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VARIABLES ALÉATOIRES À DENSITÉ
Les variables aléatoires sont supposées définies sur un espace probabilisé (Ω,A, P ) ; on admet leur existence sans
rentrer dans le détail de cette notion.

1 Définition et premières propriétés
Les propriétés énoncées dans cette partie sont admises.
On définit tout d’abord ce qu’est une densité de probabilité.

Définition 1.1. Une fonction f : R → R est appelée densité de probabilité lorsque :

• f est à valeurs positives ;

• f est continue sauf éventuellement en un nombre fini de points

• l’intégrale de f sur R est convergente et vaut 1.

Une variable aléatoire réelle X est alors dite avoir f pour densité lorsque pour tout (a, b) ∈ R2 tel que a ≤ b,

P (a < X ≤ b) =

∫ b

a

f(x)dx .

Remarque 1.2. La densité d’une variable aléatoire X n’est pas unique. Si f est une densité pour X, toute
fonction qui coïncide avec f sauf en un nombre fini de points est aussi une densité pour X.

Remarque 1.3. L’ensemble des valeurs prises par X (X(Ω)) est alors l’ensemble des réels x tels que f(x) > 0.
On parle parfois du support de X.

Remarque 1.4. Interprétation graphique : P (a < X ≤ b) est l’aire sous la courbe de f entre les abscisses a et b.

On montre également (ce qui est en accord avec l’interprétation graphique) que pour tout a ∈ R, P (X = a) = 0.
On en déduit que, pour tout (a; b) ∈ R2 tel que a ≤ b,

P (a < X ≤ b) = P (a < X < b) = P (a ≤ X ≤ b) = P (a ≤ X < b) =

∫ b

a

f(x)dx .

Fonction de répartition
Rappelons que pour toute variable aléatoire réelle X, la fonction de répartition de X est la fonction qui à x ∈ R
associe P (X ≤ x). Si X admet pour densité f , sa fonction de répartition F est donc définie par

F (x) =

∫ x

−∞
f(t)dt .

Interprétation graphique :

En remarquant que [X ≤ b] = [X ≤ a] ∪ [a < X ≤ b] (union disjointe), on obtient

P (X ≤ b) = P (X ≤ a) + P (a < X ≤ b) et donc P (a < X ≤ b) = P (X ≤ b)− P (X ≤ a) .

On en déduit alors (cela peut également être vu comme une conséquence de la relation de Chasles) :

Propriété 1.5. Pour tout (a; b) ∈ R2 tel que a ≤ b,

P (a < X ≤ b) = F (b)− F (a) .
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Rappelons que la fonction de répartition F d’une variable aléatoire réelle quelconque a les propriétés suivantes :

• F est croissante.

• F est continue à droite en tout point de R.

• lim
x→+∞

F (x) = 1 et lim
x→−∞

F (x) = 0.

La fonction de répartition d’une variable aléatoire à densité à des propriétés supplémentaires :

Propriété 1.6 (Propriétés de la fonction de répartition d’une variable aléatoire à densité). Soit X une variable
aléatoire admettant une densité f . Notons F la fonction de répartition de X. En plus des propriétés générales des
fonctions de répartition rappelées ci-dessus, F à les propriétés suivantes :

• F est continue

• F est dérivable de dérivée continue, sauf éventuellement en un nombre fini de points (ceux en lesquels f n’est
pas continue)

• En tout point x en lequel F est dérivable, F ′(x) = f(x).

Réciproquement, si la fonction de répartition F d’une variable aléatoire X est continue et dérivable de dérivée continue
(sauf éventuellement en un nombre fini de points) alors X est une variable aléatoire à densité. Elle admet pour densité
toute fonction f qui coïncide avec F ′ là où F est dérivable.

Remarques 1.7. • Remarquer le lien entre cette propriété et le théorème fondamental du calcul intégral (du
moins lorsque f est continue).

