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INTÉGRALE GÉNÉRALISÉE

Introduction
On a vu en première année que l’intégrale donne un sens mathématique précis à la notion d’aire sous une courbe
sur un intervalle [a, b]. Grâce aux intégrales généralisées (on dit aussi impropres), on verra dans ce cours que l’on
peut donner un sens à l’aire sous une courbe entre, par exemple, 1 et +∞. Il y aura cependant des restrictions :
sur [1,+∞[ l’aire sous la courbe y = 1/x2 a un sens tandis que celle sous la courbe y = 1/x n’en a pas.
Notre but principal est de disposer d’un outil pour l’étude des variables aléatoires à densité.

1 Rappels sur l’intégrale sur un intervalle [a, b]

On ne rappelle pas la définition de l’intégrale et on ne détaille pas ses premières propriétés, elles seront rappelées
dans le cadre des intégrales généralisées.

1.1 Théorème fondamental du calcul intégral
La propriété fondamentale concernant le calcul intégral est la suivante :

Théorème 1.1 (Théorème fondamental de l’analyse). Soit f : I → R une fonction continue (I étant un intervalle).
Soit a ∈ I. Alors la fonction définie, pour x ∈ I, par :

x 7→
∫ x

a

f(t) dt

est une primitive de f (celle qui s’annule en a).

On utilise la plupart du temps son corollaire :

Corollaire 1.2. Soit f une fonction continue sur I, F une primitive de f sur I et a, b deux points de I. Alors∫ b

a

f(x) dx = F (b)− F (a)

Notation :
[F (x)]

b
a = F (b)− F (a)

1.2 Calculs de primitives
Le tableau suivant donne les primitive des fonctions usuelles :

Fonction Sur l’intervalle Primitives
x 7→ 1 R x 7→ x+ c

x 7→ x R x 7→ x2

2 + c

x 7→ xn (n ∈ Z \ {−1}) R si n ≥ 0 ; R \ {0} si n < 0 x 7→ xn+1

n+1 + c

x 7→ xα (α ∈ R \ {−1}) R∗
+ x 7→ 1

α+1x
α+1 + c

x 7→ 1
x R∗

+ x 7→ ln(x) + c
x 7→ ex R x 7→ ex + c

Calculs à l’aide de composées On sait que si u et v sont dérivables, alors v ◦ u a pour dérivée u′ × (v′ ◦ u). On
sait donc trouver une primitive de toute fonction qui s’écrit x 7→ u′(x)× v′(u(x)).
On peut retenir les cas particuliers suivants :

Fonction Primitives Remarques
u′

u ln(u) + c on suppose que u est à valeurs > 0
u′eu eu + c
u′uα 1

α+1u
α+1 + c on suppose que α ̸= −1 et, si α /∈ Z, u est à valeurs > 0
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1.3 Autres méthodes de calcul d’intégrale
Une méthode d’usage courant est l’intégration par parties :

Propriété 1.3 (" formule d’intégration par parties"). Soient u et v deux fonctions de classe C1 sur un intervalle I.
Soient a et b deux éléments de I. Alors :∫ b

a

u(x)v′(x) dx = [u(x)v(x)]ba −
∫ b

a

u′(x)v(x) dx

Autre méthode, le changement de variable :

Propriété 1.4. Soit φ une fonction de classe C1 sur un intervalle [a, b], f une fonction continue sur φ([a, b]) ; alors
on a : ∫ b

a

f(φ(x))φ′(x) dx =

∫ φ(b)

φ(a)

f(u) du .

2 Intégrale généralisée en ±∞
2.1 Définitions

Définition 2.1. Soit f une fonction continue sur un intervalle [a; +∞[. On dit alors que l’intégrale de f est généralisée
(on dit aussi impropre) en +∞.
L’intégrale de f sur [a; +∞[ est dite convergente lorsque la fonction définie sur [a; +∞[ par x 7→

∫ x

a
f(t)dt admet une

limite finie lorsque x tend vers +∞. On note alors :∫ +∞

a

f(t)dt = lim
x→+∞

∫ x

a

f(t)dt .

Dans le cas contraire, on dit que l’intégrale diverge. De même on dit que l’intégrale d’une fonction f définie sur un
intervalle ]−∞; a] est convergente si la fonction définie sur ]−∞; a] par x 7→

∫ a

x
f(t)dt admet une limite finie en −∞

et on note alors ∫ a

−∞
f(t)dt = lim

x→−∞

∫ a

x

f(t)dt .

