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CHAPITRE ]. 4

Endomorphismes symétriques

Cercles dans un cercle, 1923, VASSILY KANDINSKY

_ Matrices et endomorphismes symétriques

1.1 Les définitions et exemples

Définition 1 (matrice symétrique)]

On dit qu'une matrice A € .#,(R) est symétrique si ‘A = A.

Autrement dit, si (a;,j);,; sont les coefficients de la matrice A:  V (i, j) € [[1; nll?, aij=aj;.
Exercice 1
~ & 4 % Donner la dimension de ., (R) défini comme le sous-espace vectoriel des matrices
Y 4 symétriques de .4 (R).

# AS1

Définition 2 (endomorphisme symétrique)]

Soient, E un espace vectoriel muni d'un produit scalaire (-, ) et ¢ € Z(E). On dit que ¢ est un endomor-
phisme symétrique si
Vu,veE, (@), v) =u, V).

Exemples.
R? — R?

2z . 2 . . . .
(6,y) — (2x—6y,—6x-7y) est symétrique sur R“ muni du produit scalaire canonique.

» L'application ¢ : {

* Soient E, un espace euclidien de dimension n = 2 et ug € E\ {Og}. Pour tout réel a € R*, on définit 'endomorphisme
@q: E—Epar@,(u) =u+au, up) up. On vérifie que ¢, est symétrique.
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Exercice 2 4+ Soient (E, (-,)) un espace euclidien et f, g deux endomorphismes symétriques de E.
1. Justifier que si f et g commutent alors f o g est symétrique.

— 2. On souhaite prouver la réciproque. On suppose donc f o g symétrique.

) & a) Simplifier pour tous u, v€E, {u, fog(v) — go f(v)).

- b) En déduire que f et g commutent.
#AS2

1.2 Premieéres propriétés

,—[Proposition 3 (caractérisation via une base)] \

Soient & = (ey, ..., ey) une base de E et ¢ € £ (E). Les deux énoncés suivants sont équivalents.

i) Lendomorphisme ¢ est symétrique.

i) VG )ellnl?,  (@le),e;)=(eip(ej)).

,—(Théoréme 4 (lien avec les matrices)} N

Soit ¢ € Z(E) ou (E, (-,-)) est un espace euclidien. Les trois énoncés suivants sont équivalents.

i) Lendomorphisme ¢ est un endomorphisme symétrique de E.
ii) Il existe une base orthonormée 28 de E telle que la matrice Matg () soit une matrice symétrique.

iii) Pour toutes les bases orthonormées 98 de E, la matrice Matg () est une matrice symétrique.

Exercice 3 +4

e 1. Justifier que 'ensemble .#(E) des endomorphismes symétriques de E est un sous-
\. & espace vectoriel de Z (E).

\, - 2. SiE est de dimension finie, pouvez-vous préciser sa dimension?
#AS3

n Réduction

2.1 Diagonalisation des endomorphismes symétriques

Premiéres propriétés

,—[Proposition 5 (espace stable)] <

Soient ¢ un endomorphisme symétrique d’un espace euclidien (E, (-,-) ) et F un sous-espace vectoriel de E.

Si F est stable par o,

alors F' est également stable par .




,—[Proposition 6 (vecteurs propres orthogonaux)] \

Soit ¢ un endomorphisme symétrique d'un espace euclidien (E, -, -)).

Si u et v sont deux vecteurs propres de ¢ associés a des valeurs propres distinctes,

alors les vecteurs u et v sont orthogonaux.

Remarque. On ala généralisation suivante. Si e, ..., e, sont des vecteurs propres de f associés a des valeurs propres
deux a deux distinctes, alors la famille ey, ..., e,) est orthogonale.

Corollaire 7 (espaces propres orthogonaux)}

Soit ¢ un endomorphisme symétrique d’un espace euclidien (E, (-, -}).
Alors les sous-espaces propres de ¢ sont deux a deux orthogonaux.

Exemple. Soit .#,(R) muni du produit scalaire (A,B) = Tr(‘AB). On vérifie que ¢ : M € 4,([R) — ™ € 4, (R) est
un endomorphisme symétrique. ¢ posséde deux valeurs propres : —1 et 1 out E; (), E_; (¢) désigne respectivement
I'ensemble des matrices symétriques et antisymétriques. Ces sous-espaces sont donc orthogonaux.

Le théoréeme spectral

,—[Théoréme 8 (spectral)] \

Si ¢ est un endomorphisme symétrique d'un espace euclidien (E, () ),

alors | — L'endomorphisme ¢ est diagonalisable, les valeurs propres sont réelles.

— Il existe une base orthonormée de E formée de vecteurs propres de .

A Attention. Il ne faut pas oublier que la base des vecteurs propres peut étre choisie orthonormée.

+4+ Les questions sont indépendantes.
Exercice 4 Soit ¢ un endomorphisme symétrique d'un espace euclidien (E, (-,-)).
. 1. Que dire de ¢ sipour tout u € E, (u,(u)) =0?
N ,f 2. Justifier que Sp(¢) = R™ si et seulement si ¢ vérifie
y VueE, (u,@w)=0 (o)
<> Soit A € #,(R) symétrique. Justifier que I'application linéaire
Exercice 5
i M ® = M [R)
174 o: { M  — AM
”
i; " est aussi diagonalisable.
On pourra introduire le produit scalaire canonique sur 4y (R).

#AS4
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2.2 Diagonalisation des matrices symétriques réelles

Théoréme spectral dans le cas matriciel

,—(Théoréme 9 (spectral, version matricielle)]

Si Ae 4, (R) est symétrique,

alors | — A estdiagonalisable, les valeurs propres sont réelles.

— Il existe une matrice orthogonale P et une matrice diagonale réelle D telles que

A=PDP ! =PD'P.

Remarque. Les colonnes de la matrice P forment une b.o.n de vecteurs propres de A. Pour rappel, une matrice est or-

thogonale si et seulement si les matrices colonnes forment une base orthonormée pour le produit scalaire canonique
de A, (R).

Les questions sont indépendantes.
Exercice 6 0 1
( 1 0
0 0
Justifier que A est diagonalisable. Calculer A2, En déduire que Sp(A) ={-1;1}.

» 2. 44 Soit M € .4, (R) telle que M + M soit nilpotente.
Montrer que la matrice M est antisymétrique.

0
1. 4 On consideére la matriceA=| 0
1

# AS6
,—[Proposition 10 (décomposition d'une matrice symétrique)] \
Soit A une matrice symétrique de .4, (R).
Notons — (A1,...,Ap) les valeurs propres de A.
— (Xj,...,X5) une b.o.n de vecteurs propres de A telle que AX; = A\;X; pour tout i € [[1; n]].
n
Alors A=) NXi'X = Xy X+ XX X
i=1
Exercice 7
vl 4+ Justifier que les matrices X;X; pour i € [[1;n]] sont des matrices de projection dont on
\ Y 4 déterminera les éléments caractéristiques (ici, une base du noyau et de I'image).
# AS8
Remarque. En particulier, A est combinaison linéaire de n matrices de projecteurs de rang 1.
Exercice 8 4 Onreprend les notations de I'énoncé précédent et on suppose en plus les réels A; positifs.
n
C 1. Montrer que la matrice L= . \/A; X; IX; est symétrique a valeurs propres positive et vérifie
A i=1
9 I'égalité L% = A. Prouver que L commute avec A.
i\~
of 2. On admet que c’est la seule matrice symétrique avec des valeurs propres dont le carré vaut
- A et on la note v/A. Montrer que si A est de plus inversible, alors on a (vA) ! = VAT,
#AS9



Méthode

Pratique de la réduction des matrices symétriques

Comment obtenir une b.o.n de vecteurs propres d’'une matrice/endomorphisme symétrique ?
— Déterminer les valeurs propres.
(Par un calcul du rang, un polynéme annulateur, le déterminant ...)
— Pour chaque valeur propre, déterminer une base de vecteurs propres.
— ATaide du procédé d’orthonormalisation de Schmidt, déterminer une base orthonormée pour chacun
des sous-espaces propres.

— On obtient une base de E par concaténation des bases orthonormées des sous-espaces propres.

4 Diagonaliser dans une b.o.n chacune des matrices symétriques suivantes :

Exercice 9

-~ - 2 0 2 2 2 =2

A A=| 0 0 O et B=| 2 5 -4

| ¢ 2 0 2 -2 -4 5

#AS10
n Formes quadratiques associées a une matrice
Définitions
,—[Déﬁnition 11 (forme quadratique d'une matrice symétrique)] N\
Soit A € 4, (R), symétrique. La forme quadratique associée a A est 'application définie sur R” par
q(h) = "HAH
ol H est la matrice des coordonnées de & dans la base canonique de R”.
Remarque. On constate que pour A = (“ij)(i,j)e[[l;n]]z et h = (h)ieq;my, 40 = % | aijhih;.
i,jelll;n
Par symétrie de A, on peut réécrire cette expression
- 2
q(h) = Z ajih;“+2 Z aijhihj.
i=1 i<j
n
En particulier, si A est diagonale avec A = diag(A1,Az,...,A,), on a simplement g (h) = Z Aihi2.
i=1
4 Forme quadratique associée a un endomorphisme symétrique
Exercice 10 On se place dans R” muni du produit scalaire canonique. Soient ¢ un endomorphisme symé-
o trique de R" et A la matrice de ¢ dans la base canonique.
F = Justifier que si g est la forme quadratique associée a A alors
1\~
J VheR", qh)={hoh).
#AS12




Expression dans une b.o.n

,—[Théoréme 12 (expression dans une b.o.n)} .

Soit g, une forme quadratique associée a une matrice symétrique A. Alors il existe une base orthonormée
2B de R" telle que si h a pour coordonnées hy, ..., h, dans %, on a

L =9
q(h) =3 Aih;",
i=1

ol Ay,...,A, sont les valeurs propres de A.

Exemple. “ L'encadrement de Rayleigh.

Signe d’une forme quadratique

Exercice 11 < . A quelles conditions nécessaires et suffisantes sur le spectre de A, a-t-on
4 i) Yuek, qu) =0?
— ii) Yuek, q(u) <0?

iii) VueEV{0g}, qw>02

- iv) YueE\{0g}, g <0?
#AS13



Exercices ‘»

Matrices symétriques

Exercice 12. 4 Soit n = 3. On note A € .4 (R) la matrice dont tous les coefficients valent 1 sauf le coefficient en position (n,n) #AS14
qui vaut 0.

1. Justifier que A est diagonalisable.

2. Vérifier que A est semblable & une matrice diagonale de la forme D = diag(0,...,0,a, b) avec a, b€ R.

3. En calculant de deux maniéres la trace de A et celle de A2, déterminer a et b.

Exercice 13. ¢4 @ Soient A et B deux matrice symétriques réelles telles que les formes quadratiques associées ga et gg  #AS15
soient égales. Justifier que A = B.

Exercice 14. 4 Rayon spectral, exemple de convergence de suite de matrices #AS16
On munit .41 (R) du produit scalaire canonique défini par (M,N) = !MN et on note ||-|| la norme associée. Soit A, une matrice
symétrique de .4, (R). On pose p(A) = max |Al.
Y q p p P AESHUA)

1. Justifier que pour tout X € .4 1 (R), |AX|| < p(A) IX]|.

2. Etablir I'équivalence entre les énoncés :

i pA)<1 ii) PourtoutXe ./, (R), [A"X] 2.0

Matrices symétriques positives, définies positives

Exercice 15. 4 % Définitions des symétriques définies positives et équivalences #AS18
On dit qu'une matrice symétrique M de .4, (R) est définie positive si pour tout X € .4, 1 (R) non nul, on a 'XMX > 0. Montrer
I'équivalence des quatre énoncés suivants :

i) M est une matrice symétrique définie positive.
ii) Les valeurs propres de M sont strictement positives.
iii) Il existe P orthogonale, D diagonale 4 coefficients diagonaux strictement positifs, telles que M = PD’P.

iv) Il existe une matrice R inversible et symétrique telle que M = R2.

Exercice 16. 444 Racine carrée d’'une matrice de ., #AS19

Pour tout n € N*, on note ., I'ensemble des matrices symétriques de .4, (R) dont les valeurs propres sont strictement positives.
SoitAe & .

