
Nom :

Mathématiques approfondies

Cours ECG 2

Partie VII

Chapitres

14. Endomorphismes symétriques

15. Projections orthogonales

16. Convergences de variables aléatoires et approximations

Lycée Saint Louis 2025/2026

1



2



CHAPITRE14
Endomorphismes symétriques

Cercles dans un cercle, 1923, VASSILY KANDINSKY

1 Matrices et endomorphismes symétriques

1.1 Les définitions et exemples

On dit qu’une matrice A ∈Mn(R) est symétrique si tA = A.
Autrement dit, si (ai , j )i , j sont les coefficients de la matrice A : ∀ (i , j ) ∈ [[1;n]]2, ai , j = a j ,i .

Définition 1 (matrice symétrique)

Exercice 1

F . Donner la dimension de Sn (R) défini comme le sous-espace vectoriel des matrices

symétriques de Mn (R).

# AS1

Soient, E un espace vectoriel muni d’un produit scalaire 〈·, ·〉 et ϕ ∈ L (E). On dit que ϕ est un endomor-
phisme symétrique si

∀u, v ∈ E, 〈ϕ(u), v〉 = 〈u,ϕ(v)〉.

Définition 2 (endomorphisme symétrique)

Exemples.

• L’application ϕ :

{
R2 → R2

(x, y) 7→ (2x −6y , −6x −7y )
est symétrique sur R2 muni du produit scalaire canonique.

• Soient E, un espace euclidien de dimension n Ê 2 et u0 ∈ E \ {0E}. Pour tout réel a ∈R+, on définit l’endomorphisme
ϕa : E → E par ϕa(u) = u +a 〈u,u0〉u0. On vérifie que ϕa est symétrique.
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Exercice 2 FF Soient
(
E,〈·, ·〉) un espace euclidien et f , g deux endomorphismes symétriques de E.

1. Justifier que si f et g commutent alors f ◦ g est symétrique.

2. On souhaite prouver la réciproque. On suppose donc f ◦ g symétrique.

a) Simplifier pour tous u, v ∈ E,
〈

u, f ◦ g (v)− g ◦ f (v)
〉

.

b) En déduire que f et g commutent.

# AS2

1.2 Premières propriétés

Soient B = (e1, . . . ,en) une base de E et ϕ ∈L (E). Les deux énoncés suivants sont équivalents.

i) L’endomorphisme ϕ est symétrique.

ii) ∀(i , j ) ∈ [[1,n]]2,
〈
ϕ (ei ) ,e j

〉= 〈
ei ,ϕ

(
e j

)〉
.

Proposition 3 (caractérisation via une base)

Soit ϕ ∈L (E) où
(
E,〈·, ·〉) est un espace euclidien. Les trois énoncés suivants sont équivalents.

i) L’endomorphisme ϕ est un endomorphisme symétrique de E.

ii) Il existe une base orthonormée B de E telle que la matrice MatB(ϕ) soit une matrice symétrique.

iii) Pour toutes les bases orthonormées B de E, la matrice MatB(ϕ) est une matrice symétrique.

Théorème 4 (lien avec les matrices)

Exercice 3 FF

1. Justifier que l’ensemble S (E) des endomorphismes symétriques de E est un sous-
espace vectoriel de L (E).

2. Si E est de dimension finie, pouvez-vous préciser sa dimension?

# AS3

2 Réduction

2.1 Diagonalisation des endomorphismes symétriques

Premières propriétés

Soientϕ un endomorphisme symétrique d’un espace euclidien
(
E,〈·, ·〉) et F un sous-espace vectoriel de E.

Si F est stable par ϕ,

alors F⊥ est également stable par ϕ.

Proposition 5 (espace stable)
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Soit ϕ un endomorphisme symétrique d’un espace euclidien
(
E,〈·, ·〉).

Si u et v sont deux vecteurs propres de ϕ associés à des valeurs propres distinctes,

alors les vecteurs u et v sont orthogonaux.

Proposition 6 (vecteurs propres orthogonaux)

Remarque. On a la généralisation suivante. Si e1, . . . ,ep sont des vecteurs propres de f associés à des valeurs propres
deux à deux distinctes, alors la famille

(
e1, . . . ,ep

)
est orthogonale.

Soit ϕ un endomorphisme symétrique d’un espace euclidien
(
E,〈·, ·〉).

Alors les sous-espaces propres de ϕ sont deux à deux orthogonaux.

Corollaire 7 (espaces propres orthogonaux)

Exemple. Soit Mn(R) muni du produit scalaire 〈A,B〉 = Tr(tAB). On vérifie que ϕ : M ∈ Mn(R) 7→ tM ∈ Mn(R) est
un endomorphisme symétrique. ϕ possède deux valeurs propres : −1 et 1 où E1(ϕ), E−1(ϕ) désigne respectivement
l’ensemble des matrices symétriques et antisymétriques. Ces sous-espaces sont donc orthogonaux.

Le théorème spectral

Si ϕ est un endomorphisme symétrique d’un espace euclidien
(
E,〈·, ·〉),

alors * L’endomorphisme ϕ est diagonalisable, les valeurs propres sont réelles.

* Il existe une base orthonormée de E formée de vecteurs propres de ϕ.

Théorème 8 (spectral)

! Attention. Il ne faut pas oublier que la base des vecteurs propres peut être choisie orthonormée.

Exercice 4
FF . Les questions sont indépendantes.
Soit ϕ un endomorphisme symétrique d’un espace euclidien

(
E,〈·, ·〉).

1. Que dire de ϕ si pour tout u ∈ E, 〈u,ϕ(u)〉 = 0 ?

2. Justifier que Sp(ϕ) ⊂R+ si et seulement si ϕ vérifie

∀u ∈ E, 〈u,ϕ(u)〉 Ê 0 (•)

# AS4

Exercice 5
G Soit A ∈Mn (R) symétrique. Justifier que l’application linéaire

Φ :

{
Mn (R) → Mn (R)

M 7→ AM

est aussi diagonalisable.

On pourra introduire le produit scalaire canonique sur Mn (R).
# AS5
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2.2 Diagonalisation des matrices symétriques réelles

Théorème spectral dans le cas matriciel

Si A ∈Mn(R) est symétrique,

alors * A est diagonalisable, les valeurs propres sont réelles.

* Il existe une matrice orthogonale P et une matrice diagonale réelle D telles que

A = PDP−1 = PDtP.

Théorème 9 (spectral, version matricielle)

Remarque. Les colonnes de la matrice P forment une b.o.n de vecteurs propres de A. Pour rappel, une matrice est or-
thogonale si et seulement si les matrices colonnes forment une base orthonormée pour le produit scalaire canonique
de Mn,1(R).

Exercice 6

Les questions sont indépendantes.

1. F On considère la matrice A =
 0 0 1

0 1 0
1 0 0

 .

Justifier que A est diagonalisable. Calculer A2. En déduire que Sp(A) = {−1;1}.

2. FF Soit M ∈Mn (R) telle que M+ tM soit nilpotente.
Montrer que la matrice M est antisymétrique.

# AS6

Soit A une matrice symétrique de Mn(R).

Notons * (λ1, . . . ,λn) les valeurs propres de A.
* (X1, . . . ,Xn) une b.o.n de vecteurs propres de A telle que AXi = λi Xi pour tout i ∈ [[1;n]].

Alors A =
n∑

i=1
λi Xi

t Xi = λ1X1
t X1 +·· ·+λnXn

t Xn .

Proposition 10 (décomposition d’une matrice symétrique)

Exercice 7

F Justifier que les matrices Xi
t Xi pour i ∈ [[1;n]] sont des matrices de projection dont on

déterminera les éléments caractéristiques (ici, une base du noyau et de l’image).

# AS8

Remarque. En particulier, A est combinaison linéaire de n matrices de projecteurs de rang 1.

Exercice 8
F On reprend les notations de l’énoncé précédent et on suppose en plus les réels λi positifs.

1. Montrer que la matrice L = n∑
i=1

√
λi Xi

t Xi est symétrique à valeurs propres positive et vérifie

l’égalité L2 = A. Prouver que L commute avec A.

2. On admet que c’est la seule matrice symétrique avec des valeurs propres dont le carré vaut
A et on la note

p
A. Montrer que si A est de plus inversible, alors on a (

p
A)−1 =

p
A−1.

# AS9
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Pratique de la réduction des matrices symétriques

Comment obtenir une b.o.n de vecteurs propres d’une matrice/endomorphisme symétrique?

* Déterminer les valeurs propres.
(Par un calcul du rang, un polynôme annulateur, le déterminant ...)

* Pour chaque valeur propre, déterminer une base de vecteurs propres.

* À l’aide du procédé d’orthonormalisation de Schmidt, déterminer une base orthonormée pour chacun
des sous-espaces propres.

* On obtient une base de E par concaténation des bases orthonormées des sous-espaces propres.

M
ét

h
o

d
e

Exercice 9 F Diagonaliser dans une b.o.n chacune des matrices symétriques suivantes :

A =
 2 0 2

0 0 0
2 0 2

 et B =
 2 2 −2

2 5 −4
−2 −4 5

 .

# AS10

3 Formes quadratiques associées à une matrice

Définitions

Soit A ∈Mn(R), symétrique. La forme quadratique associée à A est l’application définie sur Rn par

q(h) = tHAH

où H est la matrice des coordonnées de h dans la base canonique de Rn .

Définition 11 (forme quadratique d’une matrice symétrique)

Remarque. On constate que pour A = (
ai j

)
(i , j )∈[[1;n]]2 et h = (hi )i∈[[1;n]], q(h) = ∑

i , j∈[[1;n]]
ai j hi h j .

Par symétrie de A, on peut réécrire cette expression

q(h) =
n∑

i=1
ai i hi

2 +2
∑
i< j

ai j hi h j .

En particulier, si A est diagonale avec A = diag(λ1,λ2, . . . ,λn), on a simplement q(h) =
n∑

i=1
λi hi

2.

Exercice 10
F Forme quadratique associée à un endomorphisme symétrique
On se place dans Rn muni du produit scalaire canonique. Soient ϕ un endomorphisme symé-
trique de Rn et A la matrice de ϕ dans la base canonique.
Justifier que si q est la forme quadratique associée à A alors

∀h ∈Rn , q(h) = 〈
h,ϕ(h)

〉
.

# AS12
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Expression dans une b.o.n

Soit q , une forme quadratique associée à une matrice symétrique A. Alors il existe une base orthonormée
B de Rn telle que si h a pour coordonnées h̃1, . . . , h̃n dans B, on a

q(h) =
n∑

i=1
λi h̃i

2
,

où λ1, . . . ,λn sont les valeurs propres de A.

Théorème 12 (expression dans une b.o.n)

Exemple. . L’encadrement de Rayleigh.

Signe d’une forme quadratique

Exercice 11 G . À quelles conditions nécessaires et suffisantes sur le spectre de A, a-t-on

i) ∀u ∈ E, q(u) Ê 0 ?

ii) ∀u ∈ E, q(u) É 0 ?

iii) ∀u ∈ E \
{
0E

}
, q(u) > 0 ?

iv) ∀u ∈ E \
{
0E

}
, q(u) < 0 ?

# AS13
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Exercices

Matrices symétriques

TD Exercice 12. F Soit n Ê 3. On note A ∈Mn (R) la matrice dont tous les coefficients valent 1 sauf le coefficient en position (n,n) # AS14

qui vaut 0.

1. Justifier que A est diagonalisable.

2. Vérifier que A est semblable à une matrice diagonale de la forme D = diag(0, . . . ,0, a,b) avec a, b ∈R.

3. En calculant de deux manières la trace de A et celle de A2, déterminer a et b.

Exercice 13. FF ¤ Soient A et B deux matrice symétriques réelles telles que les formes quadratiques associées qA et qB # AS15

soient égales. Justifier que A = B.

Exercice 14. F Rayon spectral, exemple de convergence de suite de matrices # AS16

On munit Mp,1(R) du produit scalaire canonique défini par 〈M,N〉 = tMN et on note ||·|| la norme associée. Soit A, une matrice
symétrique de Mp (R). On pose ρ(A) = max

λ∈Sp(A)
|λ|.

1. Justifier que pour tout X ∈Mp,1(R), ‖AX‖ É ρ(A)‖X‖.

2. Établir l’équivalence entre les énoncés :

i) ρ(A) < 1 ii) Pour tout X ∈Mp,1(R),
∥∥An X

∥∥ −→
n→∞0.

Matrices symétriques positives, définies positives

Exercice 15. F . Définitions des symétriques définies positives et équivalences # AS18

On dit qu’une matrice symétrique M de Mn (R) est définie positive si pour tout X ∈ Mn,1(R) non nul, on a t XMX > 0. Montrer
l’équivalence des quatre énoncés suivants :

i ) M est une matrice symétrique définie positive.

i i ) Les valeurs propres de M sont strictement positives.

i i i ) Il existe P orthogonale, D diagonale à coefficients diagonaux strictement positifs, telles que M = PDt P.

i v) Il existe une matrice R inversible et symétrique telle que M = R2.

TD Exercice 16. FFF Racine carrée d’une matrice de S +
n # AS19

Pour tout n ∈N∗, on note S +
n l’ensemble des matrices symétriques de Mn (R) dont les valeurs propres sont strictement positives.

Soit A ∈S +
n .

