$\begin{array}{c} {
m le} \ 21/11/2025 \ {
m Dur\'ee} : 4{
m h} \end{array}$

- L'usage de la calculatrice n'est pas autorisé.
- La clarté et la précision des raisonnements interviendront pour une grande part dans la notation.
- Le résultat d'une question peut être admis afin de traiter une question suivante.
- On encadrera le résultat de chaque question.

Exercice 1

- 1. Soit F l'ensemble des matrices de $M_2(\mathbb{R})$ de la forme $\begin{pmatrix} a & b \\ -b & c \end{pmatrix}$ avec a, b et c des réels.
 - (a) Montrer que F est un sous-espace vectoriel de $M_2(\mathbb{R})$.
 - (b) Déterminer une base de F ainsi que sa dimension.
 - (c) Montrer que la famille $\left(\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ -1 & -1 \end{pmatrix}\right)$ est une famille libre d'éléments de F.
 - (d) La famille de la question précédente est-elle une famille génératrice d'éléments de F?
- 2. On considère une matrice A de $\mathcal{M}_3(\mathbb{R})$. On note alors $E = \{X \in \mathcal{M}_{3,1}(\mathbb{R}) \ / \ AX = 0_{3,1}\}$.
 - (a) Montrer que E est un sous-espace vectoriel de $\mathcal{M}_{3,1}(\mathbb{R})$.
 - (b) On suppose pour la suite que $A = \begin{pmatrix} 1 & -1 & 2 \\ 2 & -2 & 4 \\ 3 & -3 & 6 \end{pmatrix}$. Déterminer alors une base de E.
 - (c) Quelle est la dimension de E?
 - (d) Montrer que les vecteurs $\begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$ et $\begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$ forment une base de E.

Exercice 2

On note $\mathcal{M}_3(\mathbb{R})$ l'espace vectoriel réel des matrices carrées d'ordre trois à éléments réels, I_3 la matrice identité de $\mathcal{M}_3(\mathbb{R})$, 0_3 la matrice nulle de $\mathcal{M}_3(\mathbb{R})$.

On considère, pour toute matrice A de $\mathcal{M}_3(\mathbb{R})$, les ensembles $E_1(A)$ et $E_2(A)$ suivants :

$$E_1(A) = \{M \in \mathcal{M}_3(\mathbb{R}); AM = M\}$$

$$E_2(A) = \{M \in \mathcal{M}_3(\mathbb{R}); A^2M = AM\}$$

- 1. Montrer que $E_1(A)$ est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$ On admettra que $E_2(A)$ est aussi un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$
- 2. (a) Établir : $E_1(A) \subset E_2(A)$.
 - (b) Montrer que, si A est inversible, alors $E_1(A) = E_2(A)$
- 3. Établir que, si $A I_3$ est inversible, alors $E_1(A) = \{0_3\}$
- 4. Un exemple : Soit $B = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$. Déterminer $E_1(B)$ et $E_2(B)$. Préciser leur dimension.

-1-

5. Déterminer une matrice diagonale D telle que $E_1(D) \neq E_2(D)$.

ECG2 2025/2026

Exercice 3:

On considère deux variables aléatoires X et Y, indépendantes et suivant la même loi donnée par :

$$P(X = 0) = \frac{1}{4}, P(X = 1) = \frac{1}{4} \text{ et } P(X = 2) = \frac{1}{2}$$

On a donc également :

$$P(Y=0) = \frac{1}{4}, P(Y=1) = \frac{1}{4} \text{ er } P(Y=2) = \frac{1}{2}$$

On pose S = X + Y et T = XY et on admet que S et T sont des variables aléatoires.

- 1. (a) Déterminer l'ensemble des valeurs prises par S, puis déterminer la loi de S.
 - (b) En déduire que l'espérance de S est égale à $\frac{5}{2}$.
 - (c) Retrouver ce résultat en utilisant la relation qui définit S.
- 2. (a) Déterminer l'ensemble des valeurs prises par T.
 - (b) Vérifier que $P(T=0)=\frac{7}{16},$ puis déterminer la loi de T.
 - (c) En déduire que l'espérance de T est égale à $\frac{25}{16}$.
 - (d) Retrouver ce résultat en utilisant la relation qui définit T.
- 3. Déterminer la loi du couple (S,T) puis retrouver les lois de S et de T.
- 4. Les variables aléatoires S et T sont-elles indépendantes?
- 5. Vérifier que $E(ST) = \frac{45}{8}$, puis calculer Cov(S,T).

Exercice 4

On dispose d'une pièce de monnaie amenant Pile avec la probabilité $\frac{2}{3}$ et Face avec la probabilité $\frac{1}{3}$.

