DM 1 - sujet A

Thème: Révisions analyse - calcul de $\zeta(2)$

Partie A: Lemme de Riemann-Lebesgue

On considère une fonction f continue sur [0,1] et pour tout $n \in \mathbb{N}^*$, l'intégrale

$$b_n = \int_0^1 f(t) \sin(\pi n t) \, \mathrm{d}t.$$

1. On suppose dans cette question uniquement que f est de classe \mathscr{C}^1 sur [0,1]. Montrer que

$$b_n \xrightarrow[n \to \infty]{} 0.$$

L'objectif de la suite est de montrer que ce résultat reste vrai lorsque f est seulement continue sur $[0,\pi]$. Pour cela, on pose pour tout $n \in \mathbb{N}$

$$B_n = 2 \int_0^1 \left(f(t) - \sum_{k=1}^n b_k \sin(\pi k t) \right)^2 dt.$$

- **2.** Calculer, pour tous $k, \ell \in \mathbb{N}^*$, l'intégrale $\int_0^1 \sin(\pi kt) \sin(\pi \ell t) dt.$
- **3.** En déduire :

$$B_n = 2 \int_0^1 f(t)^2 dt - 3 \sum_{k=1}^n b_k^2.$$

- **4.** a) Justifier la convergence de la série $\sum b_k(f)^2$.
 - b) Conclure.

Partie B : Application au calcul de $\zeta(2)$

5. On considère la fonction f définie sur]0;1[par

$$f(x) = \left(\frac{x^2}{2} - \frac{x}{2}\right)\cot(\pi x) \quad \text{où} \quad \cot(\pi x) = \frac{\cos(\pi x)}{\sin(\pi x)}.$$

- a) Comparer les réels f(x) et f(1-x). Comment interpréter graphiquement le résultat sur la courbe représentative de f?
- **b)** Vérifier que f se prolonge par continuité en 0 et en 1. *On note encore f, ce prolongement sur* [0; 1].
- **6.** Pour tout $k \in \mathbb{N}^*$, calculer l'intégrale :

$$I_k = \int_0^1 \left(\frac{x^2}{2} - \frac{x}{2}\right) \cos(2\pi kx) dx.$$

7. a) Vérifier que pour tout $x \in]0;1[:$

$$2\sum_{k=1}^{n}\cos(2\pi kx) = \cot(\pi x)\sin(2\pi nx) + \cos(2\pi nx) - 1.$$

Indication. On pourra commencer par multiplier chacun des deux membres par $\sin(\pi x)$.

Lycée Saint Louis 2025-2026

b) À l'aide des résultats précédents, établir que :

$$\sum_{k=1}^{n} I_k = \frac{1}{2} \int_0^1 f(x) \sin(2\pi nx) dx + \frac{1}{2} \int_0^1 \left(\frac{x^2}{2} - \frac{x}{2}\right) \cos(2\pi nx) dx - \frac{1}{2} \int_0^1 \left(\frac{x^2}{2} - \frac{x}{2}\right) dx.$$

8. En déduire l'égalité:

$$\sum_{k=1}^{+\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$$

- Python
- 9. Vérifier que les suites de termes généraux

$$S_n = \sum_{k=1}^n \frac{1}{k^2}$$
 et $T_n = \frac{1}{n} + \sum_{k=1}^n \frac{1}{k^2}$

sont adjacentes. En déduire que pour tout $n \in \mathbb{N}^*$, $|S_n - \pi^2/6| \le 1/n$.

10. Écrire un programme python qui prend en argument n et renvoie une approximation de π^2 à 10^{-5} -près.

Formulaire. Pour tous réels a, b, on a

$$\sin(a)\sin(b) = \frac{1}{2}(\cos(a-b) - \cos(a+b))$$

$$\sin(a)\cos(b) = \frac{1}{2}(\sin(a+b) - \sin(a-b)).$$

Pour une variante, on pourra comparer avec le sujet ECRICOME 2025.

DM 1 - sujet *

THÈME: RÉVISIONS ANALYSE - INTÉGRALES DE WALLIX ET DE GAUSS

Dans tout le problème, on désigne par W la fonction définie sur \mathbb{R}^+ par :

$$W(x) = \int_0^{\frac{\pi}{2}} \sin(t)^x dt.$$

L'objectif est d'étudier cette fonction W et d'en déduire deux applications dont le calcul de l'intégrale de Gauss.