1. Montrer qu’il existe R ∈S +
n telle que A = R2. On dit que R est une racine carrée de A.

2. Soient R1 et R2 deux racines carrées de A appartenant à S +
n .

Montrer que R1 et R2 ont les mêmes valeurs propres et les mêmes vecteurs propres. En déduire que la matrice A admet une
unique racine carrée dans S +

n notée dans la suite
p

A.

3. Expression de
p

A via les polynômes de Lagrange.
Soient p ∈N∗ et λ1, . . . ,λp , les p valeurs propres de A deux à deux distinctes. Pour tout j ∈ [[1; p]], on définit le polynôme :

L j (x) = ∏
i∈[[1;p]]

i 6= j

x −λi

λ j −λi
.

a) Montrer que B = (
L1, . . . ,Lp

)
est une base de Rp−1[x]. En déduire l’existence d’un unique polynôme P de Rp−1[x] tel que,

pour tout i ∈ [[1; p]], P
(
λi

)=√
λi .

b) Exprimer
p

A comme un polynôme en A.

4. Soit A =
 2 1 1

1 2 1
1 1 2

. vérifier que A est dans S+n et déterminer
p

A.

Exercice 17. FF Soient A et B deux matrices symétriques réelles d’ordre n dont les valeurs propres sont strictement positives. # AS20

1. Montrer l’équivalence : A = B ⇐⇒ A2 = B2.

2. Est-ce encore vrai si on suppose les valeurs propres positives ou nulles ?
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Endomorphismes symétriques

Exercice 18. F Soient
(
E,〈·, ·〉) un espace euclidien et ϕ un endomorphisme symétrique de E. Démontrer que Ker(ϕ) et Im(ϕ) # AS22

sont supplémentaires orthogonaux.

Exercice 19. G Vrai ou faux? # AS23

Si B est une base adaptée à la décomposition en sous-espaces propres d’un endomorphisme symétrique d’un espace euclidien,
alors B est une base orthogonale.

Exercice 20. FF La symétrie implique la linéarité # AS24

Soit ϕ : E → E tel que, pour tous u, v ∈ E, on a 〈ϕ(u), v〉 = 〈u,ϕ(v)〉. Justifier que ϕ est un endomorphisme.

Exercice 21. F Exemple d’endomorphisme symétrique en dimension infinie D’après EMLyon 2011 # AS25

On note E =C ∞([0;1];R), muni du produit scalaire 〈·, ·〉 défini par :

∀ f , g ∈ E,
〈

f , g
〉= ∫ 1

0
f (x)g (x)dx.

et, pour toute fonction f ∈ E, on pose

T( f ) :

{
[0;1] → R

x 7→ (
x2 −x

)
f ′′(x)+ (2x −1) f ′(x).

Montrer que T est un endomorphisme symétrique de E.

Exercice 22. F Endomorphisme symétrique et produit scalaire d’après EDHEC 2015 # AS27

On considère l’espace euclidien Rn muni du produit scalaire canonique. On note B = (e1,e2, . . . ,en ) la base canonique de Rn qui
est orthonormée pour le produit scalaire 〈·, ·〉 .
On considère un endomorphisme f de Rn , symétrique, dont les valeurs propres sont toutes strictement positives.

1. Justifier l’existence d’une base orthonormée de Rn , B′ = (u1,u2, . . . ,un ), formée de vecteurs propres de f .

2. a) Montrer que, pour tout x de Rn , on a :
〈

x, f (x)
〉Ê 0.

b) Vérifier que l’égalité 〈x, f (x)〉 = 0 a lieu si et seulement si x = 0.

c) En déduire que l’application ϕ, de Rn ×Rn dans R, définie par ϕ(x, y) = 〈x, f (y)〉, est un produit scalaire sur Rn .

3. a) En utilisant B′, montrer qu’il existe un endomorphisme g de Rn , symétrique pour le produit scalaire canonique, dont les
valeurs propres sont strictement positives, et tel que g 2 = f .

b) Établir que g est bijectif.

c) Montrer que la famille
(
g−1 (e1) , g−1 (e2) , . . . , g−1 (en )

)
est une base orthonormée de Rn pour le produit scalaire ϕ.

Exercice 23. FF . # AS36

Soient
(
E,〈·, ·〉) un espace euclidien de dimension n, et f un endomorphisme symétrique de E. En notant λ1, . . . ,λp ses valeurs

propres telles que λ1 É ·· · É λp , montrer que

∀x ∈ E, λ1‖x‖2 É 〈 f (x), x〉 É λp‖x‖2.

Exercice 24. FFF Oraux HEC 2009 # AS29

Soient
(
E,〈·, ·〉) un espace euclidien de dimension n et f , g deux endomorphismes de E symétriques et ayant des valeurs propres

strictement positives.

1. Prouver qu’il existe un endomorphisme ϕ de E ayant des valeurs propres positives tel que f =ϕ2 =ϕ◦ϕ.

2. Montrer que : Ker( f + g ) = Ker f ∩Ker g .

Endomorphismes particuliers d’un espace euclidien

TD Exercice 25. F Un exemple d’endomorphisme antisymétrique # AS31

Soit n un entier au moins égal à 3. On travaille dans l’espace E = Rn muni de son produit scalaire canonique. On considère deux
vecteurs a et b de Rn de norme 1 et orthogonaux. On définit sur E l’application f par :

∀x ∈ E, f (x) = 〈a, x〉b −〈b, x〉a.

1. Vérifier que f est un endomorphisme de E.

2. a) Déterminer Ker f et une base de Im f .

b) Vérifier que Ker f et Im f sont supplémentaires.

3. Montrer que :
∀(x, y) ∈ E2, 〈 f (x), y〉 =−〈x, f (y)〉
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4. En déduire que f ◦ f est un endomorphisme symétrique.

5. À quelle condition sur l’entier naturel k, l’endomorphisme f k est diagonalisable.

Exercice 26. FF Soit E un espace euclidien de dimension n. Soient f et g deux endomorphismes de E tels que f ◦g = g ◦ f . On # AS32

note S (resp. T) la matrice de f (resp. g ) dans une base orthonormée B de E. On suppose que S est symétrique et T antisymétrique.
Montrer que :

∀x ∈ E,
∥∥( f − g )(x)

∥∥= ∥∥( f + g )(x)
∥∥ .

TD Exercice 27. F . Adjoint u∗ d’un endomorphisme u et endomorphismes normaux d’après EDHEC 2019 # AS33

Soient
(
E,〈·, ·〉) un espace euclidien de dimension n et ϕ un endomorphisme de E. On note B = (e1,e2, . . . ,en ) une base orthonor-

mée de E.

• Définition de l’adjoint d’un endomorphisme de E

Pour tout y ∈ E, on pose ϕ∗(y) =
n∑

i=1

〈
ϕ

(
ei

)
, y

〉
ei .

1. Vérifier que ϕ∗ est un endomorphisme de E et : ∀x, y ∈ E, 〈ϕ(x), y〉 = 〈
x,ϕ∗(y)

〉
.

2. ¤ Que dire de (ϕ∗)∗ ?

3. ¤ Comparer les matrices de ϕ et ϕ∗ dans la base B. En déduire que ϕ◦ϕ∗ est diagonalisable.

• Étude des endomorphismes normaux
Dans la suite, on suppose que ϕ est un endomorphisme normal, c’est-à-dire ϕ commute avec ϕ∗ :

ϕ◦ϕ∗ =ϕ∗ ◦ϕ.

4. Montrer que : ∀x ∈ E, ‖ϕ(x)‖ = ∥∥ϕ∗(x)
∥∥.

5. En déduire que Ker(ϕ) = Ker
(
ϕ∗)

.

6. Montrer que si F est un sous-espace vectoriel de E stable par ϕ, alors F⊥ est stable par ϕ∗.

7. On suppose queϕ possède une valeur propre λ et on note Eλ(ϕ) le sous espace propre associé. Montrer que Eλ(ϕ) est stable par
ϕ∗, puis en déduire que E⊥

λ
est stable par ϕ.

À Pour aller plus loin, HEC 2019 Maths I, Essec 2014

Compléments

Exercice 28. FFF Une descente de gradient D’après ESCP 2012 # AS34

Soit n ∈ N \ {0;1}. On considère Rn muni de son produit scalaire canonique noté 〈·, ·〉 et ‖ · ‖, la norme associée, et A ∈ Mn (R),
symétrique réelle dont les valeurs propres sont toutes strictement positives.
On confond vecteur de Rn et matrice colonne canoniquement associée et on pose, pour tout X ∈ Rn ,

Φ(X) = t XAX.

1. Soit B un élément de Rn . Montrer que l’équation AX = B d’inconnue X ∈Rn admet une unique solution qu’on notera R.

2. Montrer qu’il existe deux réels α et β strictement positifs tels que pour tout X de Rn

α‖X‖2 ÉΦ(X) É β‖X‖2.

3. Dans la suite de l’exercice, on pose pour X ∈Rn : F(X) =Φ(X)−2t BX.

a) Déterminer le gradient ∇FX de F en X.

b) Soient X et H deux éléments de Rn . Montrer que

F(X+H) = F(X)+〈∇FX,H〉+Φ(H).

c) En déduire que F possède un minimum sur Rn . En quel point est-il atteint?

4. Soit X ∈Rn fixé, X 6= 0. Déterminer α ∈R de façon à ce que F
(
X−α∇FX

)
soit minimal. Calculer ce minimum.

5. Soit X0 ∈Rn . On définit une suite
(
Xk

)
k∈N de vecteurs de Rn par, pour tout k ∈N :

Xk+1 = Xk −αk∇FXk
, où αk =

∥∥∇FXk

∥∥2

2Φ
(
Xk

) si Xk 6= R et 0 sinon.

a) Montrer que la suite
(
F

(
Xk

))
k∈N converge.

b) Exprimer F
(
Xk+1

)−F
(
Xk

)
en fonction de αk et de ∇FXk

.

6. Une suite
(
Yk

)
k∈N de vecteurs de Rn sera dite convergente vers un vecteur Z ∈Rn si lim

k→+∞
∥∥Yk −Z

∥∥= 0, ce qui revient à dire que

les coordonnées de Yk convergent vers les coordonnées correspondantes de Z.
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a) Montrer que la suite
(∇FXk

)
k∈N converge vers 0.

b) En déduire la limite de la suite
(
Xk

)
k∈N.

TD Exercice 29. FFF Décomposition spectrale, calcul et application # ASp1

Soit M ∈Mn (R), inversible.

• Existence de la décomposition

1. Montrer que t MM est une matrice symétrique de valeurs propres strictement positives. En déduire qu’il existe une matrice
symétrique à valeurs propres strictement positives S telle que t MM = S2.

2. ¤ Montrer qu’il existe une matrice orthogonale O telle que M = OS.

• Unicité de la décomposition
Il existe un unique couple (O,S), O orthogonale, S symétrique à valeurs propres strictement positives, tel que M = OS. Pour s’en
convaincre, on a vu en exercice que la matrice S est unique (le refaire si besoin). La matrice O l’est donc tout autant et on a bien
l’unicité du couple (O,S).

• Algorithme par la méthode de Newton
Dans la suite, on dit qu’une suite de matrices (Ak )k de Mn (R) converge vers une matrice A si pour tout couple (i , j ) ∈ [[1;n]]2, la
suite des coefficients ([Ak ]i , j )k converge vers le coefficient [A]i , j . On admet 1 le résultat suivant :
Soit M ∈Mn (R) inversible. La suite

(
Mk

)
k de matrices de M ∈Mn (R) définie par

M0 = M et Mk+1 = 1

2
Mk

(
In + (t Mk Mk

)−1
)

est bien définie, converge vers O, où M = OS est la décomposition polaire de M. De plus, la suite
(t Mk M

)
k converge vers S.

3. ¤ Justifier que pour tout k ∈N, la matrice Mk est inversible.

4. Proposer un programme python qui prend en argument M et renvoie une approximation du couple (O,S) obtenue par décom-
position polaire.

• Application
Soit

(
E,〈·, ·〉) un espace euclidien et ||·|| la norme euclidienne associée.

Un endomorphisme f de E est appelé contraction si pour tout x de E,‖ f (x)‖ É ‖x‖.

5. Donner un exemple de contraction de E.

6. On suppose dans cette question que l’endomorphisme f est symétrique.

a) ¤ Montrer que f est une contraction si et seulement si pour toute valeur propre λ de f , on a |λ| É 1.

b) Soit P un polynôme de R[x]. Montrer que pour tout x de E :

‖P( f )(x)‖ É sup
λ∈Sp( f )

|P(λ)| · ‖x‖

où Sp( f ) désigne l’ensemble des valeurs propres de f .

• On suppose désormais que f est un endomorphisme bijectif de E, et on note M sa matrice associée dans une base B orthonor-
mée de E.

7. ¤ Montrer que f est une contraction si et seulement si pour toute valeur propre λ de S, on a |λ| É 1.

• Exemple
Pour tout (a,b) ∈R2 \ {(0,0)}, on pose Ma,b =

[
a b
−b a

]
.

On note (Sa,b ,Oa,b ) le couple obtenue dans la décomposition polaire.

8. a) Expliciter la matrice Sa,b dans cet exemple.

b) ¤ Justifier ensuite que det(Oa,b ) = 1 et qu’il existe un réel θ tel que Oa,b =
[

cos(θ) sin(θ)
−sin(θ) cos(θ)

]
.

9. ¤ On pose J = M(0,1). On pose ensuite exp(θJ) = lim
n→+∞

2n+1∑
k=0

1

k !
(θJ)k .