Partie I : Étude d'une première variable aléatoire

On effectue une succession de lancers avec cette pièce et on définit la variable aléatoire X prenant la valeur du nombre de Face obtenus avant l'obtention du deuxième Pile.

On note F_k l'événement « obtenir Face au k-ème lancer » et P_k l'événement « obtenir Pile au k-ème lancer » .

- 1. (a) Décrire les événements [X=0], [X=1], [X=2] puis calculer leurs probabilités.
 - (b) Montrer: $\forall n \in \mathbb{N}, P[X = n] = (n+1) \frac{4}{2n+2}$

Partie II : Étude d'une expérience en deux étapes

On effectue une succession de lancers avec la pièce précédente jusqu'à l'obtention du deuxième Pile; puis en fonction du nombre n de Face obtenus, on place n+1 boules dans une urne, les boules étant numérotées de 0 à n et indiscernables au toucher, et enfin on pioche au hasard une boule dans cette urne.

On note toujours X la variable aléatoire prenant la valeur du nombre de Face obtenus, et on note U la variable aléatoire prenant la valeur du numéro de la boule obtenue. On pose V = X - U.

- 1. (a) Déterminer l'ensemble des valeurs prises par la variable aléatoire U.
 - (b) Déterminer, pour tout n de \mathbb{N} , la loi conditionnelle de U sachant [X = n].
 - (c) En déduire, pour tout k de \mathbb{N} :

$$P[U=k] = \sum_{n=k}^{+\infty} \frac{1}{n+1} P[X=n]$$
 puis $P[U=k] = \frac{2}{3^{k+1}}$.

- (d) Montrer que U admet une espérance et une variance et les calculer.
- 2. (a) Déterminer l'ensemble des valeurs prises par la variable V.
 - (b) Déterminer, pour tout n de \mathbb{N} , la loi conditionnelle de V sachant [X = n].
 - (c) En déduire la loi de V.
- 3. Montrer que les variables aléatoires U et V sont indépendantes.
- 4. Que vaut cov(U, V)? En déduire cov(X, U).

ECG2 2025/2026

Partie III: Étude d'un jeu

Dans cette partie, p désigne un réel de]0;1[.

Deux individus A et B s'affrontent dans un jeu de Pile ou Face dont les règles sont les suivantes :

- le joueur A dispose d'une pièce amenant Pile avec la probabilité $\frac{2}{3}$ et lance cette pièce jusqu'à l'obtention du deuxième Pile; on note X la variable aléatoire prenant la valeur du nombre de Face alors obtenus;
- le joueur B dispose d'une autre pièce amenant Pile avec la probabilité p et lance cette pièce jusqu'à l'obtention d'un Pile; on note Y la variable aléatoire prenant la valeur du nombre de Face alors obtenus;
- Le joueur A gagne si son nombre de Face obtenus est inférieur ou égal à celui de B; sinon c'est le joueur B qui gagne.

On dit que le jeu est équilibré lorsque les joueurs A et B ont la même probabilité de gagner.

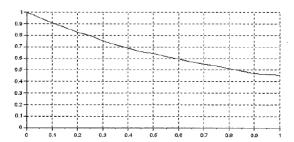
1. Simulation informatique

- (a) Écrire une fonction Python simule_X() qui simule la variable aléatoire X.

 On suppose le module numpy.random importé par la commande import numpy.random as rd.
- (b) On suppose que l'on dispose d'une fonction $simule_Y(p)$ qui, prenant en argument un réel p de]0;1[, simule la variable aléatoire Y. Expliquer ce que renvoie la fonction suivante :

```
mystere(p):
2.
        r = 0
3.
        N = 10**4
4.
        for k in range(1,N+1):
5.
            x = simule_X()
6.
               = simule_Y(p)
7.
                  <= y :
8.
                     r + 1
9.
        return r/N
```

(c) On trace, en fonction de p, une estimation de la probabilité que A gagne et on obtient le graphe suivant :



À la vue de ce graphe, conjecturer une valeur de p pour lequel le jeu serait équilibré.

2. Étude de la variable aléatoire Y

On note Z la variable aléatoire prenant la valeur du nombre de lancers effectués par le joueur B.

- (a) Reconnaître la loi de Z et préciser son(ses) paramètre(s), son espérance et sa variance.
- (b) Exprimer Y à l'aide de Z et en déduire l'existence de l'espérance et de la variance de Y et préciser leurs valeurs.
- (c) Montrer: $\forall n \in \mathbb{N}, \quad P[Y \ge n] = (1-p)^n$.
- 3. (a) Montrer : $P[X \le Y] = \sum_{n=0}^{+\infty} P[X = n] P[Y \le n]$.
 - (b) Déduire des résultats précédents : $P[X \le Y] = \frac{4}{(2+p)^2}$.
 - (c) Déterminer la valeur de p pour laquelle le jeu est équilibré.