• On déduit de la propriété précédente que pour une variable aléatoire à densité, on peut récupérer la densité
à partir de la fonction de répartition. En d’autres termes, la fonction de répartition caractérise la loi de la
variable aléatoire.

2 Moments d’une variable aléatoire à densité
Les propriétés énoncées dans cette partie sont également admises.
L’espérance est définie de la manière suivante.

Définition 2.1. Soit X une variable aléatoire de densité f . On dit que X admet une espérance (ou un moment
d’ordre 1) lorsque l’intégrale sur R de la fonction x → x f(x) converge absolument. Dans ce cas, l’espérance de X est
définie par

E(X) =

∫ +∞

−∞
xf(x)dx .

On a vu en TD sur certains exemples que, étant donnée une variable aléatoire X et une fonction g, g(X) est, sous
certaines conditions, une variable aléatoire à densité. Connaissant la loi de X, on peut alors parfois déterminer
celle de g(X). Lorsque l’on veut juste déterminer l’espérance de g(X), il n’est pas nécessaire de déterminer la loi
de g(X) ; on utilise plutôt la formule de transfert.

Propriété 2.2 (Formule de transfert). Soit X une variable aléatoire admettant une densité f .
On suppose que g est une fonction continue sur R sauf éventuellement en un nombre fini de points.
Si l’intégrale sur R de x 7→ g(x)f(x) est absolument convergente, alors la variable aléatoire g(X) admet une espérance
et

E(g(X)) =

∫ +∞

−∞
g(x)f(x)dx .

Remarque 2.3. Si f est nulle en dehors d’un intervalle ]a, b[, la fonction g peut n’être définie que sur ]a, b[.
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Définition 2.4. Soit X une variable aléatoire de densité f ; soit r ∈ N∗. On dit que X admet moment d’ordre r
lorsque l’intégrale sur R de la fonction x → xr f(x) converge absolument.
On appelle alors moment d’ordre r et on note mr(X) la valeur de E(Xr). Par la formule de transfert on a donc

mr(X) =

∫ +∞

−∞
xr f(x) dx .

En particulier, si X admet un moment d’ordre 2,

E(X2) =

∫ +∞

−∞
x2 f(x) dx .

Définition 2.5. Soit X une variable aléatoire de densité f . Si X admet un moment d’ordre 2, on montre que X
admet un moment d’ordre 1 et que la variable aléatoire (X−E(X))2 admet une espérance. Cette espérance est appelée
variance de X et notée V ar(X).
On a donc

V ar(X) = E
(
(X − E(X))2

)
=

∫ +∞

−∞
(x− E(X))2 f(x)dx .

On appelle écart-type la racine carée de la variance :

σ(X) =
√
V ar(X) .

On n’utilise pas cette dernière formule pour le calcul de la variance mais la formule de Koenig-Huygens :

Propriété 2.6 (Formule de Koenig-Huygens). Soit X une variable aléatoire admettant une densité f . Si X admet
un moment d’ordre 2, alors

V ar(X) = E(X2)− (E(X))
2
.

3 Propriétés générales des variables aléatoires réelles
On étend dans cette partie les propriétés de l’espérance et de la variance d’une variable aléatoire discrète, ainsi
que celles des couples de variables aléatoires. Les propriétés énoncées sont admises (certaines ont été démontrées
pour les variables aléatoires discrètes).
Les lettres X et Y désignent des variables aléatoires réelles.

Propriété 3.1. Soit a et b deux nombres réels.

• Si X admet un moment d’ordre 1, alors aX + b également et E(aX + b) = aE(X) + b.

• Si X admet un moment d’ordre 2, alors aX + b également et V ar(aX + b) = a2V ar(X).

Conséquences

• Une variable aléatoire X (admettant un moment d’ordre 1) est dite centrée si sont espérance est nulle. La
variable aléatoire X − E(X) est centrée.

• Une variable aléatoire X (admettant un moment d’ordre 2) est dite réduite si sa variance vaut 1. La variable

aléatoire
X − E(X)

σ(X)
est centrée et réduite.