Démontrer que Oa,b = exp(θJ).

TD Exercice 30. FFF Lemme du théorème spectral # ASp2

On se propose dans la suite d’établir le résultat préliminaire et admis dans la preuve du théorème spectral : toute matrice symé-
trique réelle admet un valeur propre 2.

1. mais on pourrait le démontrer (DS11 de l’année dernière).
2. La preuve classique utilise les nombres complexes. Ces derniers sont hors-programme en ECG.
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• Résultat 1
Soient A ∈Mn (R), symétrique et δ ∈R+∗ .

1. Justifier que A2 +δIn est une matrice inversible.

2. ¤ Soit R, un polynôme de degré 2 dont le discriminant est strictement négatif. Déduire de la question 1 que R(A) est inversible.

• Résultat 2 - Polynôme minimal

3. Justifier que toute matrice A ∈Mn (R) admet un polynôme annulateur non nul.

4. Démontrer qu’il existe un polynôme non nul annulateur de A de degré minimal et unitaire. Notons ΠA, un tel polynôme.

5. (facultatif). Montrer que pour tout polynôme P annulateur de A, il existe Q polynôme tel que P = ΠA ·Q. En déduire que le
polynôme ΠA est unique.

6. Justifier que si λ est une racine de ΠA, alors λ est une valeur propre de A.

• Résultat 3
On rappelle que pour tout polynôme P, il existe :

* a, un réel ;

* des réels
(
λi

)
i∈[[1;r ]] et des entiers naturels

(
mi

)
i∈[[1;r ]] ;

* des polynômes
(
R j

)
j∈[[1;p]]

de degré 2, unitaire et de discriminant négatif

tels que P = a
r∏

i=1

(
x −λi

) · p∏
j=1

R j .

7. À l’aide des trois résultats, montrer que pour toute matrice A symétrique admet une valeur propre réelle.

On montre ainsi que la matrice admet un polynôme annulateur non nul scindé à racines simples. On a vu en exercice que cela prouve
la diagonasabilité de la matrice. C’est le théorème spectral.

Algebra is like sheet of music. The important thing isn’t can you read music, it’s
can you hear it. Can you hear the music, Robert ?

NIELS BOHR TO J. ROBERT OPPENHEIMER,
2023, Oppenheimer (film)
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CHAPITRE15
Projections orthogonales

L’art des mathématiques consiste à trouver le cas particulier qui
contient tous les germes de la généralité.

DAVID HILBERT

Mathématicien allemand (1862-1943)

1 Rappels

1.1 Les projecteurs

Soient E un espace vectoriel et F, G deux sous-espaces vectoriels supplémentaires.

G

F

uG

uF0E

u Ainsi, pour tout u ∈ E, il existe une unique décompo-
sition u = uF +uG où (uF,uG) ∈ F×G. On pose

p :

{
E → E
u 7→ uF.

Cette application est linéaire, elle est appelée le projecteur sur F parallèlement à G.

Définition 13 (projecteur)

Remarque. Rappelons que F = Im(p) = Ker
(
p − idE

)
et G = Ker(p). En particulier, on a E = Im(p)⊕Ker(p). De plus,

idE−p est le projecteur sur G parallèlement à F.

Soit p : E → E une application. Les propriétés suivantes sont équivalentes.

i) L’application p est un projecteur.

ii) L’application p est linéaire et p ◦p = p.

Théorème 14 (caractérisation d’un projecteur)

Exercice 31

F

1. Soit p un projecteur d’un espace vectoriel E.

a) Donner les puissances de p, puis celles de 2idE+p.

b) Soient λ,µ ∈ R, simplifier
(
λp +µidE

) ◦ (
2idE +p

)
. En déduire que 2idE+p est un iso-

morphisme.

2. Considérons deux projecteurs p et q qui commutent.
Montrer que p ◦q est un projecteur et justifier que Ker(p)+Ker(q) ⊂ Ker(p ◦q).

# PO1
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1.2 Rappels sur les sous-espaces orthogonaux

Soit F un sous-espace vectoriel de E. On appelle orthogonal de F, et on note F⊥, l’ensemble des vecteurs orthogo-
naux à F, c’est-à-dire :

F⊥ = {
u ∈ E |∀v ∈ F, 〈u, v〉 = 0

}
.

Soit F, un sous-espace vectoriel d’un espace euclidien
(
E,〈·, ·〉). Alors

E = F⊕F⊥.

En particulier dimF+dimF⊥ = dimE.

Proposition 15 (espaces supplémentaires orthogonaux)

Remarque. Soit (e1, . . . ,ep ) est une base orthonormée de F que l’on complète par (e1, . . . ,ep ,ep+1, . . . ,en), une base
orthonormée de E. On a

F = Vect
(
e1, . . . ,ep

)
, F⊥ = Vect

(
ep+1, . . . ,en

)
.

Exercice 32

F Les questions sont indépendantes.

1. Dans R3 muni du produit scalaire canonique, on considère les plans F et G d’équations
respectives :

x +2y +3z = 0 et x − y − z = 0.

Déterminer une base de F⊥ puis de (F∩G)⊥.

2. Soit R3[x] muni du produit scalaire 〈P,Q〉 =
∫ 1

0
P(t )Q(t )dt . On pose F =R1[x].

Déterminer une base de F⊥.
# PO2

Exercice 33

FF Soient
(
E,〈·, ·〉) un espace euclidien et F,G deux sous-espaces vectoriels.

Justifier que F et G sont supplémentaires si et seulement si F⊥ et G⊥ sont supplémentaires.

# PO3

Soit F = Vect(e1, . . . ,ek ) un sous-espace vectoriel de E. On a

u ∈ F⊥ ⇐⇒ ∀ i ∈ [[1,k]], 〈u,ei 〉 = 0.

Proposition 16 (condition nécessaire et suffisante d’appartenance à l’orthogonal)

Exercice 34

F Vecteur normal à un hyperplan
Soit F un hyperplan d’un espace euclidien

(
E,〈·, ·〉).

1. Montrer qu’il existe u0 ∈ E tel que pour tout v ∈ E : v ∈ F ⇐⇒ 〈u0, v〉 = 0.

2. Exemples

a) On considère E = R3 muni du produit scalaire canonique et l’hyperplan F ={
(x, y, z) ∈R3 |2x +3y − z = 0

}
. Déterminer un vecteur normal à F.

b) Soit maintenant E = R3[x] et le produit scalaire défini par 〈P,Q〉 =
∫ 1

−1
P(t )Q(t )dt . Dé-

terminer un vecteur normal à R2[x].
# PO4
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2 Projecteurs orthogonaux

2.1 Définitions et exemples

Soit
(
E,〈·, ·〉), un espace euclidien.

On appelle projection orthogonale sur F, notée pF, la projection sur F parallèlement à F⊥.
Pour tout u ∈ E, pF(u) est appelé le projeté orthogonal de u sur F.

Définition 17 (projecteur orthogonal)

Retenons

v = pF(u) ⇐⇒
{

v ∈ F

u − v ∈ F⊥.

D’après le rappel du début de chapitre, un projecteur p est
orthogonal si et seulement si Im(p) et Ker(p) sont supplé-
mentaires orthogonaux, si et seulement si E0(p) et E1(p)
sont des supplémentaires orthogonaux de E.

Exercice 35

F . Exemple
Soit Mn (R) muni du produit scalaire 〈A,B〉 = Tr

(t AB
)

. On définit l’application

p : Mn (R) →Mn (R), p(M) = M+ t M

2
.

1. Vérifier que p est un projecteur. Préciser le noyau et l’image de p.

2. Est-ce que p est un projecteur orthogonal ?

# PO6

Soit p, un projecteur d’un espace euclidien
(
E,〈·, ·〉). On a l’équivalence entre les énoncés suivants.

i) Le projecteur p est orthogonal.

ii) L’endomorphisme p est symétrique.

Proposition 18 (caractérisation)

Soient E un espace euclidien, B une base orthonormée de E, p un endomorphisme et A = MatB(p).
On a l’équivalence entre :

i) L’endomorphisme p est un projecteur orthogonal.

ii) La matrice A est symétrique et A2 = A.

Proposition 19 (caractérisation matricielle)

! Attention. Il ne faut pas oublier la condition : B est une base orthonormée.

Exemple. La matrice UtU où U est une matrice colonne de norme 1.
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2.2 Expression et calcul explicite du projeté

Soit F, un sous-espace vectoriel d’un espace euclidien
(
E,〈·, ·〉) et pF, le projecteur orthogonal sur F.

Si BF = (
e1, . . . ,ep

)
est une base orthonormée de F,

alors ∀u ∈ E, pF(u) =
p∑

i=1
〈u,ei 〉ei .

Théorème 20 (expression du projeté dans une b.o.n)

• Projection sur une droite vectorielle
Considérons le cas où F est une droite vectorielle. Il
existe donc e ∈ E \ {0E} tel que F = Vect(e).
La famille constituée d’un unique vecteur (e1) =
(e/‖e‖) est une base de F et d’après ce qui précède

pF(u) = 〈u,e1〉e1 = 〈u,e〉
‖e‖2 e.

• Projection sur un hyperplan.

pF(u)

u

e

e1
0E

Remarque. Retour sur le procédé d’orthonormalisation de Schmidt.
Soient (u1, . . . ,un) une base de E non nécessairement orthonormée. Pour tout k ∈ [[1;n −1]], posons pk , le projecteur
orthogonal sur Vect(u1, . . . ,uk ). On définit ensuite la famille (e1, . . . ,en) de vecteurs de E par la récurrence

e1 =
u1

||u1||
et ∀k ∈ [[2;k −1]], ek+1 =

uk+1 −pk (uk+1)∣∣∣∣uk+1 −pk (uk+1)
∣∣∣∣.

La famille (e1, . . . ,en) est bien définie, elle constitue une base orthonormée de E avec

∀k ∈ [[1;n]], Vect(u1, . . . ,uk ) = Vect(e1, . . . ,ek ).

Comment calculer en pratique un projeté?

Soient u ∈ E et F, un sous-espace vectoriel de E. Calculons pF(u), le projeté orthogonal de u sur F.

• Étape 1
On trouve une base

(
u1, . . . ,up

)
de F (non nécessairement orthonormée).

• Étape 2

Comme pF(u) ∈ F, il existe un unique p-uplet (λ1, . . . ,λp ) ∈ Rp tels que pF(u) =
p∑

i=1
λi ui . On remarque

ensuite que 

〈
u −pF(u),u1

〉= 0〈
u −pF(u),u2

〉= 0
...〈

u −pF(u),up
〉= 0

On explicite alors le système linéaire d’inconnues (λi )i∈[[1;p]]

〈u,u1〉 =
〈

pF(u),u1
〉= n∑

i=1
λi 〈ui ,u1〉

〈u,u2〉 =
〈

pF(u),u2
〉= n∑

i=1
λi 〈ui ,u2〉

...
...

...〈
u,up

〉= 〈
pF(u),up

〉= n∑
i=1
λi

〈
ui ,up

〉

M
ét

h
o

d
e
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• Étape 3
On résout le système linéaire précédent à p équations pour trouver les p inconnues (λi )i∈[[1;p]]. On conclut

par le calcul de pF(u) =
p∑

i=1
λi ui .M

ét
h

o
d

e

Exemple. Dans R3, calcul du projeté de u = (0,−1,4) sur l’espace vectoriel F = {
(x, y, z) ∈R3 | x −2y +3z = 0

}
.

Exercice 36
F Exemple

Soient R2[x] muni du produit scalaire 〈P,Q〉 =
∫ 1

0
P(t )Q(t )dt et F =R1[x].

Donner l’expression du projeté orthogonal de Q(x) = 1+x +x2 sur F.

# PO7

3 Applications à l’optimisation

3.1 Distance à un sous-espace vectoriel

Soient F un sous-espace vectoriel d’un espace euclidien
(
E,〈·, ·〉) et u ∈ E. On définit (sous réserve d’existence), la

distance du vecteur u à F par
d(u,F) = min

v∈F
‖u − v‖.

Notons que u ∈ F si et seulement si d(u,F) = 0.

Soient F un sous-espace vectoriel d’un espace euclidien
(
E,〈·, ·〉), pF la projection orthogonale sur F et

u ∈ E. Alors la distance d(u,F) est bien définie et

d(u,F) = min
v∈F

‖u − v‖ = ∥∥u −pF(u)
∥∥ .

De plus, le minimum est atteint seulement pour v = pF(u).

Théorème 21 (caractérisation du projeté par minimisation de la norme)

Remarques.
• Le projeté orthogonal de u sur F est caractérisé par

∀v ∈ F, ‖u − v‖ Ê ‖u −p(u)‖.

Autrement dit : pour tout u ∈ E,

v = pF(u) ⇐⇒
(

v ∈ F et ‖u − v‖ = min
w∈F

‖u −w‖
)

.

• d(u,F)2 = ‖u −p(u)‖2 = ‖u‖2 −‖p(u)‖2.

u

v

u −p(u)

pF(u)
F

0E

pF(u)− v

Exercice 37 F Exemples
Soient

(
E,〈·, ·〉), un espace euclidien, u0 ∈ E \ {0E} et un hyperplan H.

1. Exprimer la distance d’un vecteur x à la droite Vect(u0).

2. Faire de même avec la distance à H. On exprimera le résultat à l’aide d’un vecteur u0 ∈
H⊥ (un vecteur normal, exercice 34).