1. Montrer qu'il existe R € %, telle que A = R2. On dit que R est une racine carrée de A.

2. SoientR; et Ry deux racines carrées de A appartenant a ., .

Montrer que R; et Ry ont les mémes valeurs propres et les mémes vecteurs propres. En déduire que la matrice A admet une
unique racine carrée dans ., notée dans la suite vA.

3. Expression de v/A via les polynémes de Lagrange.
Soient p € N* et Ay,...,Ap, les p valeurs propres de A deux a deux distinctes. Pour tout j € [[1; pll, on définit le polynome :

xX—A;
Liw= T] =
] )\
ieit;py Aj A

it]

a) Montrer que %8 = (Ly,...,Lp) est une base de Rp-1[x]. En déduire I'existence d’un unique polynéme P de Ry [x] tel que,
pour tout i € [[1; pll, P(A;) = /A;.
b) Exprimer v/A comme un polynéme en A.

2 1 1
4. SoitA=| 1 2 1 |.vérifier que A est dans S}, et déterminer vA.
1 1 2

Exercice 17. 44 Soient A et B deux matrices symétriques réelles d’ordre n dont les valeurs propres sont strictement positives. # AS20
1. Montrer I'équivalence: A=B <= A%2=B2

2. Est-ce encore vrai si on suppose les valeurs propres positives ou nulles?



Endomorphismes symétriques

Exercice 18. 4 Soient (E, (-,-)) un espace euclidien et ¢ un endomorphisme symétrique de E. Démontrer que Ker(¢g) et Im(¢p) # AS22
sont supplémentaires orthogonaux.

Exercice 19. <> Vrai ou faux? #AS23
Si Z8 est une base adaptée a la décomposition en sous-espaces propres d'un endomorphisme symétrique d'un espace euclidien,
alors 98 est une base orthogonale.

Exercice 20. ¢4 Lasymétrie implique la linéarité #AS24
Soit ¢ : E — E tel que, pour tous u, v € E, on a (¢p(u), v) = (u, p(v)). Justifier que ¢ est un endomorphisme.

Exercice 21. 4 Exemple d’endomorphisme symétrique en dimension infinie D’aprées EMLyon 2011 # AS25
On note E = €°°([0; 1];R), muni du produit scalaire (-, -) défini par :

1
Vf g€E  (f8) =f0 f0gldx.
et, pour toute fonction f € E, on pose

011 — R

T(f):{ x o= (=2 +x-Df ().

Montrer que T est un endomorphisme symétrique de E.

Exercice 22. 4 Endomorphisme symétrique et produit scalaire d’apres EDHEC 2015 # AS27
On considere I'espace euclidien R” muni du produit scalaire canonique. On note %4 = (ey, e, ...,ey) la base canonique de R" qui
est orthonormée pour le produit scalaire (-, -).
On considere un endomorphisme f de R", symétrique, dont les valeurs propres sont toutes strictement positives.

1. Justifier 'existence d’une base orthonormée de R", %' = (u1, uy, ..., un), formée de vecteurs propres de f.
2. a) Montrer que, pour tout x de R”, ona: (x, f(x)) = 0.
b) Vérifier que I'égalité (x, f(x)) = 0 a lieu si et seulement si x = 0.
¢) En déduire que I'application ¢, de R" x R" dans R, définie par ¢(x, y) = (x, f())), est un produit scalaire sur R”.

3. a) Enutilisant %', montrer qu’il existe un endomorphisme g de R", symétrique pour le produit scalaire canonique, dont les
valeurs propres sont strictement positives, et tel que g2 = f.

b) Etablir que g est bijectif.

¢) Montrer que la famille (g’1 en,g v e),...,g7 " (en)) est une base orthonormée de R” pour le produit scalaire .

Exercice 23. ¢4 & # AS36
Soient (E,(-,-)) un espace euclidien de dimension r, et f un endomorphisme symétrique de E. En notant AL,...,Ap ses valeurs
propres telles que A} <--- < Ap, montrer que

VxeE,  Allxl® < (f(),x) < Aplxl?

Exercice 24. 4¢4+4 Oraux HEC 2009 # AS29
Soient (E, (-,)) un espace euclidien de dimension n et f, g deux endomorphismes de E symétriques et ayant des valeurs propres
strictement positives.

1. Prouver qu'il existe un endomorphisme ¢ de E ayant des valeurs propres positives tel que f = @2 = @ o .

2. Montrer que : Ker(f + g) =Ker f nKerg.

Endomorphismes particuliers d’un espace euclidien

Exercice 25. 4 Un exemple d’endomorphisme antisymétrique # AS31
Soit n un entier au moins égal a 3. On travaille dans I'espace E = R” muni de son produit scalaire canonique. On consideére deux
vecteurs a et b de R" de norme 1 et orthogonaux. On définit sur E I'application f par:

VxeE, f(x)=(a,x)b—(bx)a.

1. Vérifier que f est un endomorphisme de E.
2. a) Déterminer Ker f et une base de Im f.
b) Vérifier que Ker f et Im f sont supplémentaires.

3. Montrer que :
V(x,y) €E2, (f(x),y)=—(x, f)
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4. En déduire que f o f est un endomorphisme symétrique.

5. A quelle condition sur I'entier naturel k, I'endomorphisme f K est diagonalisable.

Exercice 26. ¢4 Soit E un espace euclidien de dimension . Soient f et g deux endomorphismes de E tels que fog=go f.On #AS32
note S (resp. T) la matrice de f (resp. g) dans une base orthonormée 28 de E. On suppose que S est symétrique et T antisymétrique.
Montrer que :

vxeE  [(f-9W|=[f+9w].

Exercice 27. 4 % Adjoint u* d’'un endomorphisme u et endomorphismes normaux d’apres EDHEC 2019 # AS33

Soient (E, (-,-)) un espace euclidien de dimension 7 et ¢ un endomorphisme de E. On note %8 = (e}, €2, ..., e;) une base orthonor-
mée de E.

e Définition de l'adjoint d’'un endomorphisme de E
n
Pour tout y € E, on pose @* () = Y_ {9 (e;),¥)e;.
i=1
1. Vérifier que ¢* estun endomorphisme de Eet: Vx,yeE,  (px),y)={(x,0* ).
2. & Que dire de (@*)*?

3. & Comparer les matrices de ¢ et ¢* dans la base 98. En déduire que o @™ est diagonalisable.

e FEtude des endomorphismes normaux
Dans la suite, on suppose que ¢ est un endomorphisme normal, c’est-a-dire ¢p commute avec @* :

Pop* =9 oq.

. Montrerque: Vx€E, [lo@)|=|¢*@].
. En déduire que Ker(¢) = Ker (¢*).

. Montrer que si F est un sous-espace vectoriel de E stable par , alors FL est stable par ¢*.

N O g e

. On suppose que ¢ posseéde une valeur propre A et on note E, () le sous espace propre associé. Montrer que E) (¢p) est stable par
¢*, puis en déduire que Ei‘ est stable par ¢.

> Pour aller plus loin, HEC 2019 Maths I, Essec 2014

Compléments

Exercice 28. 444 Une descente de gradient D'apres ESCP 2012 # AS34
Soit n € N\ {0;1}. On considere R” muni de son produit scalaire canonique noté (-,-) et || - ||, la norme associée, et A € .4, (R),
symétrique réelle dont les valeurs propres sont toutes strictement positives.

On confond vecteur de R” et matrice colonne canoniquement associée et on pose, pour tout X € R”,

X = IXAX.

1. Soit B un élément de R". Montrer que I’équation AX = B d’inconnue X € R” admet une unique solution qu’on notera R.
2. Montrer qu'il existe deux réels a et B strictement positifs tels que pour tout X de R"

allX)? < ©(X) < BIXIZ.

3. Dans la suite de I'exercice, on pose pour X € R” : F(X) = ®(X) - 2!BX.
a) Déterminer le gradient VFx de Fen X.
b) Soient X et H deux éléments de R". Montrer que

FX+H) =FX) +(VFx, H) + ®(H).

¢) En déduire que F posséde un minimum sur R”. En quel point est-il atteint?
4. SoitX e R" fixé, X # 0. Déterminer « € R de fagon a ce que F (X— O(VFX) soit minimal. Calculer ce minimum.

5. Soit Xg € R”. On définit une suite (Xk)ker\l de vecteurs de R” par, pour tout k € N:

o vEx® .
Xi+1 =Xk — o VFx,, ol ag = Son) S Xy #Ret 0 sinon.

@ (Xg)

a) Montrer que la suite (F (Xj)).cp converge.
b) Exprimer F(Xj.,1) - F (X)) en fonction de oy, et de VFy, .

6. Une suite (Yy) o de vecteurs de R” sera dite convergente vers un vecteur Z € R” si klim |Yx —Z| =0, ce qui revient a dire que
—+00

les coordonnées de Yj. convergent vers les coordonnées correspondantes de Z.
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a) Montrer que la suite (VFy, ), _, converge vers 0.

keN
b) En déduire la limite de la suite (X) eN-

Exercice 29. +44 Décomposition spectrale, calcul et application #ASpl

Soit M € .4 (R), inversible.

1.

Existence de la décomposition

Montrer que ‘MM est une matrice symétrique de valeurs propres strictement positives. En déduire qu'il existe une matrice
symétrique 2 valeurs propres strictement positives S telle que ‘MM = S2.

. & Montrer qu'il existe une matrice orthogonale O telle que M = OS.

Unicité de la décomposition

Il existe un unique couple (0,S), O orthogonale, S symétrique a valeurs propres strictement positives, tel que M = OS. Pour s’en
convaincre, on a vu en exercice que la matrice S est unique (le refaire si besoin). La matrice O l'est donc tout autant et on a bien
l'unicité du couple (O, S).

Algorithme par 1a méthode de Newton
Dans la suite, on dit qu'une suite de matrices (Ag) . de .4y (R) converge vers une matrice A si pour tout couple (i, j) € [[1; n]]?, la
suite des coefficients ([Ag]; ;) converge vers le coefficient [A]; ;. On admetﬂle résultat suivant :
Soit M € .4y (R) inversible. La suite (M) . de matrices de M € .4, (R) définie par
1 -1
Mo=M et My =My (1 -+ ("MeM) ™)

est bien définie, converge vers O, oit M = OS est la décomposition polaire de M. De plus, la suite (‘M M) & converge vers S.

3. & Justifier que pour tout k € N, la matrice My, est inversible.

4. Proposer un programme python qui prend en argument M et renvoie une approximation du couple (O, S) obtenue par décom-

position polaire.

Application
Soit [E, ¢, ~)) un espace euclidien et ||-|| la norme euclidienne associée.
Un endomorphisme f de E est appelé contraction si pour tout x de E, || f(x) || < [ x]|.

5. Donner un exemple de contraction de E.

6. On suppose dans cette question que 'endomorphisme f est symétrique.

a) & Montrer que f est une contraction si et seulement si pour toute valeur propre A de f,ona|A| <1.
b) Soit P un polynéme de R[x]. Montrer que pour tout x de E :

IP(H&EI< sup [PA)]-x
AeSp(f)

ol Sp(f) désigne 'ensemble des valeurs propres de f.

On suppose désormais que f est un endomorphisme bijectif de E, et on note M sa matrice associée dans une base 28 orthonor-
mée de E.

. & Montrer que f est une contraction si et seulement si pour toute valeur propre A de S,ona |A| < 1.

Exemple

b
Pour tout (a, b) € R? \ {(0,0)}, on pose Mg p = a

-b al
On note (S, 5,04, p) le couple obtenue dans la décomposition polaire.

8.  a) Expliciter la matrice S, j, dans cet exemple.
. . _ bl s . _ [ cos(®  sin(0)
b) & Justifier ensuite que det(O, ;) = 1 et qu'il existe un réel 8 tel que O, , = | sin®) cos®) |
2n+1 1
9. & Onpose]=M(0,1). On pose ensuite exp(0)) = lim ) —(onk.
n—-+oo ;= k!
Démontrer que Og,p = exp(0)).
Exercice 30. ¢4¢4 Lemme duthéoréme spectral # ASp2

On se propose dans la suite d’établir le résultat préliminaire et admis dans la preuve du théoréme spectral : toute matrice symé-
trique réelle admet un valeur propreEl

1. mais on pourrait le démontrer (DS11 de 'année derniére).
2. La preuve classique utilise les nombres complexes. Ces derniers sont hors-programme en ECG.