Remarque 2.2. Dans le cas où f est continue sur [a,+∞[, si b ∈ [a,+∞[, alors l’intégrale de f est convergente
sur [a,+∞[ ssi l’intégrale de f est convergente sur [b,+∞[.

Exemples 2.3. Étudier la convergence des intégrales suivantes :

1. intégrale sur [1,+∞[ de x 7→ 1

x3

2. intégrale sur ]−∞, 0] de x 7→ ex

3. intégrale sur [1,+∞[ de x 7→ 1

x
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Définition 2.4. Soit f une fonction continue sur l’intervalle ]−∞; +∞[. On dit alors que l’intégrale de f est impropre
en −∞ et +∞.
L’intégrale est dite convergente lorsque, pour c arbitraire, les intégrales de f sur ]−∞; c] et sur [c; +∞[ sont convergentes
(on montre que cela ne dépend pas du choix de c) ; dans ce cas, on pose :∫ +∞

−∞
f(t)dt =

∫ c

−∞
f(t)dt+

∫ +∞

c

f(t)dt .

Dans le cas contraire, on dit que l’intégrale diverge.

Exemple 2.5. Étudier la convergence de l’ intégrale sur R de f : x 7→ 1 + 2x

(1 + x+ x2)2
.

2.2 Intégrales de références
Certaines intégrales serviront de point de comparaison et sont à retenir.

Propriété 2.6 (Intégrales de Riemann). Soit α ∈ R. L’intégrale sur [1; +∞[ de x 7→ 1

xα
est convergente ssi α > 1.

Il en est de même sur ]−∞;−1] lorsque α ∈ Z.

Démonstration :
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Propriété 2.7 (Intégrales de fonctions exponentielles). Soit α ∈ R. L’intégrale sur [0; +∞[ de x 7→ eαx est convergente
ssi α < 0.

Démonstration :

3 Propriétés
Les propriétés des intégrales impropres découlent de celles de l’intégrale sur un intervalle [a, b].
On se place sur un intervalle I = [a,+∞[. Les propriétés sont les mêmes sur un intervalle ]−∞, a]. Les fonctions
sont supposées continues sur leur intervalle de définition.
Ces propriétés sont admises.

Propriété 3.1 (linéarité). Si l’intégrale d’une fonction f sur un intervalle [a,+∞[ est convergente, et si λ ∈ R, alors
l’intégrale sur [a,∞[ de λ f est convergente et∫ +∞

a

(λ f)(x)dx = λ

∫ +∞

a

f(x)dx .

Si les intégrale sur un intervalle [a,+∞[ des fonctions f et g sont convergentes, alors l’intégrale sur I de (f + g) est
convergente et ∫ +∞

a

(f + g)(x)dx =

∫ +∞

a

f(x)dx +

∫ +∞

a

g(x)dx .

Définition 3.2 (Échange des bornes). On suppose que l’intégrale d’une fonction f sur un intervalle [a,+∞[ est
convergente.
On pose alors ∫ a

+∞
f(x)dx = −

∫ +∞

a

f(x)dx .

Propriété 3.3 (Relation de Chasles). On suppose que l’intégrale d’une fonction f sur un intervalle [a,+∞[ est
convergente.
Pour c ∈ [a,+∞[, l’intégrale de f sur [c,+∞[ est convergente et∫ +∞

a

f(x)dx =

∫ c

a

f(x)dx +

∫ +∞

c

f(x)dx .

Cette formule reste valable lorsque les bornes sont “inversées”.

Propriété 3.4 (Croissance de l’intégrale). On suppose que l’intégrale des fonctions f et g sur [a,+∞[ convergent et
que, pour tout x ∈ [a,+∞[, f(x) ≤ g(x). On a alors :∫ +∞

a

f(x)dx ≤
∫ +∞

a

g(x)dx .

En particulier, si on a : x ∈ [a,+∞[, f(x) ≥ 0. On a alors :∫ +∞

a

f(x)dx ≥ 0 .
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Propriété 3.5 (Intégrale et parité). On suppose que f est définie sur ]−∞,+∞[ et paire ou impaire.
Si l’intégrale de f sur [0,+∞[ converge, alors l’intégrale de f sur ]−∞,+∞[ converge et on a :

• si f est paire,
∫ +∞

−∞
f(x)dx = 2

∫ +∞

0

f(x)dx ;

• si f est impaire,
∫ +∞

−∞
f(x)dx = 0.