# PO8

Exemple. On montre que la fonction de deux variables

∀ (x, y) ∈R2, f (x, y) = 4(x −1)2 + (x + y)2 + (x −2y +1)2

admet un minimum sur R2 en considérant dans R3, le produit scalaire canonique de sorte que

f (x, y) =
∥∥∥(

2(x −1) , x + y , x −2y +1
)∥∥∥2 =

∥∥∥(2x , x + y , x −2y)− (2,0,−1)
∥∥∥2

.
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Exercice 38 FF . Justifier que la quantité

inf
(a,b)∈R2

∫ 1

−1

(
t 2 −at −b

)2
dt

est bien définie et la calculer.
# PO9

3.2 Problème des moindre carrés, droite de régression

Projeté sur l’image et moindre carrés

Soit f une application linéaire Rp dans Rn , b un vecteur quelconque de Rn . Lorsque f n’est pas surjective (p < n),
il se peut que b n’appartienne pas à l’image de f et l’équation f (x) = b, d’inconnue x ∈Rp , n’admette pas de solution.
On cherche alors un vecteur x dont l’image « est la plus proche » de b. Plus précisément, on munit l’espace d’arrivée
de sa structure euclidienne canonique et on veut justifier l’existence de

min
x∈Rp

‖ f (x)−b‖

et trouver un (le ?) vecteur x réalisant le minimum. On constate qu’il s’agit de rechercher

min
y∈Im f

‖y −b‖.

Comme Im f est un sous-espace vectoriel de E, le théorème de minimisation prouve l’existence du minimum qui est
atteint en un unique point :

y = p(b) où p désigne le projeteur orthogonal sur Im f .

Soient n, p ∈N∗ avec n Ê p, A ∈Mn,p (R) de rang p et B ∈Mn,1(R).
Alors il existe un unique vecteur X0 ∈Mp,1(R) minimisant la quantité ‖AX−B‖ où ‖ ·‖ désigne ici la norme
associée au produit scalaire canonique sur Mn,1(R).

Théorème 22 (problème des moindre carrés, pseudo-solution)

Remarque. L’exercice suivant permet de justifier que le vecteur X0 est l’unique solution du système de Cramer t AAX =
t AB. On parle alors de pseudo-solution.

Exercice 39 G Exemple

On pose A =
 1 2

2 0
1 1

 et B =
 0

1
2


Justifier et calculer l’unique matrice colonne X telle que la norme ‖AX−B‖ soit minimale.

# PO10

Exercice 40

FF Reprenons les notations du théorème et justifions la remarque précédente.

1. a) Justifier que Ker
(tAA

)= Ker(A), puis rg(tAA) = rg(A).

b) En déduire que tAA est une matrice inversible.

2. a) Vérifier que pour tout X ∈Mp,1(R),
〈

X, tA(AX0 −B)
〉= 0.

b) En déduire que tAAX0 = tAB.

On a donc bien une unique solution donnée par X0 = (tAA
)−1 AB. Pour une seconde démonstra-

tion, voir l’exercice ??, p.??, partie II.
# PO11

Régression linéaire

Considérons n points de R2,
(
x1, y1

)
, . . . ,

(
xn , yn

)
non alignés verticalement. On cherche la droite qui « approxime »

au mieux ces n points. Si on note y = ax +b, l’équation d’une droite, on cherche à minimiser l’erreur

Er =
n∑

i=1
di

2 =
n∑

i=1

(
axi +b − yi

)2.
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Traduisons matriciellement le problème. Posons

X =
[

a
b

]
, A =


x1 1
x2 1
...

...
xn 1

 et B =


y1

y2
...

yn

 de sorte que AX−B =


ax1 +b − y1

ax2 +b − y2
...

axn +b − yn

 .

Si on considère le produit scalaire canonique sur Mn,1(R) et la norme associée

Er = ‖AX−B‖2.

Les deux colonnes de la matrice A forment une famille libre (les points ne sont pas alignés verticalement). La matrice A
est donc de rang 2. D’après le théorème précédent, il existe un seul vecteur minimisant ‖AX−B‖. Calculons ce vecteur
X0 à l’aide de la remarque. On a

t AA =
 n∑

i=1
xi

2 n∑
i=1

xi
n∑

i=1
xi n

 ∈M2(R)

On montre que t AA est inversible et l’inverse est donné par

(t AA
)−1 = 1

n
n∑

i=1
xi

2 −
(

n∑
i=1

xi

)2

 n − n∑
i=1

xi

− n∑
i=1

xi
n∑

i=1
xi

2

 .

De plus, on calcule t AB =
 n∑

i=1
xi yi

n∑
i=1

yi

 .

Ceci permet d’expliciter le vecteur X, puis ses composantes a et b :

a =
n

n∑
i=1

xi yi −
(

n∑
i=1

xi

)(
n∑

i=1
yi

)
n

n∑
i=1

xi
2 −

(
n∑

i=1
xi

)2 =
1
n

n∑
i=1

xi yi −
(

1
n

n∑
i=1

xi

)(
1
n

n∑
i=1

yi

)
1
n

n∑
i=1

xi
2 −

(
1
n

n∑
i=1

xi

)2 .

Si x̄ (resp. ȳ) et σx (resp. σy ) désignent la moyenne et l’écart-type empirique de la série statistique
{

xi | i ∈ �1;n�}
(resp.

{
yi | i ∈ �1;n�}), Cov(x, y) désigne la covariance empirique de x et y et ρx,y désigne le coefficient de corrélation

empirique, alors la droite de régression linéaire de y en x a pour équation :

y − ȳ = ρx,y
σy

σx
(x − x̄) = Cov(x, y)

σ2
x

(x − x̄).

Remarque. Nous verrons une seconde démonstration de ce résultat par le calcul différentiel.
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Exercices

Exercice 41. F . Déterminer la matrice dans la base canonique de Rn de la projection orthogonale sur le sous-espace # PO12

vectoriel

H =
{

(x1, . . . , xn ) ∈Rn

∣∣∣∣∣ n∑
i=1

xi = 0

}
.

Exercice 42. F On place dans R5 muni de son produit scalaire canonique et on note B, la base canonique de R5. Soit F = # PO13

Vect( f1, f2, f3) où
f1 = e1 +e2 −e3, f2 = e3 +e5 et f3 = e2 −e3.

Donner la matrice dans la base canonique du projecteur orthogonal sur F.

TD Exercice 43. FF . À bonne distance d’Attila # PO14

On considère Mn (R) muni du produit scalaire

(A,B) ∈Mn (R) 7→ 〈A,B〉 = Tr
(t AB

) ∈R.

Soit H, le sous-espace vectoriel des matrices de trace nulle.

1. Donner la dimension de H⊥. Préciser une base.

2. Soit J la matrice de Mn (R) dont tous les coefficients sont égaux à 1. Calculer min
A∈H

‖A− J‖.

TD Exercice 44. FFF CNS pour un projecteur orthogonal # PO15

Soient
(
E,〈·, ·〉) un espace euclidien et p, un projecteur de E.

1. Montrer l’équivalence entre les énoncés :

i) Le projecteur p est orthogonal ii) ∀x ∈ E,
〈

x, p(x)
〉Ê 0.

Indication. On pourra considérer λx + y où x ∈ Ker p, y ∈ Im p et λ ∈R.

2. Même question avec les énoncés :

i) Le projecteur p est orthogonal iii) ∀x ∈ E, ‖p(x)‖ É ‖x‖.

TD Exercice 45. FFF . Deux approches pour un même problème de minimisation # PO17

Soit F la fonction définie sur R3 par :

F(x, y, z) = 24x2 +2y2 + z2 +12x y +2y z +4zx −240x −48y −12z.

1. a) Vérifier que F admet un unique point critique, noté A.

b) On admet (par le calcul) que F(x, y, z) = (2x + y + z −6)2 + (4x + y −18)2 +4(x −9)2 −684.
En déduire que F admet un minimum sur R3. Préciser la valeur du minimum.

c) Calculer In =
∫ +∞

0
e−t t n dt pour tout n ∈N.

d) Justifier la convergence et exprimer en fonction de F, l’intégrale :

I(a,b,c) =
∫ +∞

0
e−t

(
t 3 −at 2 −bt − c

)2
dt .

e) En déduire l’existence et la valeur de
I = inf

(a,b,c)∈R3
I(a,b,c).

2. Pour tous P, Q ∈R3[x], on pose

〈P,Q〉 =
∫ +∞

0
e−t P(t )Q(t )dt

On vérifie que cela définit un produit scalaire sur R3[x].

a) En utilisant la question 1, calculer la distance du polynôme P0(x) = x3 au sous-espace R2[x].

b) Comment retrouver ce résultat en calculant le projeté orthogonal de P0 sur R2[x] ?

Exercice 46. FFF Partition de l’unité # PO18

Soit
(
E,〈·, ·〉) un espace euclidien.
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1. Soient p, q deux projecteurs orthogonaux tels que

∀x ∈ E, ‖p(x)‖2 +‖q(x)‖2 É ‖x‖2.

a) Justifier que p ◦q = q ◦p = 0L (E).

b) En déduire que p +q est un projecteur orthogonal.

2. Soient maintenant p1, p2, . . . , pn des projecteurs orthogonaux tels que
n∑

i=1
pi = idE.

a) Montrer que pour tout x ∈ E
n∑

i=1

∥∥pi (x)
∥∥2 = ‖x‖2.

b) En déduire que pour toute partie non vide I de [[1;n]] l’endomorphisme
∑
i∈I

pi est un projecteur orthogonal.

Exercice 47. FFF Sujet de révision extrait de ESSEC 2012 # PO19

Soient m, n ∈N∗. On munit Mm,1(R) de sa structure euclidienne canonique. Ainsi si

X =


x1
x2
...

xm

 et Y =


y1
y2
...

ym

 ∈Mm,1(R),

le produit scalaire de X et Y s’obtient par la relation t XY =
m∑

i=1
xi yi et la norme euclidienne de Y par : ‖Y‖2

m = t YY =
m∑

i=1
yi

2.

1. Question préliminaire.
Soit F un sous-espace vectoriel de Mn,1(R) de dimension k non nulle et

(
U1,U2, . . . ,Uk

)
une base orthonormée de vecteurs

colonnes de F.

On envisage la projection orthogonale sur F représentée par sa matrice P dans la base canonique de Mn,1(R).

Montrer que P = k∑
i=1

Ut
i Ui et vérifier que P est une matrice symétrique.

2. Partie I. Décomposition spectrale de la matrice t AA associée à une matrice A de Mm,n (R).
On envisage dans toute cette partie une matrice A appartenant à Mm,n (R).

a) Préciser la taille de la matrice t AA et vérifier que KerA ⊂ Kert AA.

b) Montrer que si X ∈ Kert AA alors ‖AX‖m = 0 et établir que KerA = Kert AA. Montrer que A et t AA sont nulles simultanément.

c) Justifier l’égalité : Imt A = Imt AA.

3. a) Établir que la matrice t AA est diagonalisable et en calculant ‖AX‖2
m pour X vecteur propre de la matrice t AA, montrer que

ses valeurs propres sont des réels positifs.

b) On désigne par
(
λ1,λ2, . . . ,λp

)
la liste des valeurs propres distinctes de la matrice t AA, classée dans l’ordre croissant.

On rappelle que

Mn,1(R) =
p⊕

i=1
Eλi

(t AA
)

où Eλi

(t AA
)= Ker

(t AA−λi In
)
.

Pour i entier naturel compris entre 1 et p, on note Pi la matrice de la projection orthogonale sur Eλi

(t AA
)

dans la base
canonique de Mn,1(R).
Vérifier que pour i et j distincts compris entre 1 et p,Pi P j est la matrice nulle.

Justifier les relations : In = p∑
i=1

Pi et t AA = p∑
i=1
λi Pi . Cette dernière écriture s’appelle la décomposition spectrale de t AA.

4. Exemples

a) Déterminer la décomposition spectrale de t AA lorsque A est la matrice 3,3 égale à 1 −1 1
1 −1 1
−1 1 2

 .

b) On envisage la matrice ligne A = (a1a2 · · ·an ) où les réels a1, a2, . . . , an sont fixés, non tous nuls simultanément. Ainsi, At A
est un réel. Montrer que le polynôme X2 − (

At A
)

X est annulateur pour la matrice t AA. Préciser la liste des valeurs propres
et la décomposition spectrale de la matrice t AA.

Partie II. Pseudo solution d’une équation linéaire.
On s’intéresse dans cette partie à l’équation AX = B où A ∈Mm,n (R) et B ∈Mm,1(R). Une matrice X appartenant à Mn,1(R) est
dite solution de cette équation si elle vérifie la relation AX = B. Elle est dite pseudo solution de cette équation si elle vérifie :

∀Z ∈Mn,1(R) ‖AX−B‖m É ‖AZ−B‖m

5. On suppose que l’équation AX = B admet au moins une solution. Montrer que X est une pseudo solution si et seulement si elle
est solution de l’équation.
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6. On suppose que X est une pseudo solution de l’équation. Montrer que, pour tout réel λ et toute matrice Y de Mn,1(R), on a :

λ2‖AY‖2
m +2λt Yt A(AX−B) Ê 0.

En déduire que t AAX = t AB.

7. Montrer que tout X de Mn,1(R) vérifiant la relation t AAX = t AB est pseudo solution et en déduire qu’il existe toujours au moins
une pseudo-solution de l’équation.