12



(52 B L)

Résultat 1
Soient A € .4y, (R), symétrique et 5 € RY.

. Justifier que A% + 81, est une matrice inversible.

. & SoitR, un polynome de degré 2 dont le discriminant est strictement négatif. Déduire de la question 1 que R(A) est inversible.

Résultat 2 - Polyndme minimal

. Justifier que toute matrice A € .4 (R) admet un polynéme annulateur non nul.
. Démontrer qu'il existe un polynéme non nul annulateur de A de degré minimal et unitaire. Notons I, un tel polyndme.

. (facultatif). Montrer que pour tout polynéme P annulateur de A, il existe Q polynéme tel que P = I15 - Q. En déduire que le

polyndéme I1, est unique.

. Justifier que si A est une racine de [Ty, alors A est une valeur propre de A.

Résultat 3
On rappelle que pour tout polynéme P, il existe :

— a,unréel;

— desréels (A;) ;. et des entiers naturels (1) ;¢

— des polynomes (R ; de degré 2, unitaire et de discriminant négatif
POy [ ’)je[u;pn & &
r p
tels que P=a[](x-A;)-[]R;.
i=1 j=1

. Alaide des trois résultats, montrer que pour toute matrice A symétrique admet une valeur propre réelle.

On montre ainsi que la matrice admet un polynéme annulateur non nul scindé a racines simples. On a vu en exercice que cela prouve
la diagonasabilité de la matrice. C'est le théoreme spectral.

Algebra is like sheet of music. The important thing isn't can you read music, it’s
can you hear it. Can you hear the music, Robert?

NIELS BOHR TO J. ROBERT OPPENHEIMER,
2023, Oppenheimer (film)
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CHAPITRE ]. 5

Projections orthogonales

Lart des mathématiques consiste a trouver le cas particulier qui
contient tous les germes de la généralité.

DAvVID HILBERT
Mathématicien allemand (1862-1943)

_ Rappels

1.1 Les projecteurs

,—[Déﬁnition 13 (projecteur)]

Soient E un espace vectoriel et F, G deux sous-espaces vectoriels supplémentaires.

G / ------------ 2 u Ainsi, pour tout u € E, il existe une unique décompo-
- sition u = ug + ug ou (ug, ug) € F x G. On pose
F 0g i E — E
u +— Ug.

Cette application est linéaire, elle est appelée le projecteur sur F parallelement a G.

\.

J

Remarque. Rappelons que F = Im(p) = Ker (p - idE) et G = Ker(p). En particulier, on a E = Im(p) & Ker(p). De plus,

idg —p est le projecteur sur G parallelement a F.

,—(Théoréme 14 (caractérisation d'un projecteur)}

Soit p: E — E une application. Les propriétés suivantes sont équivalentes.

i) Lapplication p est un projecteur.

ii) Lapplication p estlinéaire et pop = p.

+
Exercice 31 1. Soit p un projecteur d'un espace vectoriel E.
v a) Donner les puissances de p, puis celles de 2idg +p.
v b) Soient A,y € R, simplifier (Ap + pidg) o (2idg + p). En déduire que 2idg +p est un iso-

J morphisme.

- 2. Considérons deux projecteurs p et g qui commutent.
Montrer que p o g est un projecteur et justifier que Ker(p) + Ker(gq) c Ker(po gq).

15
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1.2

Rappels sur les sous-espaces orthogonaux

Soit F un sous-espace vectoriel de E. On appelle orthogonal de F, et on note F, 'ensemble des vecteurs orthogo-

naux a F, c’est-a-dire :

F-={ucE|VveF, (4 v)=0}.

,—[Proposition 15 (espaces supplémentaires orthogonaux)] N

Soit F, un sous-espace vectoriel d'un espace euclidien (E, (-,-) ). Alors

En particulier

E=FeF'.

dimF + dimF+ = dimE.

Remarque. Soit (ey,...,ep) est une base orthonormée de F que 'on compleéte par (ey,...,ep, €p+1,...,en), une base
orthonormée de E. On a

Exercice 32

F=Vect(ey,...,ep), Ft =Vect(ep+1,...,€n).

+ Les questions sont indépendantes.

1. Dans R® muni du produit scalaire canonique, on considere les plans F et G d’équations
respectives :
x+2y+3z=0 et x—-y—-z=0.

Déterminer une base de F+ puis de (Fn G)L.
1
2. Soit R3[x] muni du produit scalaire (P,Q) = f P(1)Q(r)dt. On pose F =Ry [x].
0

Déterminer une base de FL.

#PO2
Exercice 33
v e 44 Soient (E, () ) un espace euclidien et F, G deux sous-espaces vectoriels.
Y 4 Justifier que F et G sont supplémentaires si et seulement si FL et G sont supplémentaires.
\‘
#PO3
Proposition 16 (condition nécessaire et suffisante d’appartenance a l’orthogonal)]
Soit F = Vect (ey, ..., ex) un sous-espace vectoriel de E. On a
ueFt < Viel[l,kl, <(ue)=0.
4 Vecteur normal a un hyperplan
Soit F un hyperplan d’un espace euclidien (E, ¢-,-)).
Exercice 34 1. Montrer qu'il existe ug e Etel que pourtoutveE: veF <<= (ug,v)=0.
v 2. Exemples
o«
( ( a) On considére E = R3 muni du produit scalaire canonique et I'hyperplan F =
J 4 {x,y,2)€ R3|2x+3y—z= 0}. Déterminer un vecteur normal a F.
- 1
b) Soit maintenant E = R3[x] et le produit scalaire défini par (P,Q) = f P(H)Q(r)dt. Dé-
-1
terminer un vecteur normal a Ry [x].
#PO4
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n Projecteurs orthogonaux

2.1 Définitions et exemples

,—(Déﬁnition 17 (projecteur orthogonal)] N\

Soit (E, (-,-) ), un espace euclidien.
On appelle projection orthogonale sur F, notée pg, la projection sur F parallélement a F-.
Pour tout u € E, pr(u) est appelé le projeté orthogonal de u sur F.

N Retenons
F v € F
v=pr(u) < N
o F u-v € F-.
D’apres le rappel du début de chapitre, un projecteur p est
orthogonal si et seulement si Im(p) et Ker(p) sont supplé-
o) mentaires orthogonaux, si et seulement si Ey(p) et E;(p)
sont des supplémentaires orthogonaux de E.
4+ % Exemple
Exercice 35 Soit .4y, (R) muni du produit scalaire (A, B) = Tr (AB) . On définit I'application
' M+'M
- p:Mp® — Ar®), pM)= T

1. Vérifier que p est un projecteur. Préciser le noyau et 'image de p.

2. Est-ce que p est un projecteur orthogonal?

#PO6

,—[Proposition 18 (caractérisation)] <

Soit p, un projecteur d'un espace euclidien (E, () ) On al’équivalence entre les énoncés suivants.

i) Le projecteur p est orthogonal.

ii) Lendomorphisme p est symétrique.

,—[Proposition 19 (caractérisation matricielle)] \

Soient E un espace euclidien, 98 une base orthonormée de E, p un endomorphisme et A = Matg(p).
On al’équivalence entre :

i) Lendomorphisme p est un projecteur orthogonal.

ii) La matrice A est symétrique et A = A.

A Attention. Il ne faut pas oublier la condition : 98 est une base orthonormée.

Exemple. La matrice U'U ol U est une matrice colonne de norme 1.

17



Méthode

2.2 Expression et calcul explicite du projeté

,—[Théoréme 20 (expression du projeté dans une b.o.n)} <

Soit F, un sous-espace vectoriel d’'un espace euclidien (E, (-,-) ) et p, le projecteur orthogonal sur F.

Si %r = (e1,...,ep) estune base orthonormée de F,
P

alors YucekE, pp(u)zzm,ei)ei.
i=1

\.

* Projection sur une droite vectorielle
Considérons le cas ou1 F est une droite vectorielle. 11
existe donc e € E\ {0} tel que F = Vect(e). e
La famille constituée d'un unique vecteur (e;) = u
(e/llell) est une base de F et d’apres ce qui précede
(W= (wenye {u,e) . pr(u)
=(Uu, = —28.
PF 17€1 el O f
1

* Projection sur un hyperplan.

Remarque. Retour sur le procédé d’orthonormalisation de Schmidt.

Soient (u1,...,uy,) une base de E non nécessairement orthonormée. Pour tout k € [[1;n — 1]], posons py, le projecteur

orthogonal sur Vect(uy,..., u). On définit ensuite la famille (ey, ..., e,) de vecteurs de E par la récurrence

Uk+1 — Pk (Uk+1)
| i1 = prcCuis)||

u
ep=—— et Vkel[2;k-11, exs1=
e

La famille (e, ..., e,) est bien définie, elle constitue une base orthonormée de E avec

Ykel[l;n], Vect(uy, ..., u;) = Vect(ey,...,ex).

Comment calculer en pratique un projeté?

Soient u € E et F, un sous-espace vectoriel de E. Calculons pr(u), le projeté orthogonal de u sur F.

 Etape 1
On trouve une base (u1, ..., up) de F (non nécessairement orthonormée).

o Etape?2

p
Comme pg(u) € F, il existe un unique p-uplet (Ay,...,Ap) € R” tels que pr(u) = Y. A;u;. On remarque
1

1=
ensuite que
(u—pr(w),u1)=0
(u—pew),uz2) =0

(u—pr(w),up)=0

On explicite alors le systéme linéaire d’inconnues (A;)eq1;p)
n

(W) =(prw),u1) = ¥ \; (ui, ur)
i=1

(w, up) = (pr(w), up) = é?\i (Ui, up)

(u,up)=(pr(w), up) = éAi(ul" Up)

18



Méthode

o Etape 3
Onrésout le systéme linéaire précédent a p équations pour trouver les p inconnues (A;) ie[1;py. On conclut

p
par le calcul de pp(w) = Y Aju;.
i=1

Exemple. Dans R3, calcul du projeté de u = (0,—1,4) sur 'espace vectoriel F = {x,y,2) € R3|x-2y+3z= 0}.

Exercice 36
A 4+ Exemple

1
' - Soient Ry [x] muni du produit scalaire (P,Q) = f P(H)Q(r)dt et F =Ry [x].
0

2 Donner I'expression du projeté orthogonal de Q(x) = 1+ x + x2 sur F.

#PO7

n Applications a I'optimisation

3.1 Distance a un sous-espace vectoriel

Soient F un sous-espace vectoriel d'un espace euclidien (E, (-, -)) et u € E. On définit (sous réserve d’existence), la
distance du vecteur u a F par

d(u,F) =min|u-v|.
veF

Notons que u € F si et seulement si d(u,F) = 0.

,—(Théoréme 21 (caractérisation du projeté par minimisation de la norme)]

Soient F un sous-espace vectoriel d’'un espace euclidien (E,(-,-)), pr la projection orthogonale sur F et
u € E. Alors la distance d(u, F) est bien définie et

dw,F) =minllu-v| = |u-pe@w)]|.
veF

De plus, le minimum est atteint seulement pour v = pp(u).

\

Remarques.
* Le projeté orthogonal de u sur F est caractérisé par

VveF, |u-v|=zlu-pl.

Autrement dit : pour tout u € E,

Ok —>,

v=pp(u) < |veF et ||u—v||:mi£1||u—w||.
we

pr(u) A’
o dw,F)? = u—pa)l? = llul®* -l p]?.
Exercice 37 4+ Exemples
{ Soient (E, (-,-} ), un espace euclidien, ug € E\ {0} et un hyperplan H.
- 1. Exprimer la distance d'un vecteur x a la droite Vect(uyg).

2. Faire de méme avec la distance a H. On exprimera le résultat a I'aide d'un vecteur ug €
v H (un vecteur normal, exercice | .

#PO8

Exemple. On montre que la fonction de deux variables
V() eRE,  flr,y) =4x—1)2+(x+y)? +(x-2y+1)?
admet un minimum sur R? en considérant dans R3, le produit scalaire canonique de sorte que

2 2
flx,y) = ”[2(x—1),x+y,x—2y+1)” - H(Zx,x+y,x—2y)—(2,0,—1)” .