En effet :

•

•
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Propriété 3.2. Si X et Y admettent un moment d’ordre 1, alors X + Y également et E(X + Y ) = E(X) + E(Y ).
Cette propriété s’étend à la somme de n variables aléatoires.

Propriété 3.3. Si X et Y admettent un moment d’ordre 1, et si X ≤ Y , alors E(X) ≤ E(Y ).

Définition 3.4. Les variables aléatoires X et Y sont dites indépendantes lorsque : pour tous intervalles I et J ,

P ([X ∈ I] ∩ [Y ∈ J ]) = P (X ∈ I)× P (Y ∈ J) .

Des variables aléatoires X1, X2, ..., Xn sont dites mutuellement indépendantes lorsque pour tous intervalles I1, I2,
..., In on a :

P

(
n⋂

i=1

[Xi ∈ Ii]

)
=

n∏
i=1

P (Xi ∈ Ii) .

Une suite (Xi)i∈N de variables aléatoires est dite constituée de variables aléatoires mutuellement indépendantes lorsque
toutes ses sous-suites finies sont mutuellement indépendantes.

Propriété 3.5 (Lemme des coalitions). Si n variables aléatoires X1, X2, ..., Xn sont mutuellement indépendantes,
pour tout p < n, toute fonction de X1, X2, ..., Xp est indépendante de toute fonction des n− p autres.

Remarque 3.6. En particulier, si X et Y sont deux variables aléatoires indépendantes et si f et g sont deux
fonctions (telles que f(X) et g(Y ) soient deux variables aléatoires), alors f(X) et g(Y ) sont indépendantes.

Propriété 3.7. Si X et Y sont deux variables aléatoires réelles indépendantes et admettent des moments d’ordre 2,
alors

• E(XY ) = E(X)E(Y )

• V ar(X + Y ) = V ar(X) + V ar(Y )

Ces propriétés s’étendent à n variables aléatoires indépendantes.

On termine par une propriété concernant les variables aléatoires dont la densité est paire :

Propriété 3.8. Soit X une variable aléatoire à densité dont la densité f est une fonction paire. Alors si X admet un
moment d’ordre 1, on a

E(X) = 0 .

En effet :
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4 Lois usuelles
Dans cette partie, nous allons démontrer la plupart des résultats. Les méthode de calcul employées sont à retenir.

4.1 Lois uniformes

Définition 4.1. Une variable aléatoire X suit la loi uniforme sur [a; b] (on note alors X ↪→ U([a; b])) lorsqu’elle admet
pour densité la fonction f définie sur R par :

f(x) =

{ 1

b− a
si x ∈ [a; b]

0 sinon

Remarque 4.2. Il est clair qu’il s’agit bien d’une densité de probabilité.

Propriété 4.3. Soit X une variable aléatoire suivant la loi uniforme sur [a; b]. Alors la fonction de répartition de X
est la fonction F définie sur R par :

F (x) =


0 si x < a
x− a

b− a
si x ∈ [a; b]

1 si x > b

Démonstration :

Propriété 4.4. Soit a et b deux réels tels que a < b.

Si une variable aléatoire X suit la loi uniforme U([a; b]), alors
X − a

b− a
suit la loi uniforme U([0; 1]).

Si Y suit une loi U([0; 1]), alors (b− a)Y + a suit une loi U([a; b]).

Démonstration :

Remarque 4.5. C’est plus le principe du calcul que le résultat en lui-même qu’il faut retenir.
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Propriété 4.6. Soit X une variable aléatoire suivant la loi uniforme sur [a; b].

• X admet un moment d’ordre 1 et E(X) =
b+ a

2
.

• X admet un moment d’ordre 2 et V ar(X) =
(b− a)2

12
.

Démonstration :

4.2 Lois exponentielles

Définition 4.7. Une variable aléatoire X suit la loi exponentielle de paramètre λ > 0 (on note alors X ↪→ E(λ))
lorsqu’elle admet pour densité la fonction f définie sur R par :

f(x) =

{
0 si x < 0
λ e−λx si x ≥ 0

Remarque : il s’agit bien d’une densité.