8. Exemple
Déterminer toutes les pseudo-solutions de l’équation AX = B lorsque :

A =
 1 −1 1

1 −1 1
−1 1 2

 et B =
 2

2
1


Parmi celles-ci, préciser celle dont la norme euclidienne est minimale.

9. Donner une condition sur le rang de A pour que l’équation admette une unique pseudo solution.

Les exotiques

Exercice 48. FFF Dans la suite, on identifie les vecteurs de Rn avec les matrices colonnes de Mn,1(R). # PO20

Soient X1,X2, . . . ,Xn , n variables aléatoires centrées et admettant un moment d’ordre 2. On pose

X =


X1
...

Xn

 et CX =
(
Cov

(
Xi ,X j

))
i , j

∈Mn (R).

1. Soit u = (u1,u2, . . . ,un ) ∈Rn . Exprimer la variance V
(〈u,X〉) à l’aide de CX et u.

(〈·, ·〉 désigne ici le produit scalaire canonique sur Rn ).

2. Soient H un hyperplan de Rn et u ∈ H⊥.
Montrer que l’événement [X ∈ H] est presque sûr si et seulement si u ∈ KerCX.

Exercice 49. FFF Soient X1, X2, deux variables aléatoires indépendantes et suivant une loi normale centrée réduite. Soit M, # PO21

un point de coordonnées (X1,X2). Soient a ∈R et ∆a la droite d’équation y = ax. On pose

Y = inf
u∈∆a

‖M−u‖2.

Justifier que Y admet une espérance et la calculer.
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CHAPITRE16
Convergences et approximations

Ce calcul délicat s’étend aux questions les plus importantes de la
vie, qui ne sont en effet, pour la plupart, que des problèmes de
probabilité.

PIERRE-SIMON, MARQUIS DE LAPLACE

Mathématicien, physicien français (1749-1827)

1 Inégalités de concentration

• Soit Z une variable aléatoire positive admettant une espérance, alors

∀λ ∈R+
∗ , P

(
[Z Ê λ]

)É E(Z)

λ
.

• Soit X une variable aléatoire réelle admettant une variance, alors

∀ε ∈R+
∗ , P

(|X−E(X)| Ê ε)É V(X)

ε2 .

Proposition 23 (inégalités de Markov et de Bienaymé-Tchebychev)

Exercice 50

F En moyenne, une personne sur 100 sait placer dans
le bon ordre les pays baltes sur une carte. On choisit au
hasard n personnes et de manière indépendante, notons
Yn le pourcentage des personnes capables de donner le
bon ordre.

1. Donner l’espérance et la variance de Yn .

2. Par application de l’inégalité de Bienaymé-
Tchebychev, donner une valeur de n à partir de
laquelle Yn se trouve dans l’intervalle

I = ]0,009;0,011[

avec une probabilité supérieure à 0,9.
# CVA2

Remarque. Ces inégalités ont peu d’applications pratiques, car la majoration qu’elles fournissent est la plupart du
temps excessive, mais elles sont valables quelle que soit la loi de X, pourvu que l’on puisse définir une espérance
ou une variance. L’inégalité de Bienaymé-Tchebychev nous permettra toutefois de démontrer la loi faible des grands
nombres (voir théorème page 27).

25



Exercice 51 FF . Soit X une variable à densité dont une densité f est nulle sur R−. On suppose qu’il

existe λ ∈R+∗ tel que
∫ +∞

0
f (t )eλt dt soit convergente. Montrer que

∀a ∈R+∗ , ∀x ∈]0,λ[, P(X Ê a) É e−ax E
(
exX

)
.

# CVA4

Exercice 52
F Soit X une variable aléatoire possédant une espérance de 6 et une variance de 2. Appliquer,
lorsque cela est possible, l’inégalité de Bienaymé-Tchebychev pour majorer ou minorer les
probabilités des événements suivants. Préciser si le résultat obtenu est intéressant.

1. [2 É X É 10] ;

2. [5 < X < 7] ;

3. [X É 7] ;

4. [|X−6| Ê 1] ;

5. [X Ê 11] ;

6. [X Ê 4].

# CVA3

2 Convergence en probabilité

2.1 Définition et exemples

Soient (Xn)n∈N une suite de variables aléatoires définies sur un même espace probabilisé (Ω,A ,P) et X une
variable aléatoire définie aussi sur cet espace.

On dit que la suite (Xn)n converge en probabilité vers la variable aléatoire X, noté Xn
P−→

n→+∞ X si :

∀ε ∈R+
∗ , P

(|Xn −X| Ê ε) −→
n→∞0..

Définition 24 (Convergence en probabilité)

Exemple. Soit (Xn) une suite de variables aléatoires mutuellement indépendantes de loi uniforme continue sur [0;1].
On montre que (Yn)n∈N∗ converge en probabilité vers la variable aléatoire presque surement constante à 1.

Exercice 53
G . Pour tout n ∈N∗, on pose Zn = min(X1,X2, . . . ,Xn ).

Reprendre le calcul précédent pour justifier la convergence en probabilité de (Zn )n vers une

variable aléatoire que l’on précisera.

# CVA5

2.2 Les théorèmes de convergence en probabilité

Règles de calcul

! Attention. Contrairement au cas des suites réelles ou des fonctions numériques, il n’y a pas unicité de la
limite (si elle existe). Plus précisément, si (Xn)n∈N est une suite de variables aléatoires définies sur un même espace
probabilisé (Ω,A ,P) et X, X′ des variables aléatoires définies sur le même espace et telles que

Xn
P−→

n→+∞ X et Xn
P−→

n→+∞ X′ alors P
(
X 6= X′)= 0.

Soient (Xn)n∈N, (Yn)n∈N deux suites de variables aléatoires sur un espace probabilisé (Ω,A ,P).

Si Xn
P−→

n→+∞ X et Yn
P−→

n→+∞ Y

Alors pour tout λ ∈R, λXn
P−→

n→+∞ λX et Xn +Yn
P−→

n→+∞ X+Y.

Proposition 25 (convergence en probabilité et combinaisons linéaires)
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Exercice 54 F Prouver cet énoncé. Pour le second point, on pourra utiliser l’encadrement[
|Xn −X| < ε

2

]
∩

[
|Yn −Y| < ε

2

]
⊂

[∣∣Xn +Yn − (X+Y)
∣∣< ε].

# CVA6

Soit (Xn)n∈N une suite de variables aléatoires sur un espace probabilisé (Ω,A ,P).

Si * La suite (Xn)n∈N converge en probabilité vers X.

* La fonction f est continue sur R à valeurs réelles.

Alors f (Xn)
P−→

n→+∞ f (X).

Proposition 26 (composition par une fonction continue)

Remarque. On peut affiner le théorème en ne supposant seulement que f est continue sur un intervalle I tel que
pour tout n ∈N, P(Xn ∈ I) = 1.

Exercice 55

FF Preuve dans deux cas particuliers
Soient (Xn )n une suite de variables aléatoires définies sur (Ω,A ,P) et f :R→R.

1. On suppose qu’il existe α ∈R+∗ tel que : ∀x, y ∈R, | f (x)− f (y)| É α|x − y |.
Montrer que f (Xn )

P−→
n→+∞ f (X).

2. Justifier que si la fonction f est de classe C 1 sur R avec les variables Xn à valeurs dans [a;b],

alors f (Xn )
P−→

n→+∞ f (X).

# CVA7

Loi faible des grands nombres

Soient (Xn)n∈N une suite de variables aléatoires définies sur un même espace probabilisé (Ω,A ,P) et X
une variable aléatoire définie aussi sur cet espace.

Si * La variable X admet un moment d’ordre 2.

* Les variables (Xn)n∈N∗ sont mutuellement indépendantes et de même loi que X.

Alors la suite des variables aléatoires Xn , moyenne arithmétique des n variables X1, X2, · · · , Xn ,
converge en probabilité vers son espérance mathématique E(X). Autrement dit,

Xn = 1

n

n∑
i=1

Xi
P−→

n→+∞ E(X).

Théorème 27 (loi faible des grands nombres)

Remarque. Cas de la loi binomiale
Soit (Yn)n∈N∗ une suite de variables aléatoires sur un espace probabilisé (Ω,A ,P) avec Yn ,→B(n; p). Alors

Yn

n
P−→

n→+∞ Z, où Z est une variable aléatoire certaine égale à p.

Application. Considérons une expérience aléatoire, et un événement A de probabilité théorique p associé à cette
expérience. Soit n ∈ N∗. Répétons n fois l’expérience de manière indépendante et désignons par Xn le nombre de
succès (c’est-à dire le nombre de fois où A est réalisé). Yn suit donc une loi binomiale de paramètres n, p.
Posons de plus,

Fn(A) = Yn

n
, la fréquence empirique d’apparition de l’événement A.

Par la loi faible des grands nombres, on en déduit l’énoncé suivant :
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Lorsque le nombre d’expériences aléatoires augmente indéfiniment, la fréquence d’apparition Fn(A) d’un
événement A converge en probabilité vers sa probabilité théorique p. Autrement dit

∀ε ∈R+
∗ , P

(∣∣Fn(A)−p
∣∣> ε) −→

n→+∞ 0.

Corollaire 28 (interprétation d’une probabilité)

On a une première formulation mathématique de l’interprétation intuitive d’une probabilité d’un événement.

La probabilité d’un événement est la fréquence que l’on observerait si on effectuait
une infinité de fois l’expérience dans « des conditions parfaitement identiques ».

3 Convergence en loi

3.1 Rappels : représentations graphiques des lois

Cas des variables aléatoires discrètes

• Soit X une variable finie avec X(Ω) = {x1, x2, · · · , xm}.
Nous avons vu que l’on peut résumer une loi d’une variable finie par un tableau. Pour chaque indice i , on indique la
probabilité P

(
X = xi

)
.

On peut aussi utiliser les diagrammes en bâtons, en abscisse, on place les valeurs xi . Dans la suite, on s’arrange pour
que la hauteur du bâton partant de xi soit telle que l’aire du rectangle s’identifie à P

(
X = xi

)
.

Exemple. Ci-contre, le cas de la loi binomiale de para-
mètres n = 20, p = 0,3.

Notons que pour avoir la probabilité P
([

X ∈ [a;b]
])

, il suffit

de sommer les aires des rectangles compris entre les abs-
cisses a et b. En particulier, la somme des aires totales des
rectangles est P(Ω) = 1.

Ici, la partie grisée a pour aire P
([

X ∈ [4;6]
])

.

• Lorsque X est une variable aléatoire discrète dénombrable (X(Ω) = {x1, x2, · · · , xn , · · · }), on ne considère qu’un nombre
fini de valeurs {x1, x2, · · · , xn}. En géneral, les valeurs où la probabilité n’est pas négligeable.

Donnons l’exemple de la loi géométrique de paramètre p = 0,2 où on s’est limité à [[0;20]].

L’aire de la partie la plus grisée correspond à une approximation de P
(
[X Ê 4]

)
.
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Graphe des densités des variables aléatoires à densité

Soit X une variable aléatoire à densité dont f , est une
densité.
L’aire de la partie grisée comprise entre la courbe, l’axe
des abscisses et les droites d’équation x = a, x = b cor-
respond exactement à la probabilité que X prenne les
valeurs entre a et b.

Aire = P
(
[a É X É b]

)= ∫ b

a
f (t )dt .

a

Graphe
de f

b

3.2 Définition et exemples

Soient (Xn)n∈N une suite de variables aléatoires et X une variable aléatoire toutes définies sur (Ω,A ,P).

Notons * pour tout n ∈N, Fn , la fonction de répartition de la variable Xn ,
* F, la fonction de répartition de la variable X.

On dit que la suite (Xn)n∈N converge en loi vers X, noté Xn
L−→

n→+∞ X, si en tout point x de continuité de F :

Fn(x) −→
n→∞F(x).

Définition 29 (convergence en loi)

! Attention. Il n’y a pas unicité de la limite lors d’une convergence en loi. Si X et Y ont même loi, alors

Xn
L−→

n→+∞ X ⇐⇒ Xn
L−→

n→+∞ Y.

Exemples.
• Exemple 1. Pour tout n ∈N∗, on vérifie que la fonction fn définie sur R par : fn(t ) = n2t exp

(−n2t 2/2
)

1R+ (x)
est une densité de probabilité. Soit (Xn)n∈N∗ une suite de variables aléatoires à densité où fn est une densité de Xn . On
montre que (Xn)n∈N∗ converge en loi vers X où X est une variable presque surement constante à 0.

Ci-dessous, une représentation des courbes des premières fonctions de répartition dans des plans séparés.

• Exemple 2. Reprenons le cas de (Xn)n∈N∗ , une suite de variables aléatoires mutuellement indépendantes telles que
pour tout n ∈ N∗, Xn ,→ U ([0;1]). On montre que la suites de variables Yn = max(X1,X2, . . . ,Xn) converge en loi vers
une variable presque surement constante en 1.

• L’exercice suivant donne un exemple où la suite converge vers une variable non presque surement constante.

Exercice 56 F . Reprenons les notations de l’exemple précédent et posons, pour tout n ∈N∗,

Mn = n (1−Yn ) .

Étudier la convergence en loi de la suite (Mn )n∈N∗ .
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# CVA8

La convergence en loi de la suite (Xn)n∈N vers X impose pour tous points a, b de continuité de F

P
([

a < Xn É b
]) −→

n→∞P
([

a < X É b
])

.

