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le 20/12/2025
Durée : 4h

— L’usage de la calculatrice n’est pas autorisé.

— La clarté et la précision des raisonnements interviendront pour une grande part dans la notation.
— Le résultat d’une question peut étre admis afin de traiter une question suivante.

— On encadrera le résultat de chaque question.

Exercice 1 :

SELECT Prix FROM Produits WHERE Nom = ’Emeraude’
SELECT COUNT(*) FROM Produits
SELECT AVG(Prix) FROM Produits

SELECT Prod.Nom

FROM Produits AS Prod INNER JOIN Commandes AS Com
ON Prod.Cle = Com.Bijou

WHERE Date = 20251215

SELECT Prod.Nom

FROM Produits AS Prod INNER JOIN Commandes AS Com INNER JOIN Clients AS Cl
ON Prod.Cle = Com.Bijou AND Com.Client = Cl.Cle

WHERE RaisonSociale = ’Gautheron’

Cette commande insére dans la table Produits un nouveau bijou appelé 'Bague Saphir’, cotitant
245.90 euros, avec la clef 200.

Cette commande efface toutes les commandes antérieures au premier janvier 2022.

Cette commande met a jour la table Produit en baissant de 5% les prix des bijoux dont le prix
était supérieur a 1000 euros.
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Exercice 2

Eléments propres d’une matrice

Soit f I’endomorphisme de R3 dont A est la matrice dans la base canonique.

1.

0 -1 1 -1 1 1 -1 1
(A-2L)A-I3)> = [0 -1 1 0 0 1 0 0 1
-1 1 -1/ \-1 1 0/ \-1 1 0
0 -1 1 0 00
= (o -1 1 110
-1 1 -1) \-1 1 0
000
= [0 00
00 0

2. On déduit de la question précédente que le polynéme (X —2)(X —1)2 est un polynéme annulateur
de A.
Les racines de ce polynéme sont 1 et 2.
Les valeurs propres possibles de A sont donc 1 et 2 : sp(A) C {1,2}.

3. La matrice A est inversible car 0 n’est pas valeur propre.

4. — Valeur propre 1
On résout (A — I3)X = 0.
Apreés calcul, 1 est bien valeur propre et Ey(f) = vect((1,1,0)).
Ce vecteur constitue bien une base de Ej(f) car il forme une famille libre (un seul vecteur,
non nul).

— Valeur propre 2

On résout (A —2I3)X = 0.
Apreés calcul, 2 est bien valeur propre Es(f) = vect((0,1,1)).
Ce vecteur constitue bien une base de Ej(f) car il forme une famille libre (un seul vecteur,
non nul).

5. La matrice A n’est pas diagonalisable car la somme des dimensions des sous-espaces propres de f
est 2 et la dimension de R3 est 3.

Trigonalisation de A

6. Soit ()\1, Ao, )\3) € R3 tel que Ay by + Ao by + A3 by = (0, 0, 0).
On obtient un systéme de Cramer. On en déduit que A\ = Ao = A3 = 0.
Conclusion : B = (b1, b, b3) est une famille libre & trois éléments dans R? et donc une base de R3.

7. On a vu dans la premiére partie que f(b1) = 2b1; f(b2) = ba.

On calcule :
0 1
Alo)l=(1] ;
1 1
donc f(b3) = (1,1,1) = (1,1,0) + (0,0,1) = by + bs.
2 00
On en déduit la matrice de f danslabase B: T =10 1 1
0 01
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010
8 OnaP=(1 1 0
1 0 1
On calcule :
-1 1 0 1 00
Pl 1 0 0]=10 1 0])=1I3;
1 -1 1 0 0 1
-1 1 0
et donc P! = 1 0 O
1 -1 1

9. D’une part T est la matrice de f dans la base B.
D’autre part, d’aprés la formule du changement de base, la matrice de f dans la base B s’écrit
P71AP.
Conclusion : T'= P~1AP.

Calcul des puissances de T et expression de u,, v,, w,

2 00
10. OnaD=T-N={|0 1 0
0 01

0
0
0
D
11. OnaN2(

Pour un entier n > 2, N = N2N" 2 = 03N" 2 = (3.
12. Comme N et D commutent, on peut appliquer la formule du binéme de Newton :

n

T"=(N+D" =Y <Z> N*pn—k .

k=0

En utilisant le résultat de la question précédente :

2" 0 0 0 0 0 2=l 0 0 2" 0 0
™" =D" + n N D"! = 0 1 0l+n(|0 0 1 0 1 0] = 0 1 n
0 0 1 0 0 0 0 01 0 0 1
13. Pour n € N,
2 -1 1 U, 22Uy — Uy, + Wy, Up+1
AX,=1 0 1 1 Un | = Up + Wy, = | vpr1 | = Xpna1 -
-1 1 1 Wn, —Up + Vp + Wy, n+1

14. On en déduit, par une récurrence évidente, que pour n € N, X,, = A" Xj.

15. On a vu que A = PT P~
Montrons par récurrence, que, pour n € N, A” = PT" P! Initialisation : Pour n = 0, A° = I5 et
PT°P~1 = P3P~ =I5,
Donc la propriété est vraie pour n = 0.
Supposons que pour un entier n on ait A® = PT"P~L

On a alors
AL = AA™

-3-
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ce qui donne, en utilisant 'hypothése de récurrence et A = PT P~ :
A" = A= pTPPT"P! = PT"T P!