4 Utilisation des comparaisons de fonctions
On se place à nouveau sur un intervalle I = [a,+∞[. Les résultats s’adaptent aux intégrales généralisées sur un
intervalle ]−∞, a]. Les fonctions sont supposées continues sur leur intervalle de définition.
On commence par le rappel de deux propriétés :

1. Soit f une fonction croissante sur un intervalle [a,+∞[.
Si f est majorée par une constante M sur [a,+∞[, alors f admet une limite finie l en +∞. De plus, on a
l ≤ M et pour tout x dans [a,+∞[, f(x) ≤ l.
Si f n’est pas majorée sur [a,+∞[, alors f tend vers +∞ en +∞.

2. Soit f une fonction continue et à valeurs positives sur un intervalle [a,+∞[. Alors la fonction x 7→
∫ x

a

f(t)dt

est croissante sur [a,+∞[. En effet, sa dérivée est f .

On en déduit des propriétés rappelées ci-dessus le fait suivant :

Lemme 4.1. Soit f une fonction continue et positive sur [a,+∞[. Alors l’intégrale de f sur [a,+∞[ est convergente

si et seulement si la fonction x 7→
∫ x

a

f(t)dt est majorée.

Démonstration :

Propriété 4.2. Soit f et g deux fonctions continues définies sur [a,+∞[ On suppose que pour tout x ∈ [a,+∞[,
0 ≤ f(x) ≤ g(x).
Alors si l’intégrale sur [a,+∞[ de g est convergente, l’intégrale de f sur [a,+∞[ l’est aussi et on a :∫ +∞

a

f(x)dx ≤
∫ +∞

a

g(x)dx .

Démonstration :
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Propriété 4.3. Soit f et g deux fonctions positives et continues définies sur [a,+∞[ On suppose que lorsque x tend
vers +∞, on a f = o(g). Alors si l’intégrale sur [a,+∞[ de g est convergente, l’intégrale de f sur [a,+∞[ l’est aussi.

Démonstration :

Propriété 4.4. Soit f et g deux fonctions positives et continues définies sur [a,+∞[ On suppose que lorsque x tend
vers +∞, on a f ∼ g Alors les intégrales sur [a,+∞[ de f et g sont de même nature.

Démonstration :

Exemples 4.5. Étudier la convergence des intégrales suivantes :

1. x 7→ x2 + 1

x3 + 1
sur [0; +∞[ 2. x 7→ e−x

√
x

sur [1; +∞[

3. x 7→ x3e−x sur [0; +∞[
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5 Convergence absolue
On se place à nouveau sur un intervalle I = [a,+∞[. Les fonctions sont supposées continues sur leur intervalle de
définition.

Définition 5.1. On dit que l’intégrale d’une fonction f sur [a,+∞[ est absolument convergente lorsque l’intégrale de
la fonction définie sur I par x 7→ |f(x)| est convergente.

Propriété 5.2 (admise). Si l’intégrale de f est absolument convergente sur [a,+∞[, alors elle est convergente. On a
de plus : ∣∣∣∣∫ +∞

a

f(x)dx

∣∣∣∣ ≤ ∫ +∞

a

|f(x)|dx

La convergence absolue permet d’appliquer les techniques de comparaison à des fonctions qui ne sont pas à valeurs
positives.

Exemples 5.3. Étudier la convergence des intégrales suivantes :

1. f : x 7→ 3x2 − 7x+ 1

x5 + 3x2 + 6x+ 1
sur [0,+∞[ 2. f : x 7→ ex

x
sur ]−∞,−1]
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6 Fonctions continues par morceaux
Les propriétés ont été énoncées pour des fonctions continues pour des raisons de simplicité de l’exposition. Dans
le chapitre sur les loi de probabilité à densité, ces densités seront souvent continues par morceaux. La plupart des

propriétés restent valables dans ce cas. Une exception cependant : la dérivabilité de x 7→
∫ x

a

f(t)dt.

Exemple 6.1. Soit f la fonction définie sur R par : f(x) = 1 si x ∈ [0, 1] et f(x) = 0 sinon. On considère la fonction

F définie sur R par F (x) =

∫ x

0

f(t)dt.

Calculer F et étudier sa dérivabilité.
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