19



Exercice 38 44 & Justifier que la quantité
N & ) Lo, 2
Y inf (t —at—b) dr
o (a,b)eR2J-1

est bien définie et la calculer.
#PO9

3.2 Probléme des moindre carrés, droite de régression

Projeté sur I'image et moindre carrés
Soit f une application linéaire R” dans R”, b un vecteur quelconque de R”. Lorsque f n’est pas surjective (p < n),

il se peut que b n’appartienne pas a I'image de f et1’équation f(x) = b, d'inconnue x € R”, n’admette pas de solution.
On cherche alors un vecteur x dont I'image « est la plus proche » de b. Plus précisément, on munit 'espace d’arrivée
de sa structure euclidienne canonique et on veut justifier I’existence de

min || f(x) - bl

x€ERP
et trouver un (le?) vecteur x réalisant le minimum. On constate qu’il s’agit de rechercher

i -Dl.
yrgglf ly—bll

Comme Im f est un sous-espace vectoriel de E, le théoreme de minimisation prouve 'existence du minimum qui est
atteint en un unique point :

y=p(b) ou p désigne le projeteur orthogonal sur Im f.

Théoréme 22 (probleme des moindre carrés, pseudo—solution)]

Soient n, pe N* avec n = p, A€ My p(R) derang p et Be 4, (R).
Alors il existe un unique vecteur Xg € .41 (R) minimisant la quantité |[AX - B|| ou || - || désigne ici la norme
associée au produit scalaire canonique sur .4, 1 (R).

Remarque. Lexercice suivant permet de justifier que le vecteur Xg est1’'unique solution du systeme de Cramer ‘AAX =
AB. On parle alors de pseudo-solution.

0

1

2

Justifier et calculer 'unique matrice colonne X telle que la norme [|AX — B|| soit minimale.

N
Exercice 39 < Exemple

¢ On pose A=

1 2
20 et B=
1 1

#PO10
44 Reprenons les notations du théoreme et justifions la remarque précédente.
Exercice 40 1. a) Justifier que Ker (‘AA) = Ker(A), puis rg(‘AA) = rg(A).
\ b) En déduire que AA est une matrice inversible.
i 2. a) Vérifier que pour toutX € .4, 1 (R), (X, 'A(AXg —B)) = 0.
¢ b) En déduire que AAX( = AB.

|

, . . . -1 "
On a donc bien une unique solution donnée parXo = (‘AA)™" AB. Pour une seconde démonstra-
tion, voir l'exercice 22, p.22, partie II.

#PO11

Régression linéaire

Considérons n points de R?, (x1,1), ..., (Xn, yn) non alignés verticalement. On cherche la droite qui « approxime »
au mieux ces n points. Si on note y = ax + b, I'équation d’'une droite, on cherche a minimiser I’erreur

n n
E, = Z diz = Z (ax,- +b—y,~)2.
i=1 i=1

20



10 ° Droite de regression
b=27 Erreur
Point Moyen

] . Erreur : 30.1 (jS, y’l)

x 1 n ax1+b-y
a X2 1 Vo ax,+b—y;

X= b | A= . . et B= . de sorte que AX-B= .
X, 1 Yn axp+b—yn

Si on considere le produit scalaire canonique sur .4, 1 (R) et la norme associée
E, = |AX - B||?
r= .

Les deux colonnes de la matrice A forment une famille libre (les points ne sont pas alignés verticalement). La matrice A
est donc de rang 2. D’apres le théoréme précédent, il existe un seul vecteur minimisant [|AX— B||. Calculons ce vecteur
Xp al’aide de la remarque. On a

yxi? L
TAA=| =} i=1 € M (R)
Xi n
i=1

i=

On montre que ‘AA est inversible et 'inverse est donné par

- 1 no-ix
(IAA) 1= n n 2 —EX' ﬁlz.;z
n.);lxiz—(.;xi) [ =
. Y XiYi
De plus, on calcule AB=| =}
£y

Ceci permet d’expliciter le vecteur X, puis ses composantes a et b :

nfxv= () (Er) g (5Em) (£

n n 2 n 2
1 1
I’ZAEI.XZ‘Z—(AEI.XZ‘) ﬁz Xiz—(%é x,-)
i= i=

Si X (resp. j) et o (resp. o) désignent la moyenne et I'écart-type empirique de la série statistique {xili € [L;n]}
(resp. {yili € [1;n]}), Cov(x, y) désigne la covariance empirique de x et y et p,,, désigne le coefficient de corrélation
empirique, alors la droite de régression linéaire de y en x a pour équation :

C ) -
= M(x_x)‘

_ Oy _
J’_J’:px,yo—(x—x)
X X

Remarque. Nous verrons une seconde démonstration de ce résultat par le calcul différentiel.
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Exercices ‘»

Exercice 41. 4 %. Déterminer la matrice dans la base canonique de R" de la projection orthogonale sur le sous-espace #PO12
vectoriel

H= {(xl,...,xn)elR”

n
Z Xi =0}.
i=1

Exercice 42. 4+ On place dans R° muni de son produit scalaire canonique et on note 98, la base canonique de R°. Soit F = #P013

Vect(f1, f2, f3) ou
fi=er+ex—e3, fo=e3+es et f3=ex—e3.

Donner la matrice dans la base canonique du projecteur orthogonal sur F.

Exercice 43. 44 % Abonne distance d’Attila #PO14
On considere .4 (R) muni du produit scalaire

(A,B) € (R — (A,B) =Tr ("AB) € R.

Soit H, le sous-espace vectoriel des matrices de trace nulle.
1. Donner la dimension de HL. Préciser une base.

2. Soit] la matrice de .4 (R) dont tous les coefficients sont égaux a 1. Calculer f&niIIil IA=TIl.
€

Exercice 44. 444 CNS pour un projecteur orthogonal #PO15
Soient (E, (-, -y ) un espace euclidien et p, un projecteur de E.
1. Montrer I'équivalence entre les énoncés :
i) Le projecteur p est orthogonal  ii) Vx€E, (x,p(x))=0.
Indication. On pourra considérer A\x+y oitx€Kerp, yeImp et AeR.
2. Méme question avec les énoncés :

i) Le projecteur p est orthogonal iii) Vxe€E, lp)l<lxl.

Exercice 45. 444 % Deux approches pour un méme probléme de minimisation #PO17

Soit F la fonction définie sur R par :
F(x,y,2) = 24x° + 2y + 2% + 12xy +2yz+4zx — 240x — 48y — 122.

1. a) Vérifier que F admet un unique point critique, noté A.

b) On admet (par le calcul) que F(x,y,2) = 2x+y+z— 6)% + (4x + V- 18)% +4(x—9)% — 684.
En déduire que F admet un minimum sur R3. Préciser la valeur du minimum.

+oo

c) Calculerl, = f e tdr pour tout n € N.
0

d) Justifier la convergence et exprimer en fonction de F, I'intégrale :
+00 2
I(a,b,c):f e_t[t3—at2—bt—c) dr.
0

e) En déduire I'existence et la valeur de

I= inf I(a,b,c).
(a,b,c)eR3

2. Pour tous P, Q € R3[x], on pose
+o0o
®Q= [ e rmQuar
0
On vérifie que cela définit un produit scalaire sur R3[x].

a) En utilisant la question 1, calculer la distance du polynéme Py (x) = x3 au sous-espace Ro[x].

b) Comment retrouver ce résultat en calculant le projeté orthogonal de Pg sur Rp [x]?

Exercice 46. 444 Partition de P'unité #P0O18
Soit (E, (-,) ) un espace euclidien.
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1. Soient p, q deux projecteurs orthogonaux tels que
VxeE,  lp@I?+lg@l* < lxl>.

a) Justifier que pog=gqop=0gp.
b) En déduire que p + g est un projecteur orthogonal.

n
2. Soient maintenant pi, p2, ..., pn des projecteurs orthogonaux tels que ¥ p; =idg.
i=1

a) Montrer que pour tout x € E
n
Y IpiCol* = xi?.
i=1

b) En déduire que pour toute partie non vide I de [[1; n]] 'endomorphisme ¥ p; est un projecteur orthogonal.
i€l

Exercice 47. 444 Sujet de révision extrait de ESSEC 2012 #PO19
Soient m, n € N*. On munit .#; 1 (R) de sa structure euclidienne canonique. Ainsi si

X1 J1
X2 Y2

X= . et Y= . € Mm,1[R),
Xm Ym

m m
le produit scalaire de X et Y s’obtient par la relation ‘XY = Z x;y; etlanorme euclidienne de Y par : ||Y||$n =lyy= Z y,-z.
i=1 i=1

1. Question préliminaire.
Soit F un sous-espace vectoriel de .#,1 (R) de dimension k non nulle et (Ul,Ug,...,Uk) une base orthonormée de vecteurs
colonnes de F.
On envisage la projection orthogonale sur F représentée par sa matrice P dans la base canonique de .4, 1 (R).

k
Montrer que P= } U;U ; et vérifier que P est une matrice symétrique.
i=1

2. Partie I. Décomposition spectrale de la matrice 'AA associée & une matrice A de Mpm,n(R).
On envisage dans toute cette partie une matrice A appartenant a .#, » (R).

a) Préciser la taille de la matrice YAA et vérifier que KerAc Ker? AA.
b) Montrer que siX € Ker? AA alors |AX|| ;,, = 0 et établir que Ker A = Ker! AA. Montrer que A et ‘AA sont nulles simultanément.
c) Justifier I'égalité : Im? A = Im? AA.
3. a) Ftablir que la matrice ‘AA est diagonalisable et en calculant IIAXII% pour X vecteur propre de la matrice ‘AA, montrer que
ses valeurs propres sont des réels positifs.

b) On désigne par (A1,Az,..., )\p] la liste des valeurs propres distinctes de la matrice ‘AA, classée dans I'ordre croissant.
On rappelle que

p
Mn1® = PEy, ("AA) ot Ey, (“AA) = Ker ('AA - A;1,).
i=1
Pour i entier naturel compris entre 1 et p, on note P; la matrice de la projection orthogonale sur E,, (IAA] dans la base
canonique de .#y,1 (R).
Vérifier que pour i et j distincts compris entre 1 et p,P; P est la matrice nulle.

P P
Justifier les relations : I, = Y. P; et YAA = Y. A;P;. Cette derniére écriture s’appelle la décomposition spectrale de “AA.
i=1 1

i= i

i=

4. Exemples
a) Déterminer la décomposition spectrale de “AA lorsque A est la matrice 3,3 égale a

1 -1 1
1 -1 1
-1 1 2

b) On envisage la matrice ligne A = (aj ap - -- a,) ol les réels ay, ap, ..., a, sont fixés, non tous nuls simultanément. Ainsi, A’A
est un réel. Montrer que le polynome X? — (A’A)X est annulateur pour la matrice ‘AA. Préciser la liste des valeurs propres
et la décomposition spectrale de la matrice ‘AA.

Partie I1. Pseudo solution d’'une équation linéaire.
On s’intéresse dans cette partie a I'équation AX = B ot A € # 1, n(R) et B € .#,;,,1 (R). Une matrice X appartenant a .47, 1 (R) est
dite solution de cette équation si elle vérifie la relation AX = B. Elle est dite pseudo solution de cette équation si elle vérifie :

VZe Mn1(R) |AX-Bllm <IAZ-Blm

5. On suppose que I'’équation AX = B admet au moins une solution. Montrer que X est une pseudo solution si et seulement si elle
est solution de I’équation.
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A2||AY|2, + 21 'Y A(AX - B) > 0.

En déduire que ‘AAX = 'AB.

7. Montrer que tout X de .#,,1 (R) vérifiant la relation AAX = ’AB est pseudo solution et en déduire qu'il existe toujours au moins

une pseudo-solution de I'équation.

8. Exemple
Déterminer toutes les pseudo-solutions de I'équation AX = B lorsque :

Parmi celles-ci, préciser celle dont la norme euclidienne est minimale.

9. Donner une condition sur le rang de A pour que I’équation admette une unique pseudo solution.

Les exotiques

Exercice 48. 444 Dans la suite, on identifie les vecteurs de R" avec les matrices colonnes de 4,1 (R).

Soient X1,X»,..., Xy, n variables aléatoires centrées et admettant un moment d’ordre 2. On pose
X1

X=| | et Cx=(Cov(x:X;)),

. 1
Xn

€MnR).
J

’

1. Soit u = (uy,uy,..., upn) € R". Exprimer la variance V ({1, X)) a I'aide de Cx et u.
(-, désigne ici le produit scalaire canonique surR").

