
ECG2 2025/2026

DS no6
le 20/12/2025

Durée : 4h

— L’usage de la calculatrice n’est pas autorisé.
— La clarté et la précision des raisonnements interviendront pour une grande part dans la notation.
— Le résultat d’une question peut être admis afin de traiter une question suivante.
— On encadrera le résultat de chaque question.

Exercice 1 :

1. (a) SELECT Prix FROM Produits WHERE Nom = ’Emeraude’

(b) SELECT COUNT(*) FROM Produits

(c) SELECT AVG(Prix) FROM Produits

(d) SELECT Prod.Nom
FROM Produits AS Prod INNER JOIN Commandes AS Com

ON Prod.Cle = Com.Bijou
WHERE Date = 20251215

(e) SELECT Prod.Nom
FROM Produits AS Prod INNER JOIN Commandes AS Com INNER JOIN Clients AS Cl

ON Prod.Cle = Com.Bijou AND Com.Client = Cl.Cle
WHERE RaisonSociale = ’Gautheron’

2. (a) Cette commande insère dans la table Produits un nouveau bijou appelé ’Bague Saphir’, coûtant
245.90 euros, avec la clef 200.

(b) Cette commande efface toutes les commandes antérieures au premier janvier 2022.

(c) Cette commande met à jour la table Produit en baissant de 5% les prix des bijoux dont le prix
était supérieur à 1000 euros.
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Exercice 2

Éléments propres d’une matrice

Soit f l’endomorphisme de R3 dont A est la matrice dans la base canonique.

1.

(A− 2I3)(A− I3)
2 =

 0 −1 1
0 −1 1
−1 1 −1

 1 −1 1
0 0 1
−1 1 0

 1 −1 1
0 0 1
−1 1 0


=

 0 −1 1
0 −1 1
−1 1 −1

 0 0 0
−1 1 0
−1 1 0


=

0 0 0
0 0 0
0 0 0


2. On déduit de la question précédente que le polynôme (X−2)(X−1)2 est un polynôme annulateur

de A.
Les racines de ce polynôme sont 1 et 2.
Les valeurs propres possibles de A sont donc 1 et 2 : sp(A) ⊂ {1, 2}.

3. La matrice A est inversible car 0 n’est pas valeur propre.

4. — Valeur propre 1
On résout (A− I3)X = 0.
Après calcul, 1 est bien valeur propre et E1(f) = vect((1, 1, 0)).
Ce vecteur constitue bien une base de E1(f) car il forme une famille libre (un seul vecteur,
non nul).

— Valeur propre 2
On résout (A− 2I3)X = 0.
Après calcul, 2 est bien valeur propre E2(f) = vect((0, 1, 1)).
Ce vecteur constitue bien une base de E1(f) car il forme une famille libre (un seul vecteur,
non nul).

5. La matrice A n’est pas diagonalisable car la somme des dimensions des sous-espaces propres de f
est 2 et la dimension de R3 est 3.

Trigonalisation de A

6. Soit (λ1, λ2, λ3) ∈ R3 tel que λ1 b1 + λ2 b2 + λ3 b3 = (0, 0, 0).
On obtient un système de Cramer. On en déduit que λ1 = λ2 = λ3 = 0.
Conclusion : B = (b1, b2, b3) est une famille libre à trois éléments dans R3 et donc une base de R3.

7. On a vu dans la première partie que f(b1) = 2b1 ; f(b2) = b2.
On calcule :

A

0
0
1

 =

1
1
1

 ;

donc f(b3) = (1, 1, 1) = (1, 1, 0) + (0, 0, 1) = b2 + b3.

On en déduit la matrice de f dans la base B : T =

2 0 0
0 1 1
0 0 1

.
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8. On a P =

0 1 0
1 1 0
1 0 1

.

On calcule :

P

−1 1 0
1 0 0
1 −1 1

 =

1 0 0
0 1 0
0 0 1

 = I3 ;

et donc P−1 =

−1 1 0
1 0 0
1 −1 1

.

9. D’une part T est la matrice de f dans la base B.
D’autre part, d’après la formule du changement de base, la matrice de f dans la base B s’écrit
P−1AP .
Conclusion : T = P−1AP .