En application du principe de récurrence on en conclut que pour tout entier n on a A” = PT"P~1.

16. Soit n € N. En utilisant ce qui précéde,

X, = PT"P'X,
01 0\ /2" 0 0 -1 1 0\ /1
= (110 0 1 n 1 0 o0][o
101 0 0 1 1 -1 1/ \o
01 0\ /2 0 0 -1
= (110 0 1 n 1
101 0 0 1 1
010 —on
= (11 0] [n+1
101 1
n+1
= | -2"4+n+1
) [ |

Ainsiu, =n+1,v,=-2"4+n+1, w, = 2"+ 1.

4
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Exercice 3 :

1. Diagonalisation de la matrice A

(a)

3 -3 -2 2 -3 —2 1 -3 -2
(A—I)(A—20)(A-3I) = 2 -2 -2 2 -3 -2 2 —4 -2
-1 1 2 -1 1 1 -1 1 0
3 -3 -2 -2 4 2
= 2 -2 -2 —2 4 2
~1 2 0 00
00 0
= (00 o0
00 0

On en déduit que le polynéme (X — 1)(X —2)(X — 3) est un polynome annulateur de A. Les
racines de ce polynéme sont 1, 2 et 3.
Conclusion : les valeurs propres possibles de la matrice A sont 1, 2 et 3.

(b) On résout, pour A € {1,2,3}, 'équation (A — AI)X = 03;.
Remarque : on résout I’équation sous forme matricielle et on reviendra & f, comme demandé
dans I’énoncé, en conclusion.

— By
T 0 3r—3y—2z = 0
A-D|y|=10] <= 20 —2y—2z = 0
z 0 —r+y+2z = 0
Jr—3y—2z = 0
<~ —2z = 0 Lo+ 3Ly—2L,4
4z = 0 L3+ 3Ls+ L,
T =y
= {z _ 0

Donc 1 est bien valeur propre de A (et donc de f) et le sous espace propre de f associé a
la valeur propre 1 est : E1(f) = Vect ((1,1,0)) .

De plus la famille constituée par le vecteur (1,1,0) est libre (un seul vecteur non nul) et
donc est une base de E1(f).

— FEs.
T 0 20 —3y—2z = 0
(A-2I)y|=10] <= 20 —3y—2z = 0
z 0 —z+y+z = 0
20 —3y—2z = 0
<~ 0 =0 Lo+ Lo— 14
—y = 0 L3+ 2L3+ 1,
= v
y = 0

Donc 2 est bien valeur propre de A (et donc de f) et le sous espace propre de f associé a
la valeur propre 2 est : Eo(f) = Vect ((1,0,1)) .

De plus la famille constituée par le vecteur (1,0,1) est libre (un seul vecteur non nul) et
donc est une base de Es(f).
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— Es.
T 0 r—3y—2z = 0
(A=-3D)|y|=10] <= 20 —4y—22z = 0
z 0 —z+y =0
x—3y—2z = 0
< 2042z = 0 Lo+ Loy—2IL4
—2y—2z =0 Ly L3+ Ly
{ r = 3(—2’) + 22 = —z
<~
y = —z

Donc 3 est bien valeur propre de A (et donc de f) et le sous espace propre de f associé a
la valeur propre 3 est : E3(f) = Vect ((—1,—-1,1)) .

De plus la famille constituée par le vecteur (—1, —1,1) est libre (un seul vecteur non nul)
et donc est une base de E3(f).

(c) L’endomorphisme f a trois valeurs propres distinctes et R? est de dimension 3. Donc f est
diagonalisable.

(d) Dans la base ((1,1,0),(1,0,1),(1,1,—1)), d’aprés les résultats de la question b), ’endomor-
phisme f a pour matrice :

1 00
D=0 2 0
00 3

Remarque : comme 'énoncé spécifiait que la matrice P devait avoir (1 1 1) comme premiére
ligne, on a utilisé le fait que E3(f) = Vect ((—1,—1,1)) = Vect ((1,1,-1)).
En notant P la matrice de passage de la base canonique & cette nouvelle base, on a :

1
1

1
P=11
0 -1

=

et, d’aprés la formule de changement de base, D = P~'AP; et donc A = PDP~!.

2. Ensembles des matrices qui commutent avec A

(a) — On a A03 = 03 = 034 ; donc 03 € C4.
— Soit M1, My dans C4 et A1, Ay deux réels.
Alors
A()\lMl + )\QMQ) = MAM1 + M AM,; .

Or M; et My sont dans C4 ; donc
A()\lMl + )\QMQ) =AM MI1A+ X MyA = ()\1M1 + )\QMQ)A .