Proposition 30 (convergence en loi)

Soit (Xn)n∈N une suite de variables aléatoires telles que :

∀n ∈N, Xn(Ω) ⊂N et ∀k ∈N, P
(
[Xn = k]

) −→
n→∞pk ∈ [0;1].

Alors (Xn)n∈N converge en loi vers une variable aléatoire X avec

X(Ω) ⊂N et ∀k ∈ X(Ω), P
(
[X = k]

)= pk .

Proposition 31 (convergence en loi dans le cas discret)

Exemple. Si Xn ,→ B(pn) avec pn −→
n→∞p ∈ ]0;1[. On montre que (Xn)n∈N converge en loi vers une variable aléatoire

suivant une loi de Bernoulli B(p).

Exercice 57

G Exemples Les questions 1 et 2 sont indépendantes

1. Soient n ∈N∗ et Xn une variable aléatoire de loi

Xn (Ω) = {0;1;2} et P
(
[Xn = 0]

)= n −α
3n

, P
(
[Xn = 1]

)= n +cos(n)2

3n
P
(
[Xn = 2]

)= n + sin(n)2

3n
.

a) Déterminer la valeur de α.
b) Vérifier que la suite (Xn )n∈N∗ converge en loi vers une loi usuelle.

2. Soit Xn ,→P (λn ) avec λn −→
n→∞λ ∈R+∗ .

Montrer que (Xn )n∈N converge en loi vers une variable aléatoire dont on précisera la loi.

# CVA9

3.3 Les théorèmes de convergence en loi

Règles de calculs sur les limites

! Attention. Contrairement à la convergence en probabilité, la convergence en loi de (Xn)n∈N et (Yn)n∈N vers X
et Y n’implique pas nécessairement la convergence de la suite (Xn +Yn)n∈N vers X+Y.

Exercice 58
F Contre-exemple
Soit X ∈B(1/2). Posons pour tout n ∈N, Xn = X et Yn = X.

Vérifier que cela fournit bien un contre-exemple.

# CVA10

Remarques. Un peu de hors-programme
• On montre que la convergence en probabilité implique la convergence en loi :

Xn
P−→

n→+∞ X ⇒ Xn
L−→

n→+∞ X (voir exercice ??, p.??).

Il est à noter que la réciproque est fausse. Il suffit de reprendre le contre-exemple de l’exercice précédent.

Exercice 59
G Soient c un réel et (Xn )n∈N une suite de variables aléatoires réelles convergeant en loi vers

une variable aléatoire X. Alors la suite de variables aléatoires (Xn + c)n∈N converge en loi vers

X+ c.

# CVA11
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• L’exercice s’étend avec le théorème de Slutsky :

Si Xn
L−→

n→+∞ X et si (Yn)n∈N converge en probabilité vers une constante c, alors :

* (Xn +Yn)n∈N converge en loi vers X+ c

* (XnYn)n∈N converge en loi vers cX.

Soit (Xn)n∈N une suite de variables aléatoires sur un espace probabilisé (Ω,A ,P).

Si * La suite (Xn)n∈N converge en loi vers X.

* La fonction f est continue sur R à valeurs réelles.

Alors f (Xn)
L−→

n→+∞ f (X).

Proposition 32 (composition et convergence en loi)

Exercice 60

F Cas particulier
Justifier l’énoncé précédent dans le cas particulier où la fonction f est bijective croissante.

# CVA12

Convergence de la loi binomiale vers la loi de Poisson

Soient (Xn)n∈N une suite de variables aléatoires binomiales B(n; pn) telles que

npn −→
n→+∞ λ ∈R+

∗ .

Alors la suite (Xn)n∈N converge en loi vers une variable aléatoire suivant une loi de Poisson P (λ).

Xn
L−→

n→+∞ Z avec Z ,→P (λ).

Théorème 33 (convergence de la loi binomiale vers la loi de Poisson)

Exercice 61

FF Voici une preuve du théorème. Complétez-la.

Soit k ∈N. Pour n Ê k, on a P
(
[Xn = k]

)= (
n

k

)
pn

k (1−pn )n−k =
(

n

k

)
(1−pn )n

(
pn

1−pn

)k

.

1. Justifier les équivalents de chacun des facteurs lorsque n tend vers +∞ (k est fixé).

(a)

(
pn

1−pn

)k

∼
n+∞

(
λ

n

)k

; (b) ln(1−pn ) ∼
n+∞−λ

n
, (1−pn )n ∼

n+∞ e−λ; (c)

(
n

k

)
∼

n+∞
nk

k !
.

2. Conclure.
# CVA13

Interprétation graphique

On trace les diagrammes représentant les lois binomiales B(n;λ/n) et de Poisson P (λ). On constate que plus n est
grand, plus les diagrammes associés aux lois P (λ) et B(n;λ/n) se confondent.
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Application à l’approximation

Considérons X ,→B(n; p), on a pour tout k ∈ [[0;n]],

P
(
[X = k]

)= (
n

k

)
pk (1−p)n−k .

Ce produit peut être assez difficile à évaluer numériquement lorsque n est « très grand » et p « petit ».
L’idée est donc dans les cas limites (n est « très grand » et p « petit ») d’avoir une expression approchée plus simple de
la probabilité en posant λ= np et

P
(
[X = k]

)' P
(
[Z = k]

)
où Z ,→P (λ).

Remarque. Dans la pratique, dès que n Ê 30, p É 0,1 et np < 15, on approche B(n; p) par P (np).

Exemple. Nombre de fautes d’orthographe.

Exercice 62. Soit Z ,→P (λ). # CVA14

1. a) Justifier que pour tout réel x,
ex +e−x

2
=

+∞∑
k=0

x2k

(2k)!
.

b) En déduire P
(
[Zest pair]

)
.

2. Application. Une ligne de transmission entre émetteur et récepteur transporte des données représentées par
10 000 bits (un bit est un élément de {0;1}). La probabilité que la transmission d’un bit soit erronée est estimée
à 10−5 et on admet que les erreurs sont mutuellement indépendantes les unes des autres. On contrôle la qualité
de la transmission avec un calcul de parité sur le nombre de « 1 » envoyés :

* S’il y a un nombre impair d’erreurs, un message d’erreur apparaît.

* Sinon, c’est-à-dire s’il y a un nombre pair d’erreurs, la transmission est acceptée.

a) Considérons X la variable aléatoire associant à chaque envoi de données, le nombre d’erreurs lors de la
transmission, c’est-à-dire le nombre de bits parmi les 10 000 dont la transmission est erronée. Quelle est
la loi de X?

b) Calculer la probabilité qu’il n’y ait aucune erreur sachant que la transmission est acceptée.
On admettra que l’on peut approximer le problème par une loi de Poisson.

Exercice 63

F Proposer une méthode pour simuler une loi de Poisson P (5) uniquement à partir de la

commande rd.random().

# CVA15
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4 Théorème limite central

4.1 Le théorème

Soit (Xn)n∈N une suite de variables aléatoires sur un espace probabilisé (Ω,A ,P).

Si * Les variables (Xn)n∈N∗ sont mutuellement indépendantes.

* Les variables (Xn)n∈N∗ ont même loi et admettent une espérance m et une variance σ2 6= 0.

* On note Xn = 1
n

n∑
i=1

Xi et Xn
∗ =

p
n
σ (Xn −m).

Alors
(

Xn
∗)

n∈N∗
L−→

n→+∞ Z avec Z ,→N (0;1).

Autrement dit, pour tous a < b, P
([

a É Xn
∗ É b

]) −→
n→∞Φ(b)−Φ(a) = 1

p
2π

∫ b

a
e−t 2/2 dt ,

où Φ est la fonction de répartition de la loi normale centrée réduite.

Théorème 34 (limite central)

L’énoncé du théorème central limite est parfois surprenant et n’a souvent rien à voir avec celui du pro-

gramme.

Rapport de Jury : Oral HEC 2021

4.2 Cas particuliers

Rappelons que si X est une variable aléatoire admettant une varianceσ2 (et donc une espérance), on définit la variable
aléatoire centrée réduite associée à X, notée X∗ par

X∗ = X−E(X)

σ
avec E(X∗) = 0 et V(X∗) = 1.

et, si Z ,→ P(λ) alors Z∗ = Z−λ
p
λ

.

Si (Xn)n∈N est une suite de variables aléatoires suivant des lois binomiales B(n; p) avec p ∈ ]0;1[, alors

Xn
∗ = Xn −np√

np(1−p)

L−→
n→+∞ Z avec Z ,→N (0;1).

Autrement dit, pour tous a < b, on a

P
([

a É Xn
∗ É b

]) −→
n→∞Φ(b)−Φ(a) = 1

p
2π

∫ b

a
e−t 2/2 dt ,

où Φ est la fonction de répartition de la loi normale centrée réduite.

Théorème 35 (de Moivre-Laplace)

Remarque. Dans la pratique, dès que n Ê 30, np Ê 5 et nq Ê 5, on approche B(n, p) par N (np,npq).

! Attention. Il y a deux théorèmes de convergence impliquant des lois binomiales. Précisons la différence :

• Dans le cas de convergence vers une loi de Poisson : n →+∞ mais npn −→
n→∞λ> 0, sous-entendu, pn −→

n→∞0.

• Dans le cas de convergence vers une loi normale : n →+∞mais p correspond à une probabilité fixée strictement
positive.
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Interprétation graphique

On trace les diagrammes associés aux lois de Xn
∗ pour différentes valeurs de n (10, 50, 100 et 500). On superpose la

courbe représentative de la densité de loi normale centrée réduite.

On constate que plus n est grand, plus les diagrammes épousent la forme de la courbe.

Interprétons.
Soit Xn ,→B(n; p). De nouveau, plaçons le dia-
gramme associé à la loi Xn

∗. L’aire hachurée est
l’aire sous la courbe représentative de la den-
sité. Elle vaut donc∫ b

a
f (t )dt = P

(
[a É Z É b]

)
,

où f : t 7→ 1
p

2π
exp(−t 2) et Z ,→N (0;1).

Cette aire s’identifie approximativement à l’aire des rectangles compris entre les droites x = a et x = b. Or, cette der-
nière est par construction P

(
[a É Xn

∗ É b]
)
. On en déduit l’approximation :

P
([

a É X∗
n É b

])' P
([

a É Z É b
])

.

Exemple. La planche de Galton.
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Soit (Xn)n∈N∗ une suite de variables aléatoires telle que Xn ,→P (nλ) pour tout n ∈N∗.
Alors la suite des variables aléatoires centrées réduites (Xn

∗)n∈N converge en loi vers une variable aléatoire
suivant une loi normale centrée réduite.

Xn
∗ = Xn −nλ

p
nλ

L−→
n→+∞ Z avec Z ,→N (0;1).

Théorème 36 (convergence des lois de Poisson)

Remarque. Dans la pratique, dès que λÊ 18, on approche la loi P (λ) par la loi normale N (λ,λ).

4.3 Applications à l’approximation

Comment approximer une probabilité à l’aide d’une loi normale?

On lance une pièce équilibrée 10000 fois et on souhaite calculer la probabilité que le nombre de « PILE » soit
compris dans l’intervalle [4900;5100].
On suppose les lancers mutuellement indépendants.
Ainsi si X est la variable aléatoire qui compte le nombre de « PILE », X suit une loi binomiale de paramètres
n = 10000, p = 1

2 . L’espérance de X est np = 5000, l’écart type est
√

np(1−p) = 50. Évaluons P
(
[4900 É X É 5100]

)
.

• La première étape consiste à renormaliser en introduisant X∗ :

P
(
[4900 É X É 5100]

) = P
(
[np −100 É X É np +100]

) = P
(
[−100 É X−np É 100]

)
= P

([
−2 É X−np√

np(1−p)
É 2

])
= P

(
[−2 É X∗ É 2]

)
.

• Puis, on applique le théorème précédent.

P
([

−2 É X∗ É 2
])

' P
(
[−2 É Z É 2]

)=Φ(2)−Φ(−2) = 2Φ(2)−1 avec Z ,→N (0;1).

À l’aide de Python ou de table de la loi normale (en fin de livret), on sait que Φ(2) ' 0,9772.En conclusion : la
probabilité recherchée vaut environ 0,9544.

M
ét

h
o

d
e

Exemple. Le Surbooking.

5 Compléments avec Python

5.1 Simulation d’une loi normale par la méthode des 12 uniformes

Le théorème limite central énonce que si (Xn)n∈N∗ est une suite de variables aléatoires mutuellement indépen-
dantes suivant une loi uniforme sur [0;1] alors(

Xn
∗
)

n∈N∗
L−→

n→+∞ Z avec Z ,→N (0;1).

Exercice 64

FF

1. En se limitant à douze variables X1, . . ., X12 suivant des lois uniformes, écrire une fonc-
tion Python qui renvoie une simulation de la loi normale centrée réduite.

2. En déduire une seconde fonction qui prend en arguments µ, σ, m et renvoient m simu-
lations d’une loi N

(
µ,σ2)

.

3. Tester votre programme en superposant sur une même figure l’histogramme de 2000
simulations de loi N (1,4) et la densité de cette loi.

# CVA16
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5.2 Exemples de méthodes de Monte-Carlo

Les méthodes dites de Monte-Carlo sont toutes basées sur la loi (faible) des grands nombres.