- Préliminaire
- **1. a)** Montrer que, pour tout nombre réel t appartenant à $[0, \pi/2]$:

$$\sin t \ge \frac{2t}{\pi}$$
.

b) Justifier la convergence de l'intégrale :

$$L = -\int_0^{\frac{\pi}{2}} \ln(\sin t) dt.$$

Bonus Calculer cette intégrale.

- Étude de W
- **2.** Donner le sens de variation de la fonction W sur $[0, +\infty[$.
- 3. Soit $x_0 \in \mathbb{R}^+$.
 - a) Montrer que, pour tout nombre réel positif *a* :

$$\forall x \in \mathbb{R}$$
, $\left| e^{-ax} - e^{-ax_0} \right| \le a |x - x_0|$.

b) En déduire l'existence d'une constante C telle que

$$\forall x \in \mathbb{R}$$
, $|W(x) - W(x_0)| \le C|x - x_0|$.

- c) Établir la continuité de W sur $[0, +\infty[$.
- **4.** Pour tout nombre réel positif x, exprimer W(x+2) en fonction de W(x).
- **5.** On se propose d'étudier le comportement asymptotique de W à l'aide de la fonction auxiliaire g définie sur \mathbb{R}^+ par

$$g(x) = (x+1)W(x+1)W(x).$$

- a) Établir que, pour tout nombre réel positif ou nul x, g(x+1) = g(x). En déduire la valeur de g(n) pour tout nombre entier naturel n.
- b) Montrer que, pour tout nombre réel x appartenant à [0;1] et tout nombre entier naturel n:

$$\frac{g(n+1)}{n+2} \leq \frac{g(x+n)}{x+n+1} \leq \frac{g(n)}{n+1}.$$

En déduire en fonction de n un encadrement de g(x). En conclure que g est constante sur $[0; +\infty[$ (on explicitera son unique valeur).

- **6.** a) En utilisant les variations de W, montrer que W(x+1) est équivalent à W(x) lorsque x tend vers $+\infty$.
 - **b)** Déduire de ces résultats que, lorsque x tend vers $+\infty$:

$$W(x) \sim \sqrt{\frac{\pi}{2x}}.$$

Lycée Saint Louis 2025-2026

- Application au calcul de l'intégral de Gauss
- **7.** Montrer que, pour tout nombre réel strictement positif x et tout nombre réel u > -x:

$$\left(1 + \frac{u}{x}\right)^x \le \exp u.$$

8. En déduire pour $x \ge 1$:

$$\int_0^{\sqrt{x}} \left(1 - \frac{t^2}{x}\right)^x dt \le \int_0^{\sqrt{x}} \exp\left(-t^2\right) dt \le \int_0^{+\infty} \left(1 + \frac{t^2}{x}\right)^{-x} dt.$$

On prouvera la convergence de l'intégrale de droite. 9. En posant respectivement $t = \sqrt{x} \cos u$ et $t = \sqrt{x} \frac{\cos u}{\sin u}$ dans la première et la dernière de ces intégrales, établir que, pour $x \ge 1$:

$$\sqrt{x} \operatorname{W}(2x+1) \leq \int_0^{\sqrt{x}} \exp\left(-t^2\right) \mathrm{d}t \leq \sqrt{x} \operatorname{W}(2x-2).$$

10. En déduire la valeur de l'intégrale

$$G = \int_0^{+\infty} \exp(-t^2) dt.$$

• Application à l'approximation de π

On pose, pour tout nombre réel positif x:

$$h(x) = \frac{W(x+1)}{W(x)}.$$

11. En remarquant que $W(x+2) \le W(x+1) \le W(x)$, établir que :

$$0 \le 1 - h(x) \le \frac{1}{x+2}.$$

12. Exprimer h(x) en fonction de h(x-2) pour $x \ge 2$, et en déduire que, pour tout nombre entier naturel n:

$$h(2n) = \frac{r_n}{\pi}$$
 avec $r_n = 2 \prod_{k=1}^n \frac{4k^2}{4k^2 - 1}$

13. Vérifier que

$$r_n \xrightarrow[n \to \infty]{} \pi$$
 et $|\pi - r_n| \le \frac{2}{n+1}$.

14. En déduire un programme python qui prend en argument $\varepsilon \in \mathbb{R}_*^+$ et renvoie une approximation de π à ε -près. Commenter l'efficacité de la méthode.