Propriété 4.8. Soit X une variable aléatoire suivant la loi exponentielle de paramètre λ. Alors la fonction de
répartition de X est la fonction F définie sur R par :

F (x) =

{
0 si x < 0
1− e−λx si x ≥ 0
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Démonstration :

Propriété 4.9. Soit X une variable aléatoire suivant la loi exponentielle de paramètre λ. Alors :

• X admet un moment d’ordre 1 et E(X) =
1

λ
.

• X admet un moment d’ordre 2 et V ar(X) =
1

λ2
.

Rappel : on a vu en TD que, pour n ∈ N, ∫ +∞

0

xne−xdx = n! .

Démonstration :

4.3 Lois normales

Définition 4.10. Une variable aléatoire X suit la loi normale centrée réduite lorsqu’elle admet pour densité la fonction
f définie sur R par :

f(x) =
1√
2π

e
−
x2

2

On note alors X ↪→ N (0; 1).
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Remarque 4.11. Il est clair que la fonction f est continue et à valeurs positives (et que son intégrale sur R est
convergente). Par contre, f n’a pas de primitive s’exprimant à l’aide des fonctions usuelles ; nous admettons que
son intégrale vaut 1. Ceci revient à admettre que l’on a :∫ +∞

−∞
e
−
x2

2 dx =
√
2π .

Pour la même raison (f n’a pas de primitive s’exprimant à l’aide des fonctions usuelles), la fonction de répartition
d’une variable aléatoire suivant la loi N (0; 1) n’a pas d’expression simple. On notera souvent

ϕ(x) =

∫ x

−∞

1√
2π

e
−
t2

2 dt .

Remarque 4.12. Cette densité f est paire.

Il faut être capable d’utiliser la parité de la densité de la loi normale centrée réduite pour simplifier les calculs.
On retiendra en particulier :

Propriété 4.13. Pour x ∈ R, ϕ(−x) = 1− ϕ(x).

Démonstration :

Remarque 4.14. Cette dernière propriété est valable dès que la densité est paire.

Propriété 4.15. Soit X une variable aléatoire suivant la loi normale centrée réduite. Alors

• X admet un moment d’ordre 1 et E(X) = 0.

• X admet un moment d’ordre 2 et V ar(X) = 1.

Démonstration :
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Définition 4.16. Soit m ∈ R et σ > 0. Une variable aléatoire X suit la loi normale N (m;σ2) lorsqu’elle admet pour
densité la fonction f définie sur R par :

f(x) =
1

σ
√
2π

e
−
(x−m)2

2σ2 .

Remarque 4.17. On n’a pas montré à ce stade qu’il s’agit bien d’une densité.

Propriété 4.18. Soit m ∈ R et σ > 0. Une variable aléatoire X suit la loi normale N (m;σ2) si et seulement si
X −m

σ
suit la loi normale centrée réduite.

Démonstration :

Remarques 4.19. • Cette propriété montre que la fonction donnée dans la définition qui la précède est bien
une densité.

• On utilisera également cette propriété sous la forme : si X suit la loi normale N (0; 1), alors σX +m suit la
loi normale N (m;σ2).

Corollaire 4.20. Si une variable aléatoire X suit la loi normale N (m;σ2). Alors

• X admet un moment d’ordre 1 et E(X) = m.

• X admet un moment d’ordre 2 et V ar(X) = σ2.

Démonstration :

Enfin nous admettons la propriété suivante sur la loi de la somme de deux variables aléatoires indépendantes de
loi normale.

Propriété 4.21. Si X1 et X2 sont deux variables aléatoires indépendantes suivant respectivement des lois N (m1;σ
2
1)

et N (m2;σ
2
2), alors X1 +X2 suit une loi N (m1 +m2;σ

2
1 + σ2

2).
Cette propriété s’étend à une somme de n variables aléatoires.
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