Calcul des puissances de T et expression de un, vn, wn

10. On a D = T −N =

2 0 0
0 1 0
0 0 1

 .

DN =

0 0 0
0 0 1
0 0 0

 et ND =

0 0 0
0 0 1
0 0 0

.

Donc N et D commutent.

11. On a N2 =

0 0 0
0 0 0
0 0 0

.

Pour un entier n ≥ 2, Nn = N2Nn−2 = 03N
n−2 = 03.

12. Comme N et D commutent, on peut appliquer la formule du binôme de Newton :

Tn = (N +D)n =

n∑
k=0

(
n

k

)
NkDn−k .

En utilisant le résultat de la question précédente :

Tn = Dn + n N Dn−1 =

2n 0 0
0 1 0
0 0 1

+ n

0 0 0
0 0 1
0 0 0

2n−1 0 0
0 1 0
0 0 1

 =

2n 0 0
0 1 n
0 0 1


13. Pour n ∈ N,

AXn =

 2 −1 1
0 1 1
−1 1 1

 un
vn
wn

 =

2un − vn + wn

vn + wn

−un + vn + wn

 =

un+1

vn+1

n+1

 = Xn+1 .

14. On en déduit, par une récurrence évidente, que pour n ∈ N, Xn = AnX0.
15. On a vu que A = PTP−1.

Montrons par récurrence, que, pour n ∈ N, An = PTnP−1. Initialisation : Pour n = 0, A0 = I3 et
PT 0P−1 = PI3P

−1 = I3.
Donc la propriété est vraie pour n = 0.
Supposons que pour un entier n on ait An = PTnP−1.
On a alors

An+1 = AAn ;
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ce qui donne, en utilisant l’hypothèse de récurrence et A = PTP−1 :

An+1 = A = PTP−1PTnP−1 = PTn+1P−1

En application du principe de récurrence on en conclut que pour tout entier n on a An = PTnP−1.

16. Soit n ∈ N. En utilisant ce qui précède,

Xn = PTnP−1X0

=

0 1 0
1 1 0
1 0 1

2n 0 0
0 1 n
0 0 1

−1 1 0
1 0 0
1 −1 1

1
0
0


=

0 1 0
1 1 0
1 0 1

2n 0 0
0 1 n
0 0 1

−11
1


=

0 1 0
1 1 0
1 0 1

 −2nn+ 1
1


=

 n+ 1
−2n + n+ 1
−2n + 1


Ainsi un = n+ 1, vn = −2n + n+ 1, wn = −2n + 1.
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Exercice 3 :

1. Diagonalisation de la matrice A

(a)

(A− I)(A− 2I)(A− 3I) =

 3 −3 −2
2 −2 −2
−1 1 2

  2 −3 −2
2 −3 −2
−1 1 1

  1 −3 −2
2 −4 −2
−1 1 0


=

 3 −3 −2
2 −2 −2
−1 1 2

  −2 4 2
−2 4 2
0 0 0


=

0 0 0
0 0 0
0 0 0


On en déduit que le polynôme (X − 1)(X − 2)(X − 3) est un polynôme annulateur de A. Les
racines de ce polynôme sont 1, 2 et 3.
Conclusion : les valeurs propres possibles de la matrice A sont 1, 2 et 3.

(b) On résout, pour λ ∈ {1, 2, 3}, l’équation (A− λI)X = 03,1.
Remarque : on résout l’équation sous forme matricielle et on reviendra à f , comme demandé
dans l’énoncé, en conclusion.
— E1.

(A− I)

x
y
z

 =

0
0
0

 ⇐⇒


3x− 3y − 2z = 0
2x− 2y − 2z = 0
−x+ y + 2z = 0

⇐⇒


3x− 3y − 2z = 0

−2z = 0 L2 ← 3L2 − 2L1

4z = 0 L3 ← 3L3 + L1

⇐⇒
{

x = y
z = 0

Donc 1 est bien valeur propre de A (et donc de f) et le sous espace propre de f associé à
la valeur propre 1 est : E1(f) = V ect ((1, 1, 0)) .
De plus la famille constituée par le vecteur (1, 1, 0) est libre (un seul vecteur non nul) et
donc est une base de E1(f).

— E2.

