ECG2 2025/2026

DS n°4 - Concours Blanc

le 05/11/2025 Durée : 4h

- L'usage de la calculatrice n'est pas autorisé.
- La clarté et la précision des raisonnements interviendront pour une grande part dans la notation.
- Le résultat d'une question peut être admis afin de traiter une question suivante.
- On encadrera le résultat de chaque question.

Exercice 1

Partie A

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

$$u_0 = 0, \quad u_1 = 1$$

et:

$$\forall n \in \mathbb{N}^*, u_{n+1} = 7u_n + 8u_{n-1} .$$

1. Recopier et compléter le script Python ci-dessous pour qu'il calcule u_n pour n entier naturel entré par l'utilisateur :

- 2. Montrer que la suite $(s_n)_{n\in\mathbb{N}}$ définie par $s_n=u_{n+1}+u_n$ est une suite géométrique de raison 8. En déduire l'expression de s_n en fonction de n.
- 3. On pose pour tout entier naturel n:

$$v_n = (-1)^n u_n \quad \text{ct} \quad t_n = v_n - v_{n+1}$$

- (a) Exprimer t_n en fonction de s_n pour tout entier naturel n
- (b) En déduire que pour tout $n \ge 0$, on a $t_n = (-8)^n$
- 4. Soit n un entier naturel non nul.
 - (a) Calculer la somme $\sum_{i=0}^{n-1} (-8)^i$
 - (b) Justifier que : $\sum_{i=0}^{n-1} (v_i v_{i+1}) = -v_n$.
 - (c) En déduire l'expression de v_n en fonction de n, puis vérifier que :

$$\forall n \in \mathbb{N}, u_n = \frac{(-1)^{n+1} + 8^n}{9}$$

- (d) Déterminer la limite de la suite $(u_n)_{n\in\mathbb{N}}$.
- (e) Écrire un programme Python qui détermine et affiche le premier entier n tel que $u_n \ge 10^6$.

ECG2 2025/2026

Partie B

On considère les matrices carrées d'ordre 3 suivantes :

$$M = \begin{pmatrix} 2 & 3 & 3 \\ 3 & 2 & 3 \\ 3 & 3 & 2 \end{pmatrix} \quad \text{et} \quad I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- 1. Calculer $M^2 7M 8I$.
- 2. En déduire que M est inversible et exprimer M^{-1} en fonction de M et de I.
- 3. (a) On pose : $a_0 = 0$ et $b_0 = 1$. Vérifier que : $M^0 = a_0 M + b_0 I$.
 - (b) Déterminer deux réels a_1 ct b_1 tels que : $M^1 = a_1 M + b_1 I$.
 - (c) Soit $n \in \mathbb{N}$. On suppose qu'il existe deux réels a_n et b_n tels que : $M^n = a_n M + b_n I$. Prouver alors que :

$$M^{n+1} = a_n(7M + 8I) + b_n M$$

En déduire deux réels a_{n+1} et b_{n+1} en fonction de a_n et b_n tels que $M^{n+1} = a_{n+1}M + b_{n+1}I$

(d) Montrer par récurrence que :

$$\forall n \in \mathbb{N}, a_n = u_n$$

où (u_n) est la suite définie dans la Partie A.

Exercice 2:

Une urne contient des boules blanches et des boules noires. La proportion de boules blanches est p et la proportion de boules noires est q.

Ainsi, on a : 0 , <math>0 < q < 1 et p + q = 1.

Partie I : Tirages avec arrêt dès qu'une boule noire a été obtenue

Dans cette partie, on effectue des tirages successifs avec remise et on s'arrête dès que l'on a obtenu une boule noire.

On note T la variable aléatoire égale au nombre de tirages effectués et U la variable aléatoire égale au nombre de boules blanches obtenues.

- 1. Reconnaître la loi de T. Pour tout entier $k \ge 1$, donner P(T = k) et rappeler l'espérance et la variance de T.
- 2. En déduire que U admet une espérance et une variance. Déterminer $E\left(U\right)$ et $V\left(U\right)$.

Partie II: Tirages avec arrêt dès qu'une boule blanche et une boule noire ont été obtenues

Dans cette partie, on effectue des tirages successifs avec remise et on s'arrête dès que l'on a obtenu au moins une boule blanche et au moins une boule noire.

On note X la variable aléatoire égale au nombre de tirages effectués.

On note Y la variable aléatoire égale au nombre de boules blanches obtenues.

On note Z la variable aléatoire égale au nombre de boules noires obtenues.

Ainsi, on peut remarquer que la probabilité de l'événement $(Y = 1) \cup (Z = 1)$ est égale à 1.

Pour tout entier naturel non nul i, on note :

 B_i l'événement "la i-ème boule tirée est blanche",

 N_i l'événement "la i-ème boule tirée est noire".