Applications aux calculs d’aire
Commençons par un cas d’école : l’approximation de π.
On tire au hasard et uniformément un point dans le carré [0;1]× [0;1]. La probabi-
lité que le point soit situé dans le quart de disque est π/4 (aire du quart du disque
π× 12/4 sur l’aire du carré 1). Partant de ce constat, on peut simuler un grand
nombre de tirages d’un point dans le carré et approximer la probabilité de π/4 par
la fréquence empirique. En multipliant par 4, on obtient une approximation de π.
Ce qui donne ici :

def approxPI (m):
# m correspond au nombre de tirages

Compteur =0
for i in range (m):

x=rd. random ()
y=rd. random ()
if x**2+y**2 <1:

Compteur +=1
print (’Approximation :’ ,4* Compteur /m)

E
d

it
eu

r >>> approxPI (1000) Approximation : 3.152
>>> approxPI (10000) Approximation : 3.1412
>>> approxPI (50000) Approximation : 3.14552
>>> approxPI (100000) Approximation : 3.14632

# à comparer à :
3.141592653589793 ...

C
o

n
so

le

La convergence est assez mauvaise mais il ne faut pas pour autant écarter la méthode. Elle s’avère par exemple parti-
culièrement efficace en grande dimension.

Exercice 65. FF Aire d’une cardioïde

L’objectif de cet exercice est d’obtenir une approximation de l’aire de
la partie délimitée par la courbe d’équation(

x2 + y2 −x
)2 = x2 + y2.

1. Comment tirer un point au hasard dans le carré [−0.5;2.5] ×
[−1.5;1.5] en utilisant la commande rd.random ?

2. En déduire un programme qui tire au hasard un point dans le carré
et déclare si le point est à l’intérieur de la cardioïde ou non.

3. À l’aide d’une méthode de Monte-Carlo, donner une approximation
de l’aire de la cardioïde.

4. En remarquant que la courbe est la ligne de niveau L0 d’une certaine
fonction de deux variables, tracer la cardioïde.

Application à l’approximation d’intégrales

• Principe
Considérons :

* g : [0,1] → [a;b] une fonction continue dont on souhaite calculer l’intégrale
∫ 1

0
g (t )dt .

* (Ui )i∈N∗ une suite de variables aléatoires indépendantes suivant la loi uniforme sur [0,1].

* Pour tout i ∈N∗, on pose g (Ui ). D’après les lemme d’égalité en loi et des coalitions, les variables sont indépen-
dantes et de même loi.

Par le théorème de transfert, les variables Xi = g (Ui ) admettent toutes une même espérance donnée par

E (Xi ) =
∫ 1

0
g (t )dt .

De même, ces variables admettent une variance et la loi faible des grands nombres donne

X1 +·· ·+Xn

n
P−→

n→+∞ E (X1) =
∫ 1

0
g (t )dt .
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Dès lors, pour calculer une valeur approchée de l’intégrale, on peut simuler un grand nombre de fois les variables Ui ,
calculer les images g (Ui ) et en faire leur moyenne arithmétique.

Exercice 66. FF

• La théorie : estimation de la probabilité de l’erreur
Soit X, une variable aléatoire à valeurs dans [a;b].

1. Pour quelle valeur de m, E
(
(X−m)2

)
atteint son minimum? Avec m = a+b

2 , déduire : V(X) É (b −a)2

4
.

2. En reprenant les notations du début, justifier que

∀ε ∈R+
∗ , P

(∣∣∣∣∣
∫ 1

0
g (t )dt − 1

n

n∑
k=1

g (Uk )

∣∣∣∣∣> ε
)
É (b −a)2

4nε2 (•)

• La pratique

3. Calculer I =
∫ 1

0

1

1+ t 2 dt . En déduire, une fonction avec en argument n et qui permet d’approcher π.

4. Déterminer n afin d’obtenir une valeur à 10−3 près de π avec une probabilité d’au moins 95%. Commenter.
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Exercices

Révisions

Exercice 67. F ¤ Soit X une variable aléatoire admettant une variance. Montrer que xP(X > x) −→
x→+∞ 0. # CVA19

Exercice 68. F Estimation # CVA20

Une urne contient une proportion p de boules blanches. On souhaite obtenir expérimentalement une approximation de p. Pour
cela, on effectue n ∈ N∗ tirages avec remise et on note Xn le nombres de boules blanches obtenues au cours de ces n tirages. On
suppose les tirages mutuellement indépendants.

1. Donner la loi de Xn . Préciser l’espérance et la variance.

2. Justifier que pour tout réel ε> 0, P

(∣∣∣ Xn

n
−p

∣∣∣Ê ε)É 1

4nε2
.

3. Combien de tirages faut-il effectuer pour pouvoir affirmer, avec un risque inférieur à 5%, que la fréquence d’obtention de boules
blanches au cours des n tirages diffère de p d’au plus 1% ?

Exercice 69. FF Les souris mutantes # CVA21

Un laboratoire élève des souris dont 1/4 sont mutantes. La durée de vie d’une souris mutante est une variable aléatoire dont la
moyenne est de 3 ans avec un écart-type de 9 mois, mais elle ne vit jamais plus de 4 ans. La durée de vie d’une souris normale a une
moyenne d’un an, avec un écart-type de 6 mois. On ne prend en compte que les souris dont la durée de vie est strictement positive.

Une souris est vivante au bout de deux ans. On note α la probabilité qu’elle soit mutante.
On considère l’événement M : « La souris est une souris mutante »et on note X la variable aléatoire égale à la durée de vie de la

souris.

1. Exprimer
P(M∩ [X Ê 2])

P(M∩ [X Ê 2])
en fonction de α.

2. En utilisant l’inégalité de Bienaymé-Tchebychev, donner une minoration de α.

TD Exercice 70. FF . Inégalité de Chernov # CVA22

1. Soit t ∈R∗+. Soit X une variable aléatoire discrète telle que etX admette une espérance. Montrer, à l’aide de l’inégalité de Markov,
que pour tout a ∈R,

P(X Ê a) É
E

(
etX

)
et a .

2. Soient n ∈N∗ et p ∈]
0,1[. On suppose que X ,→B(n, p).

a) Montrer que pour tout t ∈R∗+, etX admet une espérance et que :

E
(
etX

)
= (

1−p +pet )n
.

b) Étudier les variations de la fonction f : t 7→ (1−p)e−
t
2 +pe

t
2 sur R∗+. En déduire que f admet un minimum sur R∗+, égal à

2
√

p(1−p).

c) À l’aide de la question 1, montrer que P
(
X Ê n

2

)É 2n(
p(1−p)

) n
2 .

Exercice 71. FF . Comparaison entre la médiane et l’espérance # CVA23

Soit X une variable aléatoire définie sur un espace probabilisé (Ω,A ,P). On suppose que X admet une variance.

1. ¤ Soient α ∈R+∗ , β ∈R+. Démontrer que P
(
[X Ê E(X)+α]

)É E
((

X−E(X)+β)2
)

(α+β)2
.

2. Avec β= V(X)/α, en déduire que P
(
[X Ê E(X)+α]

)É V(X)

V(X)+α2
.

3. On suppose dans cette question que X est une variable aléatoire à densité avec une densité strictement positive.

a) ¤ Justifier qu’il existe un unique réel m tel que P
(
[X É m]

)= 1

2
.

Un tel réel m est la médiane de la variable X.

b) À l’aide de la question 2 pour un réel α bien choisi, justifier que E(X)+σ(X) Ê m où σ(X) désigne l’écart-type de la variable X.

c) En considérant aussi la variable −X, conclure en montrant que
∣∣m −E(X)

∣∣Éσ(X).
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Convergences en probabilité et en loi

TD Exercice 72. FF . Soit (Xn )n∈N∗ une suite de variables aléatoires indépendantes suivant la même loi de Bernoulli de # CVA36

paramètre p ∈ ]0,1[. Pour tout n ∈N∗, on pose :

Yn = Xn +Xn+1 et Tn = 1

n

n∑
i=1

Yi .

1. Calculer l’espérance et la variance de Tn .

2. Peut-on appliquer la loi des grands nombres pour étudier la convergence en probabilité de la suite (Tn )n∈N∗ ?

3. Justifier que (Tn )n∈N∗ converge en probabilité vers la variable aléatoire presque sûrement constante.

TD Exercice 73. F . Chaîne de markov : évolution d’un titre boursier # CVA37

Dans une bourse de valeurs, un titre peut monter, descendre ou rester stable. On modélise l’évolution du titre.

* Si un jour n, le titre monte, le jour suivant, il montera avec la probabilité 2/3, restera stable avec la probabilité 1/6, et baissera
avec la probabilité 1/6.

* Si un jour n, le titre est stable, le jour n+1, il montera avec la probabilité 1/6, restera stable avec la probabilité 2/3, et baissera
avec la probabilité 1/6.

* Si un jour n, le titre baisse, le jour n +1, il montera avec la probabilité 1/6, restera stable la probabilité 1/6, et baissera avec
la probabilité 2/3.

Le premier jour, le titre est stable.

Les probabilités sont spécifiées par une matrice dite de transition : M =
p1,1 p1,2 p1,3

p2,1 p2,2 p2,3
p3,1 p3,2 p3,3

=
2/3 1/6 1/6

1/6 2/3 1/6
1/6 1/6 2/3

.

Titre

en baisseen hausse

stable

TitreTitre

p1,2

p2,1

p2,3

p3,2

p1,3

p3,1

p2,2

p1,1
p3,3

On souhaite connaître l’évolution de ce titre. Pour cela, on introduit pour tout n ∈N∗, la variable aléatoire aléatoire Xn définie par

Xn =


1 si le titre donné monte le jour n
0 si le titre est stable le jour n
−1 si le titre donné baisse le jour n.

et Un =
 P(Xn = 1)

P(Xn = 0)
P(Xn =−1)

.

1. a) Vérifier que Un+1 = MUn .

b) En déduire Un en fonction de M et U1.

2. Donner la loi de Xn .

3. Justifier que (Xn )n converge en loi vers une variable aléatoire X.

4. Comparer MU et U où U =
 P(X = 1)

P(X = 0)
P(X =−1)

. Commenter.

Exercice 74. G Pour n ∈N∗, on considère une variable Xn dont la loi est donnée par : # CVA38

Xn (Ω) = {0,n}, P (Xn = 0) = 1− 1

n
et P (Xn = n) = 1

n
.

Étudier la convergence en loi de la suite (Xn )n∈N∗ et la convergence de la suite numérique
(
E(Xn )

)
n∈N∗ . Commenter.

Exercice 75. F Soit (Xn )n∈N∗ une suite de variables aléatoires telles que pour tout n ∈N∗, Xn ,→N (1;1/n). # CVA39

1. Étudier la convergence en loi de la suite (Xn )n∈N∗ .
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2. Expliquer et commenter le programme Python suivant.
La commande sp.ndtr(x) renvoie Φ(x) où Φ est la fonction de répartition de la loi normale centrée réduite.

import scipy . special as sp
import numpy as np

def Fnormal (x,k):
return sp.ndtr(k **(1/2) *(x -1) /2)

x=np. linspace ( -3 ,5 ,100)
for k in range (1 ,50 ,3) :

y= Fnormal (x, k)
plt.plot(x, y)

plt.show ()

E
d

it
eu

r

Exercice 76. FF . Pour tout n ∈ N, on considère Xn une variable aléatoire suivant une loi normale N (0,σn
2) et X qui # CVA40

suit une loi normale N (0,σ2) avec σn , σ strictement positifs. On suppose de plus que les variables (Xn )n∈N sont mutuellement
indépendantes. Montrer l’équivalence entre :

• i ) La suite de variable aléatoire (Xn )n∈N converge en loi vers X.

• i i ) La suite de réels (σn )n∈N converge vers σ.

Exercice 77. F Soit (Un )n∈N∗ une suite de variables indépendantes et de même loi uniforme sur [0,1]. Soit Y ,→ E (1). On pose # CVA41

Zn = min(U1, . . . ,Un ).

1. Montrer que la suite (nZn ) converge en loi vers Y.

2. Soit X ,→ E (1). Déterminer la loi de Z = e−X.

3. On considère une suite (Xn )n∈N∗ de variables aléatoire indépendantes suivant toutes la même loi exponentielle de paramètre
λ> 0.
Déterminer la limite en loi de la suite (nTn ) où Tn = min

(
e−λX1 , . . . ,e−λXn

)
.

Exercice 78. FF Convergence en loi avec des lois de Cauchy # CVA42

Pour tout n ∈N∗, on pose

∀ t ∈R, fn (t ) = n

π
(
1+n2t 2

).

1. Justifier que fn est une densité de probabilité. Soit Xn une variable aléatoire dont fn est une densité.

2. Peut-on appliquer l’inégalité de Markov à Xn ?

3. Donner la fonction de répartition de Xn . En déduire la convergence en loi de la suite de variable aléatoire (Xn )n .

Exercice 79. FF . Variante de la loi faible des grands nombres # CVA43

Soit
(
pn

)
n∈N∗ une suite de réels appartenant à [0,1] et (Xn )nÊ1 une suite de variables aléatoires indépendantes. On suppose que

pour tout k ∈ N∗,Xk suit une loi de Bernoulli de paramètre pk . On pose pour tout n ∈N∗,

Yn = 1

n

n∑
k=1

Xk et mn = 1

n

n∑
k=1

pk .

1. a) Montrer que pour tout k ∈N∗ : V
(
Xk

)É 1
4 . En déduire, pour tout n ∈N∗, une majoration de V (Yn ). On admet que la variance

d’une somme de variables de Bernoulli indépendantes est la somme des variances.

b) En déduire, à l’aide de l’inégalité de Bienaymé-Tchebychev, que, pour tout ε> 0,

P (|Yn −mn | < ε) −→
n→∞1.