(A− 2I)

x
y
z

 =

0
0
0

 ⇐⇒


2x− 3y − 2z = 0
2x− 3y − 2z = 0
−x+ y + z = 0

⇐⇒


2x− 3y − 2z = 0

0 = 0 L2 ← L2 − L1

−y = 0 L3 ← 2L3 + L1

⇐⇒
{

x = z
y = 0

Donc 2 est bien valeur propre de A (et donc de f) et le sous espace propre de f associé à
la valeur propre 2 est : E2(f) = V ect ((1, 0, 1)) .
De plus la famille constituée par le vecteur (1, 0, 1) est libre (un seul vecteur non nul) et
donc est une base de E2(f).
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— E3.

(A− 3I)

x
y
z

 =

0
0
0

 ⇐⇒


x− 3y − 2z = 0

2x− 4y − 2z = 0
−x+ y = 0

⇐⇒


x− 3y − 2z = 0

2y + 2z = 0 L2 ← L2 − 2L1

−2y − 2z = 0 L3 ← L3 + L1

⇐⇒
{

x = 3(−z) + 2z = −z
y = −z

Donc 3 est bien valeur propre de A (et donc de f) et le sous espace propre de f associé à
la valeur propre 3 est : E3(f) = V ect ((−1,−1, 1)) .
De plus la famille constituée par le vecteur (−1,−1, 1) est libre (un seul vecteur non nul)
et donc est une base de E3(f).

(c) L’endomorphisme f a trois valeurs propres distinctes et R3 est de dimension 3. Donc f est
diagonalisable.

(d) Dans la base ((1, 1, 0), (1, 0, 1), (1, 1,−1)), d’après les résultats de la question b), l’endomor-
phisme f a pour matrice :

D =

1 0 0
0 2 0
0 0 3


Remarque : comme l’énoncé spécifiait que la matrice P devait avoir (1 1 1) comme première
ligne, on a utilisé le fait que E3(f) = V ect ((−1,−1, 1)) = V ect ((1, 1,−1)).
En notant P la matrice de passage de la base canonique à cette nouvelle base, on a :

P =

1 1 1
1 0 1
0 1 −1

 ;

et, d’après la formule de changement de base, D = P−1AP ; et donc A = PDP−1.
2. Ensembles des matrices qui commutent avec A

(a) — On a A03 = 03 = 03A ; donc 03 ∈ CA.
— Soit M1, M2 dans CA et λ1, λ2 deux réels.

Alors
A(λ1M1 + λ2M2) = λ1AM1 + λ2AM2 .

Or M1 et M2 sont dans CA ; donc

A(λ1M1 + λ2M2) = λ1M1A+ λ2M2A = (λ1M1 + λ2M2)A .

Conclusion : λ1M1 + λ2M2 ∈ CA
On en conclut que CA est un sous espace vectoriel deM3.

(b) On a, pour M ∈M3(R),

AM = MA⇔ PDP−1M = MPDP−1 ⇔ P−1PDP−1MP = P−1MPDP−1P ;

et donc
AM = MA⇔ DP−1MP = P−1MPD .

Autrement dit : M commute avec A si et seulement si P−1MP commute avec D.
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(c) On a

D

 a b c
d e f
g h i

 =

 a b c
2d 2e 2f
3g 3h 3i

 ,

et  a b c
d e f
g h i

D =

 a 2b 3c
d 2e 3f
g 2h 3i

 .

Et donc D

 a b c
d e f
g h i

 =

 a b c
d e f
g h i

D ssi et seulement si

a = a b = 2b c = 3c

2d = d 2e = 2e 2f = 3f

g = 3g 2h = 3h 3i = 3i ;

c’est à dire si et seulement si ,
b = 0 c = 0

d = 0 f = 0

g = 0 h = 0 .

Les matrices qui commutent avec D sont donc les matrices diagonales.

(d) On déduit de la question (b) qu’une matrice M commute avec A ssi P−1MP commute avec
D. Puison déduit de la question précédente que M commute avec A ssi P−1MP est diagonale ;
c’est à dire s’il existe une matrice diagonale ∆ telle que P−1MP = ∆, c’est à dire M = P∆P−1.
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Exercice 4

1. Si f, endomorphisme de R3 est diagonalisable, sa matrice est diagonale D dans une base de vecteurs
propres.
La matrice de f ◦ f étant D2, elle est encore diagonale.