2. Soient H un hyperplan de R” et u € HL.
Montrer que I'événement [X € H] est presque str si et seulement si u € Ker Cx.

. On suppose que X est une pseudo solution de I'équation. Montrer que, pour tout réel A et toute matrice Y de .#,1 (R), ona:

#P0O20

Exercice 49. ¢ 44 Soient Xj, Xp, deux variables aléatoires indépendantes et suivant une loi normale centrée réduite. Soit M, # PO21

un point de coordonnées (X1,X2). Soient a € R et A, la droite d’équation y = ax. On pose
Y= inf [M-ul?.
uelh,

Justifier que Y admet une espérance et la calculer.
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CHAPITRE ]. 6

Convergences et approximations

Ce calcul délicat s'étend aux questions les plus importantes de la
vie, qui ne sont en effet, pour la plupart, que des problémes de
probabilité.

PIERRE-SIMON, MARQUIS DE LAPLACE
Mathématicien, physicien francais (1749-1827)

_ Inégalités de concentration

,—(Proposition 23 (inégalités de Markov et de Bienaymé-Tchebychev)] \

» Soit Z une variable aléatoire positive admettant une espérance, alors

EZ
VAeR), P([Z=A])< %

¢ Soit X une variable aléatoire réelle admettant une variance, alors

VX)

g2’

VeeR:, P(X-EX)|=¢)<

FINLAN D 3 Siiigiiki
nland

4+ En moyenne, une personne sur 100 sait placer dans

Gulf

le bon ordre les pays baltes sur une carte. On choisit au e A
hasard n personnes et de maniére indépendante, notons e 9 {
Y, le pourcentage des personnes capables de donner le G T,
Exercice 50 bon ordre. \ -
_ 1. Donner I'espérance et la variance de Y. T
\. 2. Par application de linégalité de Bienaymé- | % o= le e

\‘ . Tchebychev, donner une valeur de n a partir de
laquelle Y, se trouve dans l'intervalle

BELARUS

1=10,009;0,011(

RUSSIA | vins®

8
POLAND s e

avec une probabilité supérieure a 0,9.
# CVA2

Remarque. Ces inégalités ont peu d’applications pratiques, car la majoration qu’elles fournissent est la plupart du
temps excessive, mais elles sont valables quelle que soit la loi de X, pourvu que I'on puisse définir une espérance
ou une variance. Linégalité de Bienaymé-Tchebychev nous permettra toutefois de démontrer la loi faible des grands
nombres (voir théoreme page[27).
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Exercice 51 44 % Soit X une variable a densité dont une densité f est nulle sur R™. On suppose qu’il

P +0o
- existe A € R} tel que f f@ M dr soit convergente. Montrer que
0

VaeRY, VxeloAl P(Xza)se‘“"E(exx].

# CVA4
4 Soit X une variable aléatoire possédant une espérance de 6 et une variance de 2. Appliquer,
Exercice 52 lorsque cela est possible, I'inégalité de Bienaymé-Tchebychev pour majorer ou minorer les
C probabilités des événements suivants. Préciser si le résultat obtenu est intéressant.
is
\y 1. 2<X<10]; 3. X<7]; 5. X=11];
- 2. [5<X<7]; 4. [IX-6|=1]; 6. [X=4].
# CVA3
n Convergence en probabilité
2.1 Définition et exemples
,—[Déﬁnition 24 (Convergence en probabilité)] N\
Soient (X;) nen Une suite de variables aléatoires définies sur un méme espace probabilisé (2, «/,P) et X une
variable aléatoire définie aussi sur cet espace.
g ] o . . . p .
On dit que la suite (X;),, converge en probabilité vers la variable aléatoire X, noté X, T Xsi:
—+00
VeeR;, P(X,-Xl=¢) — 0.
n—oo
Exemple. Soit (X;) une suite de variables aléatoires mutuellement indépendantes de loi uniforme continue sur [0; 1].
On montre que (Y;) ,en+ converge en probabilité vers la variable aléatoire presque surement constante a 1.
Exercice 53
P < @ Pour tout n € N*, on pose Z, = min (X1, Xp,...,Xp).
Y Reprendre le calcul précédent pour justifier la convergence en probabilité de (Z;),, vers une
[ © variable aléatoire que I'on précisera.
# CVA5
2.2 Les théorémes de convergence en probabilité

Regles de calcul

A Attention. Contrairement au cas des suites réelles ou des fonctions numériques, il n'y a pas unicité de la
limite (si elle existe). Plus précisément, si (X;),,en €st une suite de variables aléatoires définies sur un méme espace
probabilisé (Q, «/,P) et X, X’ des variables aléatoires définies sur le méme espace et telles que

P P / /
X, — X et X, — X alors P(X#X)=0.
n—+oo

n—+oo

,—[Proposition 25 (convergence en probabilité et combinaisons linéaires)] N

Soient (X;) nen, (Yn)nen deux suites de variables aléatoires sur un espace probabilisé (Q, </, P).

Si Xp = X et Y, = Y
n—+o0o n—+oo
P P
Alors pour tout A € R, AX, — AX et X,+Y, — X+Y.
n—+oo n—+oo
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Exercice 54 4 Prouver cet énoncé. Pour le second point, on pourra utiliser 'encadrement

v |Xn—X|<§]ﬁ[|Yn_Y|<g]c[|xn+Yn_O(+Y)|<£]'

,—[Proposition 26 (composition par une fonction continue)]

Soit (X;,) nen une suite de variables aléatoires sur un espace probabilisé (Q, <7, P).

Si | — Lasuite (X;;) sen converge en probabilité vers X.

— Lafonction f est continue sur R a valeurs réelles.

Alors f&Xn) == fOX.

Remarque. On peut affiner le théoréme en ne supposant seulement que f est continue sur un intervalle I tel que
pourtoutneN,PX, ) =1.

44 Preuve dans deux cas particuliers
Exercice 55 Soient (Xy),, une suite de variables aléatoires définies sur (Q,</,P) et f:R— R.

1. Onsuppose qu'il existe a € R} tel que : Vx,yeR, |f(x)—fMI<salx-yl.
f P
r Montrer que [ (Xp) T [X.

- 2. Justifier que sila fonction f est de classe ¢! sur R avec les variables X, avaleurs dans [a; b],
P
alors f (Xy) T fX.

Loi faible des grands nombres

,—[Théoréme 27 (loi faible des grands nombres)]

Soient (X;),en Une suite de variables aléatoires définies sur un méme espace probabilisé (Q,</,P) et X
une variable aléatoire définie aussi sur cet espace.

Si | — Lavariable X admet un moment d’ordre 2.

— Lesvariables (X;;) ,eny* sont mutuellement indépendantes et de méme loi que X.

Alors la suite des variables aléatoires X,,, moyenne arithmétique des n variables X;, Xp, -+, Xj,
converge en probabilité vers son espérance mathématique E(X). Autrement dit,

X, = ;i;xi o EX).

Remarque. Cas de laloi binomiale
Soit (Y,) nen* une suite de variables aléatoires sur un espace probabilisé (QQ, «,P) avec Y,;, — ZB(n; p). Alors

Y}’l P
— Z, ol Z est une variable aléatoire certaine égale a p.
n n—+oo

Application. Considérons une expérience aléatoire, et un événement A de probabilité théorique p associé a cette
expérience. Soit n € N*. Répétons n fois 'expérience de maniére indépendante et désignons par X,, le nombre de
succes (c’est-a dire le nombre de fois ol A est réalisé). Y,, suit donc une loi binomiale de parameétres n, p.

Posons de plus,

Y
Fp,(A) = —la fréquence empirique d’apparition de 'événement A.
n

Par la loi faible des grands nombres, on en déduitI'énoncé suivant :
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,—(Corollaire 28 (interprétation d'une probabilité)} <

Lorsque le nombre d’expériences aléatoires augmente indéfiniment, la fréquence d’apparition F, (A) d'un
événement A converge en probabilité vers sa probabilité théorique p. Autrement dit

veeR!, P([F,-p|>¢) — 0.

n—+oo

On a une premiere formulation mathématique de l'interprétation intuitive d’'une probabilité d’'un événement.

La probabilité d'un événement est la fréquence que I'on observerait si on effectuait
une infinité de fois I'expérience dans « des conditions parfaitement identiques ».

n Convergence en loi

3.1 Rappels : représentations graphiques des lois

Cas des variables aléatoires discretes

¢ Soit X une variable finie avec X(Q) = {x1, X2, -, Xm}.

Nous avons vu que 'on peut résumer une loi d'une variable finie par un tableau. Pour chaque indice i, on indique la
probabilité P(X = x;).

On peut aussi utiliser les diagrammes en batons, en abscisse, on place les valeurs x;. Dans la suite, on s’arrange pour
que la hauteur du baton partant de x; soit telle que 'aire du rectangle s'identifie a P(X = x;).

. Exemple. Ci-contre, le cas de la loi binomiale de para-
metres n =20, p=0,3.
Notons que pour avoir la probabilité P( [X€ [a;D]] ), il suffit
de sommer les aires des rectangles compris entre les abs-
cisses a et b. En particulier, la somme des aires totales des
rectangles est P(Q) = 1.

A A Ici, la partie grisée a pour aire P( [X € [4;6] ])
0o 2 4 6 8 10 12 14

* Lorsque X est une variable aléatoire discrete dénombrable (X(Q) = {x1, X2, , X5, -}), on ne considere qu'un nombre
fini de valeurs {x;, x2, -, x,}. En géneral, les valeurs ot la probabilité n’est pas négligeable.

Donnons I'exemple de la loi géométrique de parametre p = 0,2 ol on s’est limité a [[0;20]].

<N
0.2
p=0.2
0.15 1 .
0.11
0.05 1
L
0 I I I I | I I ——— 5
0 2 4 6 8 10 12 14 16 18 20

Laire de la partie la plus grisée correspond a une approximation de P([X > 4]).
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Graphe des densités des variables aléatoires a densité

Soit X une variable aléatoire a densité dont f, est une

densité.
Laire de la partie grisée comprise entre la courbe, I'axe Graphe
des abscisses et les droites d’équation x = a, x = b cor- de f

respond exactement a la probabilité que X prenne les
valeurs entre a et b.

b
Aire=P(la<X< b]):f Fodt. ~

3.2 Définition et exemples

,—[Déﬁnition 29 (convergence en loi)]

Soient (X;;) nen une suite de variables aléatoires et X une variable aléatoire toutes définies sur (Q, .o/, P).

Notons | — pour tout n €N, F,, la fonction de répartition de la variable X;;,

— F, lafonction de répartition de la variable X.

. . . . £ . . C
On dit que la suite (X;,) ,eny converge en loi vers X, noté X, . X, si en tout point x de continuité de F :
n—+00

Fpn(x) n:;oF(x).

\

A Attention. Iln'y a pas unicité de la limite lors d'une convergence en loi. Si X et Y ont méme loi, alors
X, L X = X, Z V.
n—+oo n—+oo
Exemples.
e Exemple 1. Pour tout n € N*, on vérifie que la fonction f;, définie sur R par : fult) = n*texp (- n’t?| 2) 1g, (%)
est une densité de probabilité. Soit (X;) ,en+ une suite de variables aléatoires a densité ou f;, est une densité de X,,. On
montre que (X;) ,en+ converge en loi vers X ou X est une variable presque surement constante a 0.
Ci-dessous, une représentation des courbes des premiéres fonctions de répartition dans des plans séparés.

e Exemple 2. Reprenons le cas de (X;),en+, une suite de variables aléatoires mutuellement indépendantes telles que
pour tout n € N*, X, — %/([0;1]). On montre que la suites de variables Y;,, = max(X;,X»,...,X,) converge en loi vers
une variable presque surement constante en 1.

» Lexercice suivant donne un exemple ol la suite converge vers une variable non presque surement constante.

Exercice 56 4 % Reprenons les notations de I'exemple précédent et posons, pour tout n € N*,
Vg My,=n(l-Y,).

o Ftudier la convergence en loi de la suite (M) ;e > -
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# CVA8

,—[Proposition 30 (convergence en loi)]

La convergence en loi de la suite (X;,) ,en vers X impose pour tous points a, b de continuité de F
P([a<X,<b]) — P(la<X<b]).
—00

\

,—[Proposition 31 (convergence en loi dans le cas discret)]

Soit (X;) nen une suite de variables aléatoires telles que :
VneN, X,(@cN et VkeN, P(X,=kl) — prel0;1].
—00
Alors (X;;) nen converge en loi vers une variable aléatoire X avec

X Q) cN et VkeX(Q), P(X=kl) = pi.

