = 0.21n$.

- 4. On note toujours A_i l'événement " le serveur A a été utilisé le i-ème jour " et B_i l'événement " le serveur B a été utilisé le i-ème jour ".
 - (a) Fixons $k \in \mathbb{N}^*$; $(L_1 = k)$ signifie que pendant les k premiers jours, c'est le même serveur qui a été choisi et le jour suivant l'autre serveur. Donc

$$(L_1 = k) = (A_1 \cap \cdots \cap A_k \cap B_{k+1}) \cup (B_1 \cap \cdots \cap B_k \cap A_{k+1})$$
;

cette union étant disjointe. On a ainsi

$$P(L_1 = k) = P(A_1 \cap \cdots \cap A_k \cap B_{k+1}) + P(B_1 \cap \cdots \cap B_k \cap A_{k+1})$$
:

et en utilisant l'indépendance du choix des serveurs d'un jour à l'autre :

$$P(L_1 = k) = (0.3)^k (0.7) + (0.7)^k (0.3)$$

(b) Les séries de termes généraux $(0.3)^k (0.7)$ et $(0.7)^k (0.3)$ convergent car ce sont des séries géométriques de raisons strictement comprises entre -1 et 1; et on a :

$$\sum_{k=1}^{+\infty} P(L_1 = k) = 0, 7 \sum_{k=1}^{+\infty} 0, 3^k + 0, 3 \sum_{k=1}^{+\infty} 0, 7^k = 0, 7 \left(\frac{1}{1 - 0, 3} - 1 \right) + 0, 3 \left(\frac{1}{1 - 0, 7} - 1 \right)$$

$$\sum_{k=1}^{+\infty} P(L_1 = k) = 1 - 0, 7 + 1 - 0, 3 = 1.$$

Calculons maintenant l'espérance de L_1 .

Les séries de termes généraux $k(0.3)^k(0.7)$ et $k(0.7)^k(0.3)$ convergent absolument car ce sont des séries dérivées de géométriques de raisons strictement comprises entre -1 et 1; et on a :

$$\sum_{k=1}^{+\infty} kP(L_1 = k) = 0, 7 \sum_{k=1}^{+\infty} k \, 0, 3^k + 0, 3 \sum_{k=1}^{+\infty} k \, 0, 7^k = 0, 7 \times 0, 3 \sum_{k=1}^{+\infty} k \, 0, 3^{k-1} + 0, 3 \times 0, 7 \sum_{k=1}^{+\infty} k \, 0, 7^{k-1}$$

$$\sum_{k=1}^{+\infty} kP(L_1 = k) = 0, 7 \times 0, 3 \left(\frac{1}{(1-0,3)^2}\right) + 0, 3 \times 0, 7 \left(\frac{1}{(1-0,7)^2}\right)$$

$$E(L_1) = \sum_{k=1}^{+\infty} kP(L_1 = k) = \frac{0, 3}{0, 7} + \frac{0, 7}{0, 3} = \frac{3}{7} + \frac{7}{3} = \frac{58}{21}.$$

(c) Pour $k \geq 1$,

$$(L_1 = j) \cap (L_2 = k) = (A_1 \cap \cdots \cap A_j \cap B_{j+1} \cap \cdots \cap B_{j+k} \cap A_{j+k+1}) \dots \dots \bigcup (B_1 \cap \cdots \cap B_j \cap A_{j+1} \cap \cdots \cap A_{j+k} \cap B_{j+k+1})$$

donc, en utilisant le fait que l'union est disjointe et l'indépendance des requètes,

$$P((L_1 = j) \cap (L_2 = k)) = 0, 7^{j+1}, 0, 3^k + 0, 3^{j+1}, 0, 7^k$$

(d) Par la formule des probabilités totales appliquée avec le système complet $\{(L_1 = j), j \ge 1\}$,

$$P(L_2 = k) = \sum_{j=1}^{+\infty} P((L_1 = j) \cap (L_2 = k)) = \sum_{j=1}^{+\infty} \left((0.7)^{j+1} (0.3)^k + (0.3)^{j+1} (0.7)^k \right)$$

$$P(L_2 = k) = (0.3)^k (0.7) \sum_{j=1}^{+\infty} (0.7)^j + (0.7)^k (0.3) \sum_{j=1}^{+\infty} (0.3)^j$$

$$P(L_2 = k) = (0.3)^k (0.7) \left(\frac{1}{0,3} - 1 \right) + (0.7)^k (0.3) \left(\frac{1}{0,7} - 1 \right)$$

$$P(L_2 = k) = (0.3)^{k-1} (0.7)^2 + (0.7)^{k-1} (0.3)^2$$