- 1. (a) Montrer, pour tout entier $k \ge 2$: $P(X = k) = q p^{k-1} + p q^{k-1}$.
 - (b) Vérifier : $\sum_{k=2}^{+\infty} P(X = k) = 1$.
 - (c) Montrer que la variable aléatoire X admet une espérance et que : $E\left(X\right)=\frac{1}{p}+\frac{1}{q}-1$.
- 2. On cherche à simuler cette expérience aléatoire.
 - (a) Compléter la fonction suivante afin qu'elle prenne en argument une valeur de p, simule l'expérience aléatoire et renvoie la valeur de X obtenue lors de cette simulation :

ECG2 2025/2026

(b) On effectue ensuite le programme suivant à partir de cette fonction :

```
p = 0.5
n = 10000
S = 0
for i in range(n):
    S = S + simul(p)

moy=S/n
print(moy)
```

Expliquer ce que permet d'obtenir ce programme.

La valeur affichée suite à l'exécution est 3,0034. Est-ce cohérent avec les résultats précédents?

- 3. (a) Pour tout entier $k \ge 2$, déterminer $P((X = k) \cap (Y = 1))$ (On distinguera les cas k = 2 et $k \ge 3$.)
 - (b) En déduire : P(Y = 1) = q(1 + p).
 - (c) Déterminer la loi de la variable aléatoire Y.

On admet que l'espérance de Y existe et que : $E(Y) = \frac{1}{a}(1-p+p^2)$.

- 4. Donner la loi de Z et son espérance.
- 5. Montrer que les variables aléatoires Y Z et X-1 sont égales.
- 6. Montrer que le couple (Y, Z) admet une covariance et exprimer cov (Y, Z) à l'aide de E(X), E(Y) et E(Z).

Exercice 3:

Partie A : Étude de la suite $(u_n)_{n\in\mathbb{N}}$

On s'intéresse à la suite récurrente $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et : $\forall n\in\mathbb{N}, \quad u_{n+1}=u_n$ e^{1/u_n}.

- 1. (a) Montrer que $u_n > 0$ pour tout $n \in \mathbb{N}$.
 - (b) Donner le sens de variation de la suite $(u_n)_{n\in\mathbb{N}}$.
 - (c) Démontrer, en raisonnant par l'absurde, que $(u_n)_{n\in\mathbb{N}}$ admet $+\infty$ comme limite.
- 2. Recopier et compléter le programme Python ci-dessous de sorte qu'il affiche le premier entier $n \in \mathbb{N}$ tel que $u_n \ge 10^6$.

```
import numpy as np
u = 1
n = 0
while ...:
    u = ...
    n = ...
print(...)
```

Partie B : Étude de la fonction f

On considère la fonction f définie sur $]0, +\infty[$ par :

$$\forall x > 0, \quad f(x) = x e^{1/x}.$$

On note C_f la courbe de f dans le plan muni d'un repère orthonormé.

- 3. Calculer les limites de f en $+\infty$ et en 0.
- 4. Dresser le tableau de variation de f sur $]0, +\infty[$.
- 5. Soit x > 0.
 - (a) Justifier la convergence de la série $\sum_{k\geq 0} \frac{x^{-k}}{k!}$ et calculer sa somme.
 - (b) En déduire que :

$$f(x) = x + 1 + \frac{1}{x} \sum_{k=2}^{+\infty} \frac{x^{2-k}}{k!}.$$

- 6. Soit $x \ge 1$.
 - (a) Établir séparément les inégalités suivantes :

$$\frac{1}{2} \le \sum_{k=2}^{+\infty} \frac{x^{2-k}}{k!} \le e.$$

(b) En déduire que :

$$(*)$$
 $\frac{1}{2x} \le f(x) - (x+1) \le \frac{e}{x}.$

- 7. Montrer que f(x) = x + 1 + o(1) au voisinage de $+\infty$.
- 8. Représenter sur un même dessin la courbe C_f et la droite d'équation y = x + 1.

Partie C : Comportement asymptotique de la suite $(u_n)_{n\in\mathbb{N}}$

- 9. (a) Montrer que, pour tout entier $k \in \mathbb{N}$, $\ln(u_{k+1}) \ln(u_k) = \frac{1}{u_k}$.
 - (b) En déduire que, pour tout entier $n \in \mathbb{N}^*$, $\ln(u_n) = \sum_{k=0}^{n-1} \frac{1}{u_k}$.
- 10. (a) À l'aide de l'encadrement (*) montrer que, pour tout $k \in \mathbb{N}$,

$$1 + \frac{1}{2u_k} \le u_{k+1} - u_k \le 1 + \frac{e}{u_k}.$$

(b) Soit $n \in \mathbb{N}^*$, établir :

$$n + \frac{1}{2} \sum_{k=0}^{n-1} \frac{1}{u_k} \le u_n - 1 \le n + e \sum_{k=0}^{n-1} \frac{1}{u_k},$$

puis

$$1 + \frac{1}{2}\ln(u_n) \le u_n - n \le 1 + e\ln(u_n).$$

- 11. (a) Justifier que : $\lim_{n \to +\infty} \frac{\ln(u_n)}{u_n} = 0.$
 - (b) En déduire un équivalent simple de u_n lorsque n tend vers $+\infty$.
- 12. Déterminer un équivalent simple de $\sum_{k=0}^{n-1} \frac{1}{u_k}$ lorsque n tend vers $+\infty$.