\

J

Exemple. Si X, — %B(p,) avec p, P €]0;1[. On montre que (X;),en converge en loi vers une variable aléatoire
—00
suivant une loi de Bernoulli 2(p).

<> Exemples Les questions 1 et 2 sont indépendantes

1. Soient n € N* et X;, une variable aléatoire de loi

Exercice 57

n—-«o n+ cos(n)? n+sin(n)?
v Xn(@) = (01,2} et P(Xp=0))=—— P(Xp=1])= ———— P(Xn=2])= ———

3n
'
a) Déterminer la valeur de a.
3 b) Vérifier que la suite (X;;) ,ey* converge en loi vers une loi usuelle.
2. SoitXp — P(Ay) avec Ay — A€ RY.

Montrer que (X) ,en converge en loi vers une variable aléatoire dont on précisera la loi.

# CVA9
3.3 Les théorémes de convergence en loi
Reégles de calculs sur les limites
A Attention. Contrairement a la convergence en probabilité, la convergence en loi de (X;) sen €t (Y,) nen vers X
et Y n'implique pas nécessairement la convergence de la suite (X;, +Y;) yen Vers X+ Y.
Exercice 58
, 4 Contre-exemple
e Soit X € 98(1/2). Posons pour tout n €N, X;; =X et Y, =X.
L 7”7
[ ¢ Vérifier que cela fournit bien un contre-exemple.
#CVA10
Remarques. Un peu de hors-programme
* On montre que la convergence en probabilité implique la convergence en loi :
P < . .
X, — X => X, — X (voir exercice 22, p.22).
n—+oo n—+oo
Il est a noter que la réciproque est fausse. Il suffit de reprendre le contre-exemple de I'exercice précédent.
Exercice 59
,f <> Soient ¢ un réel et (X;) ,en Une suite de variables aléatoires réelles convergeant en loi vers
9:, _ une variable aléatoire X. Alors la suite de variables aléatoires (X;; + ¢) ey converge en loi vers
| = X+ec.
#CVA11
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» Lexercice s’étend avec le théoreme de Slutsky :
) &£ . e g
SiX, T Xetsi (Yy) ,eny converge en probabilité vers une constante c, alors :
—+00

— Xy +Yy),en converge en loi vers X+ ¢

— (X, Yn) en converge en loi vers cX.

,—[Proposition 32 (composition et convergence en loi)] N

Soit (X;) nen une suite de variables aléatoires sur un espace probabilisé (Q2, «/, P).

Si | — Lasuite (X;)en converge en loi vers X.

— La fonction f est continue sur R a valeurs réelles.

Alors X n%oo fX.

Exercice 60

~ < 4 Cas particulier
\. &7 Justifier I'énoncé précédent dans le cas particulier ou la fonction f est bijective croissante.
\ >
# CVA12
Convergence de la loi binomiale vers la loi de Poisson
,—(Théoréme 33 (convergence de la loi binomiale vers la loi de Poisson)] <
Soient (X;) ,eny Une suite de variables aléatoires binomiales 2(n; p;,) telles que
+
npn 7 AeR;.
Alors la suite (X;,) ,en converge en loi vers une variable aléatoire suivant une loi de Poisson Z2(A).
K4
X, — Z avec Z<— P(N).
n—+oo
44 Voici une preuve du théoreme. Complétez-la.
n n p ¢
Exercice 61 Soit keN.Pour n=k,ona P([X, =kl) = (k)pnk(l )k = (k)(l )" ( - " ) .
wr —Pn
ia 1. Justifier les équivalents de chacun des facteurs lorsque n tend vers +oo (k est fixé).
’ |
< k k k
> Pn A A n Y n n
(a) (1 — Pn) o (;) ;0 (B In(l-pp) nieo (1-pn) nreo€ (c) k| nioo T
2. Conclure.
# CVA13

Interprétation graphique

On trace les diagrammes représentant les lois binomiales 8(n; A/ n) et de Poisson Z2(A). On constate que plus 7 est
grand, plus les diagrammes associés aux lois 22(A) et 28(n; A/ n) se confondent.
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0.4 0.4 —

0.3

0.2 B <u. —\> 02 B <,,_ L\>
n n

0.1 0.1

0.3

0.4 o
I — n =60
] ———
03 P(N)
—] A
0.2 Bln, —
n
0.1
0 2 4 6 8 10 12 14 16

Application a I'approximation
Considérons X — %(n; p), on a pour tout k € [[0; n]],

n

P([X=k])= (k

)pk(l _ p)n—k_

Ce produit peut étre assez difficile a évaluer numériquement lorsque n est « trés grand » et p « petit».
Lidée est donc dans les cas limites (n est « trés grand » et p « petit») d’avoir une expression approchée plus simple de
la probabilité en posant A = np et

P(X=k])=P([Z=k]) ou Z—2(\).

Remarque. Dans la pratique, dés que n =30, p <0,1 et np < 15, on approche %B(n; p) par Z(np).
Exemple. Nombre de fautes d’orthographe.

Exercice 62. Soit Z — Z2(A). # CVAl4
ef+e™* x2k

+00
2 ,CZZO 2k’

1. a) Justifier que pour tout réel x,

b) En déduire P([Zest pair]).

2. Application. Une ligne de transmission entre émetteur et récepteur transporte des données représentées par
10000 bits (un bit est un élément de {0;1}). La probabilité que la transmission d'un bit soit erronée est estimée
2107° et on admet que les erreurs sont mutuellement indépendantes les unes des autres. On contréle la qualité
de la transmission avec un calcul de parité sur le nombre de « 1 » envoyés :

— S’ily aun nombre impair d’erreurs, un message d’erreur apparait.
— Sinon, c’est-a-dire s'il y a un nombre pair d’erreurs, la transmission est acceptée.
a) Considérons X la variable aléatoire associant a chaque envoi de données, le nombre d’erreurs lors de la

transmission, c’est-a-dire le nombre de bits parmi les 10 000 dont la transmission est erronée. Quelle est
laloi de X?

b) Calculer la probabilité qu’il n'y ait aucune erreur sachant que la transmission est acceptée.
On admettra que l'on peut approximer le probleme par une loi de Poisson.

Exercice 63

T 4 Proposer une méthode pour simuler une loi de Poisson £?(5) uniquement a partir de la
\ commande rd.random().

# CVA15
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n Théoreme limite central

41 Le théoréme

,—[Théoréme 34 (limite central)j

Soit (X;,) nen une suite de variables aléatoires sur un espace probabilisé (Q, <7, P).

Si | — Lesvariables (X;),en+ sont mutuellement indépendantes.

— Les variables (X;) ,en+ 0Nt méme loi et admettent une espérance m et une variance o2 # 0.

n

— Onnote X,=1yX; et X, = Y2 (X, - m).

i=1 ©
— @
Alors (X,, ) 2, 7 avec Z— N (0:1).
neN* n—+oo
. S ! b —12/2
Autrement dit, pour tous a < b, P([a <X, < b]) — O(b) - DP(a) = —f e ds,
=9 V2nda

ol @ est la fonction de répartition de la loi normale centrée réduite.

\ Lénoncé du théoreme central limite est parfois surprenant et n'a souvent rien a voir avec celui du pro-
o
\ -’ | gramme.

Rapport de Jury : Oral HEC 2021
4.2 Cas particuliers

Rappelons que si X est une variable aléatoire admettant une variance o2 (et donc une espérance), on définit la variable
aléatoire centrée réduite associée a X, notée X* par

X-EX)
X*=— avec EX")=0 et VX")=1.
o

i 7P alors 7= A
et, si — alors o —
VA

,—[Théoréme 35 (de Moivre—Laplace)}

Si (X;,) nen est une suite de variables aléatoires suivant des lois binomiales 2(n; p) avec p €]0; 1], alors

X,—n
X =t P £ vec Ze— N (O:1)

/np(l —p) e

Autrement dit, pour tous a < b, on a

P([a<X," <b]) — @b)-d(@ = g

1 b
—f e
vanJa

ol @ est la fonction de répartition de la loi normale centrée réduite.

\

Remarque. Dans la pratique, des que n =30, np =5 et nq =5, on approche 2(n, p) par A (np,npq).

A Attention. Ilya deux théoremes de convergence impliquant des lois binomiales. Précisons la différence :
e Dans le cas de convergence vers une loi de Poisson : n — +o0o mais np, — A > 0, sous-entendu, p, — 0.
n—oo n—oo
* Dansle cas de convergence vers une loi normale : n — +oco mais p correspond a une probabilité fixée strictement
positive.
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Interprétation graphique

On trace les diagrammes associés aux lois de X, pour différentes valeurs de n (10, 50, 100 et 500). On superpose la
courbe représentative de la densité de loi normale centrée réduite.

e

n=10

S N—

p=03 7‘
—

n

=100

p=03 f
M\ M .

7 N n =500

On constate que plus 7 est grand, plus les diagrammes épousent la forme de la courbe.

%%

‘o

D

Z

)

)

The

_

b

Interprétons.

Soit X,, — 2B(n; p). De nouveau, placons le dia-
gramme associé a laloi X, *. Laire hachurée est
l'aire sous la courbe représentative de la den-
sité. Elle vaut donc

b
f fdt=P(la<Z<b)),

1
ol f:t-—»\/T_nexp(—tz) et Z— N (0;1).

Cette aire s’identifie approximativement a 'aire des rectangles compris entre les droites x = a et x = b. Or, cette der-
niére est par construction P([a <X, * < b]). On en déduit 'approximation :

Exemple. La planche de Galton.

P([a

<X'<h

M ”:PUasZst
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Méthode

,—[Théoréme 36 (convergence des lois de Poisson)] \

Soit (X;,) nen* une suite de variables aléatoires telle que X, — Z2(nA) pour tout n € N*.
Alors la suite des variables aléatoires centrées réduites (X, *) ,en converge en loi vers une variable aléatoire
suivant une loi normale centrée réduite.

—nA
X, =2 " £ 7 avec Z— .N(0:1).

‘/n)\ n—+oo

\.

Remarque. Dans la pratique, dés que A = 18, on approche la loi 22(A) par la loi normale A (A, A).

4.3 Applications a I’approximation

Comment approximer une probabilité a 'aide d’'une loi normale ?

On lance une piéce équilibrée 10000 fois et on souhaite calculer la probabilité que le nombre de « PILE » soit
compris dans l'intervalle [4900;5100].

On suppose les lancers mutuellement indépendants.
Ainsi si X est la variable aléatoire qui compte le nombre de « PILE », X suit une loi binomiale de parametres

n =10000, p = % Lespérance de X est np = 5000, I'écart type est \/np(1 — p) = 50. Evaluons P([4900 < X < 5100]).

e La premiéere étape consiste a renormaliser en introduisant X* :

P([np—100<X<np+100]) = P([-100 <X—np <100])

P([—Zsﬂsz]

P([4900 < X <5100])

e Puis, on applique le théoreme précédent.
P([-2<x <2|)=P(-2<2<2]) = 0@ - 0(-2) =20@) -1 avec Z—.N¥©;D).

A l'aide de Python ou de table de la loi normale (en fin de livret), on sait que ®(2) = 0,9772.En conclusion : la
probabilité recherchée vaut environ 0,9544.

Exemple. Le Surbooking.

“ Compléments avec Python

Simulation d’une loi normale par la méthode des 12 uniformes

Le théoréme limite central énonce que si (X;),en+ €St une suite de variables aléatoires mutuellement indépen-
dantes suivant une loi uniforme sur [0; 1] alors

3 <z
(Xn*) =, Z avec Z<— N(0;1).
neN* n—+oo
++
Exercice 64 1. En se limitant a douze variables Xi, ..., Xj2 suivant des lois uniformes, écrire une fonc-
¢ tion Python qui renvoie une simulation de la loi normale centrée réduite.
- 2. En déduire une seconde fonction qui prend en arguments , o, m et renvoient m simu-

lations d’'une loi A (i, 02).
= 3. Tester votre programme en superposant sur une méme figure I’histogramme de 2000
simulations de loi 4 (1,4) et la densité de cette loi.