2. On suppose que la suite (mn )n∈N∗ converge vers m.

a) Soit ε> 0. On suppose |mn −m| < ε
2 . Comparer les événements

[|Yn −mn | < ε
2

]
et [|Yn −m| < ε]. En déduire que

P
(
|Yn −mn | < ε

2

)
É P (|Yn −m| < ε) .

b) En déduire la convergence en probabilité de la suite (Yn )n∈N∗ .

Exercice 80. FF . Convergence de loi discrète vers une loi à densité # CVA44

Pour tout n ∈N∗, on considère la variable aléatoire discrète Xn ,→U ([[1;n]]). On pose Yn = Xn /n.
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Justifier que la suite (Yn )n∈N converge en loi vers une variable aléatoire que l’on précisera.
Indication. On pourra utiliser l’expression de la fonction de répartition de Xn ,

∀x ∈ [0;n], Fn (x) = bxc
n

.

TD Exercice 81. FF . Autour des lois de Cauchy # CVA46

• La fonction arctangente

1. Rappeler la définition de la fonction arctangente. Donner son graphe avec l’équation de la tangente en 0.

2. Vérifier que pour tout x ∈R+∗ , arctan(x)+arctan(1/x) =π/2. Que dire de cette expression si x ∈R−∗ ?

3. Justifier le développement suivant lorsque x →+∞ : arctan(x) = π

2
− 1

x
+o+∞

(
1

x

)
.

• Loi de Cauchy

4. Soit a ∈R+∗ . On définit sur R la fonction fa par : fa (x) = a

π
(
a2 +x2

) . Montrer que fa est une densité de probabilité.

Dans la suite, X est une variable aléatoire réelle sur (Ω,A ,P) admettant fa pour densité. On dit alors que X suit une loi de Cauchy
de paramètre a et on écrit X ,→C (a).

5. Donner la fonction de répartition de X. Est-ce que X possède une espérance ?

6. Soit λ ∈R+∗ . Reconnaître la loi de λX lorsque X ,→C (a). Que dire si λ ∈R−∗ ?

• Maximum et exemple de convergence en loi
Soit (Xi )i∈N∗ une suite de variables aléatoires mutuellement indépendantes suivant toutes une loi de Cauchy de paramètre 1.
Pour tout n ∈N∗, on définit les variables aléatoires :

Mn = max(X1,X2, . . . ,Xn ) et Nn = nMn
−1.

7. Pour tout n ∈N∗, préciser P(Nn É 0). Vérifier ensuite que pour tout t ∈R+∗

P
(
[Nn É t ]∩ [Mn Ê 0]

)= 1− 1

πn

(
π

2
+arctan

(
n

t

))n

.

8. Conclure en montrant que la suite (Nn )n converge en loi vers une loi exponentielle dont on précisera le paramètre.

9. Utiliser la question 6 pour reprendre la question précédente en supposant maintenant que les variables (Xi )i∈N∗ suivent une loi
de Cauchy C (a) avec a ∈R+∗ .

≫ Pour des versions similaires, voir EMLyon 2017, EDHEC 2019.

Exercice 82. FF Convergence en loi et fonctions génératrices # CVA47

Soient une suite de variables aléatoires (Xn )n∈N et X, définies sur le même espace probabilisé, à valeurs dans {x0, . . . , xm }. On définit
les fonctions Gn sur R par

∀ t ∈R, GXn (t ) =
m∑

k=0
P

(
Xn = xk

) · t k et GX(x) =
m∑

k=0
P(X = xk ) · t k .

1. Vérifier que, si (Xn )n∈N converge en loi vers X, alors :

∀t ∈R, GXn (t ) −→
n→+∞ GX(t ) (•)

2. L’objectif de la question suivante est d’établir la réciproque. On suppose donc la propriété (•) vérifiée. On pose

A =


1 x0 x0

2 . . . x0
m

1 x1 x1
2 . . . x1

m

...
...

...
. . .

...
1 xm xm

2 . . . xm
m

 ∈Mm+1(R).

a) ¤ Justifier que les colonnes de A forment une famille libre. En déduire l’inversibilité de A.

b) ¤ Soit k ∈ [[0;m]]. En déduire que la suite
(
P

(
Xn = xk

))
n∈N converge. Notons `k , la limite.

c) Montrer que les réels
(
`k

)
k∈[[0;m]] sont les coefficients d’une loi de probabilité.

C’est-à-dire que les réels `k sont compris dans [0;1] et leur somme vaut 1.

d) En déduire que la suite de variables aléatoires (Xn )n∈N converge en loi.

3. • Application
Soient m ∈N∗ fixé et (pn )n∈N une suite de réels de [0;1]. On suppose que pour tout n ∈N, Xn ,→B(m; pn ).

a) Expliciter GXn (t ) pour tout t ∈R.

b) En utilisant l’équivalence prouvée aux questions 1 et 2, montrer que la suite de variables aléatoires (Xn )n∈N converge en loi
si et seulement si la suite de réels (pn )n∈N converge.
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Approximations

TD Exercice 83. FFF . Approximation de π via la méthode de Monte Carlo d’après oraux ESCP 2014 # CVA49

Soit (Un )n∈N∗ et (Vn )n∈N∗ deux suites de variables aléatoires définies sur un espace probabilisé (Ω,A ,P) et toutes de même loi
uniforme sur [0,1]. On suppose que toutes les variables Un et Vn (pour n ∈N∗ ) sont indépendantes.

1. Pour tout réel x ∈]0,1], calculer l’intégrale :

J(x) =
∫ x

0

1p
t (x − t )

dt .

On pourra justifier et utiliser le changement de variable (à x fixé) :

ϕ :]−π/2,π/2[→R, θ 7→ t = x

2
sinθ+ x

2
.

2. a) Déterminer la loi de U2
n .

b) Justifier que la variable U2
n +V2

n possède une densité h, que l’on exprimera sous forme d’une intégrale.

c) Déterminer h(x) pour x ∈ [0,1].

3. On pose :

∀n ∈N∗, Xn =
{

1 si Un
2 +Vn

2 É 1

0 sinon.

Déterminer la loi de Xn .

4. a) Prouver que la suite (Zn )n∈N∗ définie par ∀n ∈ N∗,Zn = 4
n

n∑
k=1

Xk , converge en probabilité vers la constante π. C’est-à-dire,

pour tout ε ∈R+∗ ,

P (|Zn −π| Ê ε) −→
n→∞0.

b) Soit α ∈]0,1[ et δ> 0.
Montrer qu’il existe un entier n0, qu’on exprimera en fonction de α et δ, tel que

∀n Ê n0, P (|Zn −π| > δ) É α

c) En déduire un programme Python qui donne une approximation de π.

Les inclassables

Exercice 84. FF Application de la formule de Stirling D’après EDHEC 2007 # CVA51

On considère une suite (Xn )n∈N∗ de variables aléatoires définies sur le même espace probabilisé (Ω,A ,P), mutuellement indépen-

dantes, et qui suivent toutes la loi exponentielle de paramètre 1. On pose Sn = n∑
k=1

Xk .

1. Rappeler quelle est la loi suivie par Sn . Donner l’espérance et la variance de Sn .

2. À l’aide du théorème central limite, établir que P (Sn É n) −→
n→∞

1

2
.

3. En déduire la valeur de

lim
n→+∞

∫ n

0

t n−1

(n −1)!
e−t dt .

4. a) Utiliser le résultat précédent pour montrer que
∫ 1

0
zn−1e−nz dz ∼

n→+∞
n!

2nn+1
.

b) On admet que n! ∼+∞
p

2πnnn e−n . En déduire un nouvel équivalent de
∫ 1

0
zn−1e−nz dz.

Exercice 85. Amélioration de la méthode de Monte-Carlo, Réduction de la variance par méthode des variables antithé- # CVA54

tiques.
Soit f , une fonction continue dont on souhaite approcher

I =
∫ 1

0
f (t )dt .

La méthode de Monte-Carlo part de l’égalité I = E
(

f (U)
)

où U ,→U ([0;1]).
Dans la suite, on pose g définie sur [0;1] par g (t ) = ( f (t )+ f (1− t ))/2.

1. Vérifier que I = E
(
g (U)

)
.

2. Comparer les variances de f (U) et g (U).

3. Reprendre l’exemple précédent avec g . Comparer les deux méthodes.
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Compléments théoriques sur les différentes convergences

Exercice 86. FFF Convergence presque sûr # CVA55

Soient (Xn )n∈N une suite de variables aléatoires et X une variable aléatoire. Toutes les variables sont définies sur un même espace
probabilisé (Ω,A ,P). On dit que la suite (Xn ) converge presque sûrement vers X si :

P
({
ω ∈Ω : lim

n→∞Xn (ω) = X(ω)
})

= 1.

L’objectif est de montrer que si la suite (Xn )n converge presque sûrement vers X, alors elle converge aussi en probabilité vers X.
Pour cela, on pose pour tout ε ∈R+∗ et tout n ∈N

An,ε =
[ |X−Xn | É ε

]
, Bn,ε =

+∞⋂
m=n

Am,ε et A =
{
ω ∈Ω : lim

n→∞Xn (ω) = X(ω)
}

.

On suppose donc que P(A) = 1.

1. Comparer les événements A et
+∞⋃
n=0

Bn,ε.

2. En déduire que P(Bn,ε) −→
n→∞1.

3. Conclure sur la convergence en probabilité de (Xn )n vers X.

TD Exercice 87. FF . D’après Oraux HEC BL 2021 # CVA57

Soient I un intervalle non trivial de R et f une fonction définie sur I.
On dit que la fonction f vérifie la propriété Lk sur I s’il existe un réel k ∈R+∗

tel que

∀(x, y) ∈ I2, | f (x)− f (y)| É k|x − y |.

1. a) Montrer que les fonctions sinus et valeur absolue vérifient la propriété L1 sur R.

b) Montrer que l’on ne peut pas trouver de réel k ∈R+∗ tel que la fonction racine carrée vérifie la propriété Lk sur [0,1].

c) Montrer que s’il existe un réel k ∈R+∗ tel que f vérifie la propriété Lk sur I, alors f est continue sur I.

2. Soient un réel k ∈ ]0,1, f une fonction définie sur R et vérifiant la propriété Lk sur R et (un ) la suite définie par la donnée de
u0 ∈R et par la relation

∀n ∈N, un+1 = f (un ) .

a) Montrer que
∀n ∈N, |un+1 −un | É kn |u1 −u0| .

b) En déduire que la suite (un ) converge vers une limite notée ` et vérifiant f (`) = `.

3. Soient un réel k ∈ ]0,1[, f une fonction définie surR et vérifiant la propriété Lk surR et (Tn )n∈N une suite de variables aléatoires
à densité définies sur un même espace probabilisé (Ω,A ,P) et telles que

∀n ∈N, Tn+1 = f (Tn ) .

Soit ` la limite trouvée à la question 2.

a) Soit ε ∈R+−∗. Pour tout n ∈N, on pose An = [
kn |T0 −`| Ê ε

]
. Montrer que

lim
n→+∞P (An ) = 0.

b) Montrer que
∀ε ∈R+∗ , lim

n→+∞P (|Tn −`| Ê ε) = 0.

c) Justifier que (Tn )n converge en loi. Reconnaître la loi limite.
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Révisé ?

• Endomorphismes symétriques

* Définition d’une matrice symétrique, antisymétrique. Dimension des s.e.v associés. ���
p

* Définition des endomorphismes symétriques. ���
p

* En dimension finie. ϕ est symétrique ssi ∀(i , j ) ∈ [‖1,n]2,
〈
ϕ (ei ) ,e j

〉= 〈
ei ,ϕ

(
e j

)〉
. ���

p

* En dimension finie. ϕ est symétrique ssi MatB(ϕ) dans une b.o.n est symétrique. ���
p

* Si ϕ est symétrique, les sous-espaces propres sont orthogonaux. Preuve. ���
p

* Théorème spectral (version « endomorphisme » et matricielle). ���
p

* Forme quadratique associée à une matrice symétrique. ���
p

* Encadrement de Rayleigh et signe d’une forme quadratique en fonction du spectre. ���
p

• Projecteurs orthogonaux

* Définition d’un projecteur orthogonal. ���
p

* Le projecteur est orthogonal ssi le projecteur est symétrique. traduction matricielle. ���
p

* Expression du projeté. Cas d’un projeté sur une droite ou sur un hyperplan. ���
p

* Distance à un sev. Théorème de minimisation par le projecteur orthogonal. ���
p

• Convergences et approximations

* Inégalités de Markov et Bienaymé-Tchebychev. ���
p

* Définition de la convergence en probabilité. ���
p

* Convergence en probabilité d’une somme. ���
p

* Convergence en probabilité et composition par une fonction continue. ���
p

* Loi faible des grands nombres. Preuve. ���
p

* Définition de la convergence en loi. ���
p

* Cas de la convergence en loi pour des variables aléatoires discrètes. ���
p

* Convergence en loi et composition par une fonction continue. ���
p

* Convergence en loi de lois binomiales vers une loi de Poisson. ���
p

* Énoncé du théorème limite central. ���
p

* Cas particulier des lois binomiales (théorème de Moivre-Laplace). ���
p

* Cas particulier des lois de Poisson. ���
p
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