Conclusion : si f est diagonalisable alors f2 l’est aussi.
N.B. On pouvait aussi passer par :
il existe une base de vecteurs propres (u, v, w) associés à des valeurs propres (α, β, γ)

On aura alors f ◦ f (u) = f (f (u)) = f (αu) = αf (u) = α2f (u) donc u est une vecteur propre de
f associé à la valeur propre α2 et de même pour v et w.

Et on a donc (u, v, w) est une base de vecteurs propres de f2

2. (a) On calcule

A2 =

0 2 −1
2 −5 4
3 −8 6

0 2 −1
2 −5 4
3 −8 6

 =

1 −2 2
2 −3 2
2 −2 1


Donc

A4 =
(
A2

)2
=

1 −2 2
2 −3 2
2 −2 1

1 −2 2
2 −3 2
2 −2 1

 =

1 0 0
0 1 0
0 0 1


Conclusion : A4 = I

Donc X4 − 1 est un polynôme annulateur de A.
Ainsi, si α est valeur propre de A alors α4 = 1.
On a alors α2 = ±1 ; ce qui donne α = ±1.
Conclusion : Les seules valeurs propres possibles de A sont 1 et −1

(b) (x, y, z) ∈ ker (g − Id)⇐⇒ (A− I)

 x
y
z

 = 0

⇐⇒


−x+ 2y − z = 0
2x− 6y + 4z = 0 L2 + 2L1

3x− 8y + 5z = 0 L3 + 3L1

⇐⇒


−x+ 2y − z = 0
−2y + 2z = 0
−2y + 2z = 0

⇐⇒
{

x = z
y = z

Donc ker (g − Id) = Vect ((1, 1, 1))
et avec u = (1, 1, 1) la famille (u) est génératrice de ker (g − Id) et libre, donc base de
ker (g − Id) .

(c) (x, y, z) ∈ ker (g + Id)⇐⇒ (A+ I)

 x
y
z

 = 0

⇐⇒


x+ 2y − z = 0

2x− 4y + 4z = 0 L2 − 2L1

3x− 8y + 7z = 0 L3 − 3L1

⇐⇒


x+ 2y − z = 0
−8y + 6z = 0
−14y + 10z = 0

⇐⇒


x+ 2y − z = 0

y = 3/4z
z = 0

⇐⇒ x = y = z = 0

Conclusion : ker (g + Id) = {0} et −1 n’est donc pas valeur propre de g.

(d) La somme des dimensions des sous espaces propres est donc 1 ̸= 3

Conclusion : g n’est pas diagonalisable
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3. (a) Avec X =

 x
y
z


on a A2X = −X ⇐⇒

(
A2 + I

)
X = 0

⇐⇒


2x− 2y + 2z = 0
2x− 2y + 2z

2x− 2y + 2z = 0
= 0 ⇐⇒ x = y − z

donc ker
(
g2 + Id

)
= Vect ((1, 1, 0) , (−1, 0, 1)) famille génératrice et libre (2 vecteurs non pro-

portionnels) donc une base de ker
(
g2 + Id

)
Conclusion : avec v = (1, 1, 0) et w = (−1, 0, 1)

(b) On avait u = (1, 1, 1) .

On montre que la famille (u, v, w) est libre :
Soient x, y, z réels.

Si xu+ yv + zw = 0 alors


x+ y − z = 0
x+ y = 0
x+ z = 0

⇐⇒


x = 0
y = −x
z = −x

donc x = y = z = 0

Conclusion : Donc (u, v, w) est une famille libre de trois vecteurs de R3

donc une base de R3

(c) On avait g (u) = u donc g2 (u) = g (u) = u vecteur propre de g2 associé à 1.
v et w sont associée à −1

La matrice de g dans la base de vecteurs propres (u, v, w) est donc

1 0 0
0 −1 0
0 0 −1


Comme un contre exemple suffit pour prouver qu’une propriété n’est pas universelle,

Conclusion : g2 est diagonalisable et pourtant, g ne l’est pas.
La réciproque était donc bien fausse
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