Conclusion : AMYM1 + XMy € Cy
On en conclut que C4 est un sous espace vectoriel de M.
(b) On a, pour M € M3(R),

AM = MA < PDP'M = MPDP ! < P 'PDP'MP =P 'MPDP'P;

et donc
AM = MA < DP~*MP =P 'MPD .

Autrement dit : M commute avec A si et seulement si P~1 M P commute avec D.

-6-
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(c) On a
a b c a b ¢
Dl d e f |=1| 2d 2 2f ,
g h 1 3g 3h 3i
et

a 2b 3c
D= d 2e 3f
g 2h 3i

a b
EtdonecD| d e
g h

2d=d 2e=2e 2f=3f
g=39 2h=3h 3i=3i;
c’est a dire si et seulement si ,
b=0 ¢c=0
d=0 f=0
g=0 h=0
Les matrices qui commutent avec D sont donc les matrices diagonales.

On déduit de la question (b) qu'une matrice M commute avec A ssi P~1M P commute avec
D. Puison déduit de la question précédente que M commute avec A ssi P~ M P est diagonale;
c’est a dire s’il existe une matrice diagonale A telle que P~'MP = A, c’est a dire M = PAP~1.
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Exercice 4

1. Si f, endomorphisme de R? est diagonalisable, sa matrice est diagonale D dans une base de vecteurs
propres.
La matrice de f o f étant D?, elle est encore diagonale.

Conclusion : ‘si f est diagonalisable alors f? l'est aussi. ‘

N.B. On pouvait aussi passer par :

il existe une base de vecteurs propres (u,v,w) associés a des valeurs propres (o, 3,7)

On aura alors fo f (u) = f (f (u)) = f (au) = af (u) = a®f (u) donc u est une vecteur propre de
f associé a la valeur propre a? et de méme pour v et w.

Et on a donc (u,v,w) est une base de vecteurs propres de f?

2. (a) On calcule

0o 2 -1\ /0 2 -1 1 -2 2
A2 =12 -5 4 2 -5 4 |=1[2 -3 2
3 -8 6 3 -8 6 2 —2 1

Donc
) 1 -2 2 1 -2 2

1
At=(AH" =2 -3 2| |2 -3 2]=10
0

2 -2 1 2 -2 1
Conclusion :

Donc X% — 1 est un polynéme annulateur de A.
Ainsi, si  est valeur propre de A alors a? = 1.
On a alors o> = +1; ce qui donne o = #1.

Conclusion : ‘Les seules valeurs propres possibles de A sont 1 et —1

x
(b) (z,y,2) €ker(9—Id)<—= (A-I)| y | =0
z
—z+2y—2=0 —r+2y—2=0
<= 20—6y+42=0 Ly+2L] <— —2y+22=0
3r—8y+5z=0 L3z+3L; —2y+22=0

{m:z
e
y==z

Donc ker (¢ — Id) = Vect ((1,1,1))
et avec v = (1,1,1) la famille (u) est génératrice de ker (g — Id) et libre, donc base de

ker (g — Id) .
x
(¢) (v,y,2) €ker(g+Id) <= (A+I)| y | =0
z
z+2y—2z=0 x+2y—2z=0
= 20 —4dy+42=0 Ly -2 <= —8y+6z2=0
3r—8y+72z=0 L3z—3L —14y + 10z =0
r+2y—2=0
= y=3/4z —r=y=2=0

z=0
Conclusion : ‘ker (9 +Id) ={0} ‘ et —1 n’est donc pas valeur propre de g.

(d) La somme des dimensions des sous espaces propres est donc 1 # 3

Conclusion : ‘ g n’est pas diagonalisable‘

_8-
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x
3.(a) Avec X = | y
z
onaA’X = - X <= (A’4+1)X =0
20 =2y +22=0
= 20 —2y+2z =0<=x=y—=z
20 =2y +22=0
donc ker (g2 + Id) = Vect ((1,1,0),(—1,0,1)) famille génératrice et libre (2 vecteurs non pro-
portionnels) donc une base de ker (92 +1 d)
Conclusion : ‘avec v=1(1,1,0) et w=(—1,0,1) ‘

(b) On avait u=(1,1,1).
On montre que la famille (u, v, w) est libre :

Soient x,y, z réels.

z+y—2=0 x=0
Si zu + yv + zw = 0 alors r+y=0 <= y=—x doncx=y=2=0
z+2z=0 z=—x

Conclusion :| Donc (u,v,w) est une famille libre de trois vecteurs de R3
donc une base de R3

(c) On avait g (u) = u donc g% (u) = g (u) = u vecteur propre de g* associé a 1.

v et w sont associée a —1

1 0 0
La matrice de g dans la base de vecteurs propres (u,v,w) est donc [0 —1 0
0o 0 -1

Comme un contre exemple suffit pour prouver qu’une propriété n’est pas universelle
)

Conclusion :| g¢? est diagonalisable et pourtant, g ne l’est pas.
La réciproque était donc bien fausse