# CVA16
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5.2 Exemples de méthodes de Monte-Carlo

Les méthodes dites de Monte-Carlo sont toutes basées sur la loi (faible) des grands nombres.

Applications aux calculs d’aire

Commencgons par un cas d’école : 'approximation de m.

On tire au hasard et uniformément un point dans le carré [0; 1] x [0; 1]. La probabi-
lité que le point soit situé dans le quart de disque est nt/4 (aire du quart du disque
71 x 12/4 sur l'aire du carré 1). Partant de ce constat, on peut simuler un grand
nombre de tirages d'un point dans le carré et approximer la probabilité de /4 par
la fréquence empirique. En multipliant par 4, on obtient une approximation de .

Ce qui donne ici :

0.0 1.0

def approxPI(m):
# m correspond au nombre de tirages
Compteur=0 >>> approxPI (1000) Approximation: 3.152
for i in range (m): ol > approxPI (10000) Approximation: 3.1412
x=rd.random () | >>> approxPI(50000) Approximation: 3.14552
y=rd.random () g >>> approxPI (100000) Approximation: 3.14632
if x**2+y*x2<1: 8
Compteur+=1 # d comparer a
print (> Approximation:’ ,4*Compteur/m) 3.141592653589793

La convergence est assez mauvaise mais il ne faut pas pour autant écarter la méthode. Elle s’avere par exemple parti-

culierement efficace en grande dimension.

Exercice 65. 44 Aire d’'une cardioide
Lobjectif de cet exercice est d’obtenir une approximation de l'aire de
la partie délimitée par la courbe d’équation

(2 +y2-x)° =x%+ )2
1. Comment tirer un point au hasard dans le carré [-0.5;2.5] x

[-1.5;1.5] en utilisant la commande rd.random?

2. En déduire un programme qui tire au hasard un point dans le carré
et déclare si le point est a I'intérieur de la cardioide ou non.

3. Al'aide d’'une méthode de Monte-Carlo, donner une approximation
de l'aire de la cardioide.

4. Enremarquant que la courbe estlaligne de niveau Ly d'une certaine
fonction de deux variables, tracer la cardioide.

Application a I'approximation d’intégrales

e Principe
Considérons :

1519

1.01

0.51

0.0

—1.0

-1.54

-0.5 0.0 0.5 1.0 1.5 2.0 2.5

1
— g:[0,1] — [a; b] une fonction continue dont on souhaite calculer 'intégrale f g(nde.
0

— (Uj);en+ une suite de variables aléatoires indépendantes suivant la loi uniforme sur [0, 1].

— Pour tout i € N*, on pose g (U;). D’apres les lemme d’égalité en loi et des coalitions, les variables sont indépen-

dantes et de méme loi.

Par le théoreme de transfert, les variables X; = g (U;) admettent toutes une méme espérance donnée par

1
EX)) :fo g(ndr.

De méme, ces variables admettent une variance et la loi faible des grands nombres donne

X;+---4+X 1
At A P, E(Xl):fo gt dr.

n n—-+0o0
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Des lors, pour calculer une valeur approchée de I'intégrale, on peut simuler un grand nombre de fois les variables U;,
calculer les images g (U;) et en faire leur moyenne arithmétique.

Exercice 66. 44

e La théorie : estimation de la probabilité de l'erreur
Soit X, une variable aléatoire a valeurs dans [a; b].

(b—a)?
Y

1. Pour quelle valeur de m, E ((X— m)z) atteint son minimum? Avec m = %b, déduire : VX) <

2. Enreprenant les notations du début, justifier que

VeeR!, P
4ne?

1 12 b— 2
f g(t)dt——Zg(Uk) >s)sﬁ (o)
0 n =

e La pratique

1
3. CalculerI= f dz. En déduire, une fonction avec en argument n et qui permet d’approcher .

o 1+12
4. Déterminer n afin d’obtenir une valeur 42 1072 pres de 7 avec une probabilité d’au moins 95%. Commenter.
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Exercices 3

Révisions
Exercice 67. ¢ @ Soit X une variable aléatoire admettant une variance. Montrer que xP(X > x) oy 0. # CVAL9
X—+00
Exercice 68. ¢ Estimation # CVA20

Une urne contient une proportion p de boules blanches. On souhaite obtenir expérimentalement une approximation de p. Pour
cela, on effectue n € N* tirages avec remise et on note X;, le nombres de boules blanches obtenues au cours de ces 7 tirages. On
suppose les tirages mutuellement indépendants.

1. Donner laloi de X;,. Préciser 'espérance et la variance.

1

X
2. Justifier que pour tout réel € > 0, P (| L p| = s) S —
n 4ne

3. Combien de tirages faut-il effectuer pour pouvoir affirmer, avec un risque inférieur a 5%, que la fréquence d’obtention de boules
blanches au cours des n tirages differe de p d’au plus 1%?

Exercice 69. 44 Les souris mutantes # CVA21
Un laboratoire éleve des souris dont 1/4 sont mutantes. La durée de vie d’'une souris mutante est une variable aléatoire dont la
moyenne est de 3 ans avec un écart-type de 9 mois, mais elle ne vit jamais plus de 4 ans. La durée de vie d'une souris normale a une
moyenne d’'un an, avec un écart-type de 6 mois. On ne prend en compte que les souris dont la durée de vie est strictement positive.

Une souris est vivante au bout de deux ans. On note «a la probabilité qu’elle soit mutante.

On considere I'événement M : « La souris est une souris mutante »et on note X la variable aléatoire égale a la durée de vie de la
souris.

PMnNn[X=2
1. Exprimer w en fonction de a.
PMn[X=2])

2. En utilisant I'inégalité de Bienaymé-Tchebychev, donner une minoration de a.

Exercice 70. ¢4 % Inégalité de Chernov # CVA22

1. Soit t € R} . Soit X une variable aléatoire discréte telle que e'X admette une espérance. Montrer, a'aide de I'inégalité de Markov,
que pour tout a € R,
E (etX)

PX=za) < ola

2. SoientneN* et p <—:] 0,1[. On suppose que X — ZB(n, p).

a) Montrer que pour tout £ € R¥, e’X admet une espérance et que :
E[etX] =(1-p+pe)”.

b) Etudier les variations de la fonction f: t — (1 — p)e_% + peir sur R} . En déduire que f admet un minimum sur R}, égal a
2y/p1-p).

- n
¢) ATlaide dela question 1, montrer que P(X=> ) <2"(p(1-p))2.

Exercice 71. ¢4 % Comparaison entre la médiane et 'espérance # CVA23
Soit X une variable aléatoire définie sur un espace probabilisé (Q2, o/, P). On suppose que X admet une variance.
E((X-E00 +5)*)
1. % SoientaeRf,peR*. Démontrerque  P(X=EX) +a]) < T wp?
o+
VX)

2. Avecp=VX)/a, endéduireque  P(X=EX) +a) < VO + a2

3. On suppose dans cette question que X est une variable aléatoire a densité avec une densité strictement positive.
1
a) & Justifier qu'il existe un unique réel mtel que P((X< m]) = >
Un tel réel m est la médiane de la variableX.
b) ATlaide dela question 2 pour un réel a bien choisi, justifier que E(X) +o(X) = m ot1 6(X) désigne I'écart-type de la variable X.

¢) En considérant aussi la variable —X, conclure en montrant que |m - E(X)| <oX).
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Convergences en probabilité et en loi

Exercice 72. 44 % Soit (Xp)zen* Une suite de variables aléatoires indépendantes suivant la méme loi de Bernoulli de # CVA36
parametre p €]0, 1[. Pour tout n € N*, on pose :

1 n
Yn=Xn+Xp+1 et Tp=—) Y.
ni=1
1. Calculer I'espérance et la variance de T;,.
2. Peut-on appliquer la loi des grands nombres pour étudier la convergence en probabilité de la suite (Tj,) ;e ?

3. Justifier que (Ty) ,,en* converge en probabilité vers la variable aléatoire presque slirement constante.

J

Exercice 73. 4+ % Chaine de markov : évolution d’un titre boursier # CVA:
Dans une bourse de valeurs, un titre peut monter, descendre ou rester stable. On modélise I’évolution du titre.

— Siunjour n, le titre monte, le jour suivant, il montera avec la probabilité 2/3, restera stable avec la probabilité 1/6, et baissera
avec la probabilité 1/6.

— Siunjour n, le titre est stable, le jour n+1, il montera avec la probabilité 1/6, restera stable avec la probabilité 2/3, et baissera
avec la probabilité 1/6.

— Siunjour n, le titre baisse, le jour n + 1, il montera avec la probabilité 1/6, restera stable la probabilité 1/6, et baissera avec
la probabilité 2/3.

Le premier jour, le titre est stable.

P11 P12 P13 2/3 1/6 1/6
Les probabilités sont spécifiées par une matrice dite de transition : M= | p21  p22 p23|=|1/6 2/3 1/6].

P31 P32 P33 1/6 1/6 2/3

P22

P21 Titre
’ stable ps,2

P33

Titre P31 Titre

en hausse en baisse

On souhaite connaitre 1'évolution de ce titre. Pour cela, on introduit pour tout n € N*, la variable aléatoire aléatoire X;, définie par

1 si le titre donné monte le jour n PX,=1)
X = 0 siletitre est stable le jour n et U,=|PX;=0)
—1 sile titre donné baisse le jour n. PX;=-1)

1. a) Vérifier que Up+1 =MUy,.
b) En déduire U, en fonction de M et Uj.

N

. Donner la loi de X;,.

w

. Justifier que (Xj;),; converge en loi vers une variable aléatoire X.
PX=1)
. ComparerMUetUouU= | PX=0) |. Commenter.
PX=-1)

-

Exercice 74. <> Pour n € N*, on considére une variable X;, dont la loi est donnée par : # CVA38

Xn () =1{0,n}, P(Xn:()):l—% et PXp=n)=

S|

Etudier la convergence en loi de la suite (X) e+ et la convergence de la suite numérique (E(Xy,)) nen - Commenter.

Exercice 75. 4 Soit (X;;),en* une suite de variables aléatoires telles que pour tout n € N*, X, — A (1;1/n). # CVA39

1. Etudier la convergence en loi de la suite (Xz) yens-
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2. Expliquer et commenter le programme Python suivant.

La commande sp.ndtr(x) renvoie ®(x) oit @ est la fonction de répartition de la loi normale centrée réduite.

import scipy.special as sp

import numpy as np 081

def Fnormal(x,k): 0.6
return sp.ndtr(k**(1/2)*(x-1)/2)
x=np.linspace(-3,5,100) Ao

for k in range(1,50,3)
y=Fnormal (x, k)
plt.plot(x, y)
plt.show ()

0.2 4

0.0 1

Exercice 76. ¢4 % Pour tout n € N, on considére X; une variable aléatoire suivant une loi normale A4 (0, nz) et X qui #CVA40
suit une loi normale A4 (0,02) avec 0, o strictement positifs. On suppose de plus que les variables (X;) ;e sont mutuellement
indépendantes. Montrer I'’équivalence entre :

e i) Lasuite de variable aléatoire (Xj;) ey converge en loi vers X.

° ji) Lasuite de réels (0),en converge vers o.

Exercice 77. 4 Soit (Uj),en+ une suite de variables indépendantes et de méme loi uniforme sur [0, 1]. Soit Y — &(1). On pose # CVA41
Zp =min (Uy,...,Up).

1. Montrer que la suite (nZ;) converge en loi vers Y.
2. Soit X — &(1). Déterminerlaloide Z = e X,

3. On consideére une suite (X;),en+ de variables aléatoire indépendantes suivant toutes la méme loi exponentielle de parameétre
A>0.

Déterminer la limite en loi de la suite (nT) ot T;; = min (e_)‘Xl ey e_)\xﬂ).

Exercice 78. 44 Convergence en loi avec des lois de Cauchy # CVA42
Pour tout n € N*, on pose

VteR, )= ———.
€ fn(® n(1+ n212)

1. Justifier que f; est une densité de probabilité. Soit X;; une variable aléatoire dont f;, est une densité.
2. Peut-on appliquer I'inégalité de Markov a X, ?

