
ECG2 2025/2026

TP9 : GRAPHES II

Algorithme de Dijkstraa

On reprend le graphe du TP précédent, avec des pondérations :

b

b

b

b

b b b

b

b

b

A

B

C

D

E H I

F

G

J

4

7

8

18

10

21 11 8

15

31

12

25 9

10

17 7

7

Supposons que celui-ci représente le temps de trajet entre des villes. On souhaite connaître
le trajet le plus court entre les villes A et I. L’algorithme de Dijkstraa va nous permettre de
répondre efficacement à cette question.
Avant tout on définit la distance d(x, y) entre deux sommets x et y comme le minimum des
poids des chemins joignant x à y. Remarquons que ce minimum est atteint parmi les chemins
élémentaires.

Description de l’algorithme

Données :

Un graphe pondéré X fini, connexe , poids ≥ 0, sans boucle. On note p(x, y) le poids de l’arête
joignant x à y, avec la convention p(x, y) = +∞ si il n’y a pas d’arête joignant x à y.

Résultat attendu :

Étant donné un sommet A (départ) et un sommet Z (arrivée), trouver d(A,Z) ainsi que le chemin
qui réalise cette distance. En fait l’algorithme va trouver la distance entre A et n’importe quel
autre sommet.
Principe :

• Variables :

– Une liste S de sommets (ceux dont on connaît la distance à A)

– Une liste S ′ de sommets (ceux qui, sans être dans S, ont un antécédent dans S)

– Pour chaque sommet x, un réel dA(x) (appelé à être égal à d(A, x))

– Pour chaque élément x ∈ S ∪ S ′ \ {A}, un élément de S : π(x) (élément qui précède
x sur le plus court chemin dont tous les éléments sont dans S (sauf éventuellement x)
joignant A à x - on convient d’appeler un tel chemin un S-chemin).

• Initialisation :

– S = {A}

– S ′ = {x ∈ X, p(A, x) < +∞}

– dA(A) = 0, pour x ∈ S ′, dA(x) = p(A, x), pour les autres dA(x) = +∞.

-1-



ECG2 2025/2026

– Comme on a vu, π(A) n’est pas défini ; pour x ∈ S ′, π(x) = A.

• Progression :

P1 Déterminer x0 ∈ X \ {S} tel que dA(x0) est minimal (par conséquent x0 ∈ S ′)

P2 On adjoint x0 à S

P3 Pour tous les x /∈ S tels que p(x0, x) < +∞, on adjoint x à S ′. Pour chacun de ces x,
on compare dA(x) et dA(x0) + p(x0, x) et si ce dernier est inférieur, on remplace.

• Condition d’arrêt : S = X

• Résultat : pour tout x, dA(x) = d(A, x), π(x) le prédécesseur de x sur un plus court chemin
de A à x.

Établir la trace de cet algorithme afin de déterminer le plus court chemin de A à J sur notre
exemple. On présentera cela dans un tableau contenant à chaque étape, pour chaque sommet x,
le couple (dA(x), π(x)) dès qu’il est défini.

-2-



ECG2 2025/2026

Implémentation

Un graphe pondéré d’ordre n est donné.
On suppose donné un tableau (liste de listes) Table_poids contenant les données relatives au
graphe ayant servi d’exemple : en position [i,j] le poids de l’arrête reliant le sommet i au
sommet j (inf si il n’y a pas d’arrête).
On souhaite calculer les distances d’un sommet fixé à tout autre sommet.
Pour cela, on va faire évoluer 3 listes :

• listeS : listeS[x] vaut 0, 1 ou 2 suivant que le sommet x n’a pas encore été traité, est
dans S ′ ou S ;

• listeDA , contenant pour chaque sommet x la valeur de dA(x) ;

• listeAnte , liste donnant, pour chaque éléments de S ou S ′, son antécédant sur le plus
cours chemin.

Compléter le programme fourni dans le fichier à compléter : TP_graphes_2_Dijkstraa_Acompleter.py.

-3-