3. Donner la fonction de répartition de X;,. En déduire la convergence en loi de la suite de variable aléatoire (X;) .

Exercice 79. ¢4 % Variante de laloi faible des grands nombres # CVA43
Soit (pn) nen+ une suite de réels appartenant a [0, 1] et (Xp) ;1 une suite de variables aléatoires indépendantes. On suppose que
pour tout k € N*,Xj. suit une loi de Bernoulli de parametre py. On pose pour tout n € N*,

1 X2 1 &
Ypo=—) X; et mup=—) pg.
=1 =1

1. a) Montrer que pour tout k € N* : V(X) < 1 En déduire, pour tout 7 € N*, une majoration de V (Y;). On admet que la variance
d’'une somme de variables de Bernoulli indépendantes est la somme des variances.

b) En déduire, a I'aide de I'inégalité de Bienaymé-Tchebychev, que, pour tout € > 0,

P(lYn_mnl <g) — 1.
n—oo

2. On suppose que la suite (mp) ,en+ cOnverge vers m.

a) Soite > 0. On suppose |my, — m| < §. Comparer les événements [|Y,, — my| < §] et [[Y, — m| <&]. En déduire que
€
P(IYn—mnl < 5) <P(Y,-ml<eg).
b) En déduire la convergence en probabilité de la suite (Yj) en*-

Exercice 80. ¢4 % Convergence de loi discrete vers une loi a densité # CVA44
Pour tout n € N*, on considere la variable aléatoire discréte X, — 2 ([[1; n]]). On pose Y;, = X,/ n.
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Justifier que la suite (Y) ey converge en loi vers une variable aléatoire que I'on précisera.
Indication. On pourra utiliser l'expression de la fonction de répartition deX;,,

Lx]
Vxe[0;n], Fn(x):7.

Exercice 81. ¢4 % Autour des lois de Cauchy # CVA46

* La fonction arctangente
1. Rappeler la définition de la fonction arctangente. Donner son graphe avec I'équation de la tangente en 0.

2. Vérifier que pour tout x € R}, arctan(x) +arctan(1/x) = 7/2. Que dire de cette expression si x € R, 2
. . o1 1
3. Justifier le développement suivant lorsque x — +oo: arctan(x) = 5 —+0+00|—]-
b X

e Loide Cauchy

4. Soit a € Rf. On définit sur R la fonction f, par: fu(x) = . Montrer que fj est une densité de probabilité.

a

7 (a? + x?)
Dans la suite, X est une variable aléatoire réelle sur (Q, &/, P) admettant f,; pour densité. On dit alors que X suit une loi de Cauchy
de parametre a et on écrit X — € (a).

5. Donner la fonction de répartition de X. Est-ce que X possede une espérance?

6. Soit A € R . Reconnaitre la loi de AX lorsque X — € (a). Que dire si A e R}, ?

*  Maximum et exemple de convergence en loi
Soit (X;)jen* une suite de variables aléatoires mutuellement indépendantes suivant toutes une loi de Cauchy de parametre 1.
Pour tout n € N*, on définit les variables aléatoires :

M,, = max(X1,Xz,...,Xn) et Np=nM, L

7. Pour tout n € N*, préciser P(N, < 0). Vérifier ensuite que pour tout ¢ € [R;r
P([N INnMy,=0])=1 s )\
<tln =20])=1- —|—=+arctan| —|| .
( " " ) n| 2 t

8. Conclure en montrant que la suite (N), converge en loi vers une loi exponentielle dont on précisera le parametre.

9. Utiliser la question 6 pour reprendre la question précédente en supposant maintenant que les variables (X;);en+ suivent une loi
de Cauchy € (a) avec a € R}.

>> Pour des versions similaires, voir EMLyon 2017, EDHEC 2019.

Exercice 82. 44 Convergence en loi et fonctions génératrices # CVA47
Soient une suite de variables aléatoires (X,) ,en et X, définies sur le méme espace probabilisé, a valeurs dans {xy, ..., X;;}. On définit
les fonctions Gy, sur R par

m m
VieR, Gy, (=Y P(Xp=x;)-tF et Gxo=) PX=xp)-k.
k=0 k=0
1. Vérifier que, si (X;,) ,en converge en loi vers X, alors :

VieR,  Gx, (0 — Gx(O (9

2. Lobjectif de la question suivante est d’établir la réciproque. On suppose donc la propriété (e) vérifiée. On pose

X0 Xo xo™
X1 X1 xlm

A= . . . . . € Mm+1R).
1 xm xm? ... xp™

a) & Justifier que les colonnes de A forment une famille libre. En déduire I'inversibilité de A.
b) & Soit k € [[0; m]]. En déduire que la suite (P (X, = xi) ) ,cpy converge. Notons €y, la limite.

¢) Montrer que les réels () ke[0;my SONt les coefficients d’une loi de probabilité.
C'est-a-dire que les réels €. sont compris dans [0;1] et leur somme vaut 1.

d) En déduire que la suite de variables aléatoires (Xj;) ,en converge en loi.
3. * Application
Soient m € N* fixé et (pp) en une suite de réels de [0;1]. On suppose que pour tout n € N, X, — B(m; pp).
a) Expliciter Gy, () pour tout ¢ € R.

b) En utilisant]'équivalence prouvée aux questions 1 et 2, montrer que la suite de variables aléatoires (X;;) ;e converge en loi
si et seulement si la suite de réels (py) ;e converge.
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Approximations

Exercice 83. ¢4+4 % Approximation de n viala méthode de Monte Carlo d’apres oraux ESCP 2014 # CVA49

Soit (Up) pen €t (Vi) nen* deux suites de variables aléatoires définies sur un espace probabilisé (Q, <7, P) et toutes de méme loi
uniforme sur [0, 1]. On suppose que toutes les variables U, et V,, (pour n € N* ) sont indépendantes.

1. Pour toutréel x €]0, 1], calculer I'intégrale :

x 1
J )=f —dt.
W=) V=5

On pourra justifier et utiliser le changement de variable (a x fixé) :

x . X
@:]-n/2,n/2[- R, 9»—»t=§sm6+5.

2. a) Déterminer laloide U%l.
b) Justifier que la variable U% + V%, possede une densité i, que I'’on exprimera sous forme d'une intégrale.
¢) Déterminer h(x) pour x € [0, 1].

3. On pose:
1 siU2+V,2<1
vneN*, X,= o
0 sinon.

Déterminer la loi de X;,.
n
4. a) Prouver que la suite (Zp,) ,en+ définie par Vn e N*,Z, = % > X}, converge en probabilité vers la constante n. C’est-a-dire,
k=1
pour tout € € R},

P(Zy-mlz¢g) — 0.
n—o0

b) Soita€]0,1[etd>0.
Montrer qu’il existe un entier ng, qu’on exprimera en fonction de «a et §, tel que

Vnznyg, P(Zp-71l>8)<a

¢) En déduire un programme Python qui donne une approximation de 7.

Les inclassables

Exercice 84. 44 Application de la formule de Stirling D'aprées EDHEC 2007 # CVA51
On considere une suite (X) ,en* de variables aléatoires définies sur le méme espace probabilisé (Q, </, P), mutuellement indépen-

dantes, et qui suivent toutes la loi exponentielle de parametre 1. On pose S, = f X
k=1
1. Rappeler quelle est la loi suivie par S;;. Donner I’espérance et la variance de S;;.

2. ATaide du théoréme central limite, établir que P (S;, < n) vl >
3. En déduire la valeur de
n tn—l
lim e fdt
n—+ooJg (n—1)!

1 n!
4. a) Utiliser le résultat précédent pour montrer que f 2" leTdz ~ ———.
0 n—+oo 2pn+l
1

b) Onadmetquen! ~ 2nnn""e”". En déduire un nouvel équivalent de f 2"l gz
oo 0

Exercice 85. Amélioration de la méthode de Monte-Carlo, Réduction de la variance par méthode des variables antithé- # CVA54
tiques.
Soit f, une fonction continue dont on souhaite approcher

1
I :f f(ndt.
0
La méthode de Monte-Carlo part de I'égalité I = E(f(U)) ot U — 2 ([0;1]).
Dans la suite, on pose g définie sur [0;1] par g() = (f(£) + f(1 — 1) /2.

1. Vérifier que I = E(g(U)).
2. Comparer les variances de f(U) et g(U).

3. Reprendre I'exemple précédent avec g. Comparer les deux méthodes.
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Compléments théoriques sur les différentes convergences

Exercice 86. ¢ 44 Convergence presque siir # CVA55
Soient (X;) ;e une suite de variables aléatoires et X une variable aléatoire. Toutes les variables sont définies sur un méme espace
probabilisé (Q, «Z,P). On dit que la suite (X;;) converge presque stirement vers X si :

P({w €Q: lim Xu(w) =X(w)}) -1

Lobjectif est de montrer que si la suite (X;;); converge presque stirement vers X, alors elle converge aussi en probabilité vers X.
Pour cela, on pose pour tout € € R} et tout neN

+o0o
Ane=[X-Xnl<e], Bue= ) Ame et A={weQ: lim Xy =X}
m=n n—oo

On suppose donc que P(A) = 1.

+00
1. Comparer les événements A et U Bpe.
n=0

2. Endéduire que P(Bj¢) — 1.
n—oo

3. Conclure sur la convergence en probabilité de (X;,), vers X.

Exercice 87. 44 % Dapres Oraux HEC BL 2021 # CVA57

Soient I un intervalle non trivial de R et f une fonction définie sur I.
On dit que la fonction f vérifie la propriété £} sur I s'il existe unréel k€ R tel que

V(x,y) €12, [f(x) - FO)l<klx—yl.

1. a) Montrer que les fonctions sinus et valeur absolue vérifient la propriété #; sur R.
b) Montrer que I'on ne peut pas trouver de réel k € R** tel que la fonction racine carrée vérifie la propriété £ sur [0, 1].
¢) Montrer que s'il existe un réel k € R** tel que f vérifie la propriété £} sur 1, alors f est continue sur 1.

2. Soient un réel k €10,1, f une fonction définie sur R et vérifiant la propriété £;. sur R et (1) la suite définie par la donnée de
up € R et par la relation
vneN, upi1=f(up).

a) Montrer que
VReN, lupsr—upl<k™lur—upl.

b) En déduire que la suite (1) converge vers une limite notée € et vérifiant f(¢) = €.

3. Soientunréel k €]0,1[, f une fonction définie sur R et vérifiant la propriété £ sur R et (Tj) ;e une suite de variables aléatoires
a densité définies sur un méme espace probabilisé (Q, </, P) et telles que

VneN,  Tpe1=f(Tn).

Soit ¢ la limite trouvée a la question 2.

a) Soite € R —*. Pour tout n € N, on pose A, = [k" |To — €] = €|. Montrer que

lim P(A,) =0.
n—+oo

b) Montrer que
VeeR!, lim P(T,-¢=¢) =0.
n—+oo

c) Justifier que (T5), converge en loi. Reconnaitre la loi limite.
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Endomorphismes symétriques

Définition d’'une matrice symétrique, antisymétrique. Dimension des s.e.v associés.

Définition des endomorphismes symétriques.

En dimension finie. ¢ est symétrique ssi V (i, j) € [I|1, nl?,
En dimension finie. ¢ est symétrique ssi Matg(¢p) dans une b.o.n est symétrique.
Si @ est symétrique, les sous-espaces propres sont orthogonaux. Preuve.
Théoréme spectral (version « endomorphisme » et matricielle).

Forme quadratique associée a une matrice symétrique.

Encadrement de Rayleigh et signe d’'une forme quadratique en fonction du spectre.

Projecteurs orthogonaux

Définition d'un projecteur orthogonal.

Le projecteur est orthogonal ssi le projecteur est symétrique. traduction matricielle.

Expression du projeté. Cas d'un projeté sur une droite ou sur un hyperplan.

Distance a un sev. Théoréeme de minimisation par le projecteur orthogonal.

Convergences et approximations

Inégalités de Markov et Bienaymé-Tchebychev.

Définition de la convergence en probabilité.

Convergence en probabilité d'une somme.

Convergence en probabilité et composition par une fonction continue.
Loi faible des grands nombres. Preuve.

Définition de la convergence en loi.

Cas de la convergence en loi pour des variables aléatoires discretes.
Convergence en loi et composition par une fonction continue.
Convergence en loi de lois binomiales vers une loi de Poisson.
Enoncé du théoréme limite central.

Cas particulier des lois binomiales (théoréme de Moivre-Laplace).

Cas particulier des lois de Poisson.

44

(plen,ej)=(eip(e))).
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