Rappels et compléments d'algèbre linéaire

Un mathématicien est une machine à transformer le café en théorèmes.

PAUL ERDÖS

Mathématicien hongrois (1913-1996).

1

Rappels et compléments sur les espaces vectoriels

1.1 Rappels: e.v, s.e.v, familles de vecteurs

Pour résumer, un espace vectoriel E est un ensemble muni de 2 lois « + » et « · » telles que :

- E est stable par multiplication à gauche par un nombre : $\forall \lambda \in \mathbb{R}, \forall u \in E, \lambda \cdot u \in E$.
- E est stable par somme : $\forall u \in E, \forall v \in E, u + v \in E$.
- il y a de « bonnes règles de calcul » entre les lois « + » et « · ».

Par exemple:

- \rightarrow $\forall u \in E$, $0 \cdot u = 0_E$ (le vecteur nul).
- $\forall \lambda, \mu \in \mathbb{R}$, $\lambda \cdot (\mu \cdot u) = (\lambda \times \mu) \cdot u$.
- \rightarrow $\forall u, v \in E, \forall \lambda, \mu \in \mathbb{R}, \quad \lambda \cdot (u+v) = \lambda \cdot u + \lambda \cdot v \quad \text{et} \quad (\lambda + \mu) \cdot u = \lambda \cdot u + \mu \cdot u.$
- $\rightarrow \forall \lambda \in \mathbb{R}.$ $\lambda \cdot u = 0_E$ \iff $\lambda = 0$ ou $u = 0_E$.
- $\forall \, (\lambda,\mu) \in \mathbb{R}^2, \quad \forall \, (u,v) \in E^2: \qquad \left\{ \begin{array}{ll} \text{Si } \lambda \neq 0 \quad \text{alors} \qquad \lambda \cdot u = \lambda \cdot v \quad \Rightarrow \quad u = v. \\ \\ \text{Si } u \neq 0_E \quad \text{alors} \qquad \lambda \cdot u = \mu \cdot u \quad \Rightarrow \quad \lambda = \mu. \end{array} \right.$

Les éléments de E sont des vecteurs.

Exemples de référence.

• \mathbb{R}^n est un espace vectoriel avec les lois + et · définies par $\forall u = (x_1, \dots, x_n) \in \mathbb{R}^n, \forall v = (y_1, \dots, y_n) \in \mathbb{R}^n, \forall \lambda \in \mathbb{R}$

$$u + v = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$$
 et $\lambda \cdot u = (\lambda \times x_1 ..., \lambda \times x_n)$.

- L'ensemble $\mathcal{M}_{n,p}(\mathbb{R})$ des matrices de taille (n,p) est un espace vectoriel pour les lois usuelles.
- Les ensembles $\mathbb{R}[x]$ et $\mathbb{R}_n[x]$ respectivement des applications polynomiales et des applications polynomiales de degré au plus n sont des espaces vectoriels pour les lois usuelles.
- L'ensemble $\mathcal{A}(I,\mathbb{R})$ des applications d'un ensemble I à valeurs dans \mathbb{R} est un espace vectoriel pour les lois usuelles.

! Attention. Un espace vectoriel n'est jamais vide.

Combinaisons linéaires, sous-espaces vectoriels

Dans la suite, une famille finie de vecteurs de E est la donnée d'une liste finie (u_1, u_2, \dots, u_n) de vecteurs de E. Le cardinal de la famille est alors le nombre de vecteurs.

DÉFINITION combinaison linéaire

Soit $(u_1, ..., u_n)$ une famille finie de vecteurs de E.

On appelle **combinaison linéaire** des vecteurs $u_1, ..., u_n$, tout vecteur v s'écrivant

$$v = \sum_{i=1}^{n} \lambda_i \cdot u_i$$
 avec pour tout $i \in [[1, n]], \lambda_i \in \mathbb{R}$.

DÉFINITION sous-espaces vectoriels

Soient E un espace vectoriel et F une partie de E. F est un sous-espace vectoriel de E si

- F est non vide.
- F est stable par somme, c'est-à-dire : $\forall (u, v) \in F^2$, $u + v \in F$.
- F est stable par multiplication par un nombre, c'est-à-dire : $\forall u \in F, \forall \lambda \in \mathbb{R}, \lambda \cdot u \in F$.

Remarque. Les sous-espaces vectoriels sont les parties (non vides) de E stables par combinaisons linéaires.

Méthodes.

- Pour vérifier que F est un sous-espace vectoriel, on se contente de vérifier que pour tout nombre λ et tous vecteurs u, v de F, $\lambda \cdot u + v \in F$ et F $\neq \emptyset$. Pour le second point, il suffit d'exhiber un élément de F, le plus simple étant 0_E .
- De plus, on démontre que tout sous-espace vectoriel est un espace vectoriel. Donc, en pratique, lorsqu'on souhaite prouver qu'un ensemble est un espace vectoriel, on montre que l'ensemble en question est un sous-espace vectoriel d'un espace vectoriel de référence (\mathbb{R}^n , $\mathbb{R}[x]$, $\mathcal{M}_{n,p}(\mathbb{R})$...)

Les ensembles suivants, munis des lois usuelles, sont-ils des espaces vectoriels?

$$\begin{split} \mathbf{E}_{1} &= \left\{ (x,y) \in \mathbb{R}^{2} \mid x \geqslant y \right\}, \quad \mathbf{E}_{2} &= \left\{ (a,b,c) \in \mathbb{R}^{3} \mid b = 2a + c \right\}, \quad \mathbf{E}_{3} &= \left\{ (a,b,c) \in \mathbb{R}^{3} \mid a - b = 2 \right\}, \\ \mathbf{E}_{4} &= \left\{ (a,b,c) \in \mathbb{R}^{3} \mid a^{2} + c^{2} = b \right\}, \quad \mathbf{E}_{5} &= \left\{ (a,b,c) \in \mathbb{R}^{3} \mid abc = 0 \right\}, \quad \mathbf{E}_{6} &= \left\{ \mathbf{P} \in \mathbb{R}[x], \mathbf{P}(0) = 3 \right\}, \\ \mathbf{E}_{7} &= \left\{ \mathbf{P} \in \mathbb{R}[x], \mathbf{P}(3) = 0 \right\}, \quad \mathbf{E}_{8} &= \left\{ f \in \mathcal{A}(\mathbb{R},\mathbb{R}), \exists \mathbf{K} \in \mathbb{R}, \forall x \in \mathbb{R}, |f(x)| \leqslant \mathbf{K} \right\}, \\ \mathbf{E}_{9} &= \left\{ f \in \mathcal{A}(\mathbb{R},\mathbb{R}), \forall x \in \mathbb{R}, |f(x)| \leqslant \mathbf{K} \right\} \text{ où } \mathbf{K} \in \mathbb{R} \text{ est fixé}, \quad \mathbf{E}_{10} &= \left\{ f \in \mathcal{A}(\mathbb{R},\mathbb{R}), f \text{ est paire } \right\}. \end{split}$$

CA1

PROPOSITION

intersection de sous-espaces

Soient F, G deux sous-espaces vectoriels de E. Alors l'intersection $F \cap G$ est un sous-espace vectoriel de E.

1 Attention. En général, c'est faux pour la réunion.

Exercice 2

p. 35

CA2

DÉFINITION

sous-espace vectoriel engendré par une partie finie

Soient E un espace vectoriel et X une partie finie de E.

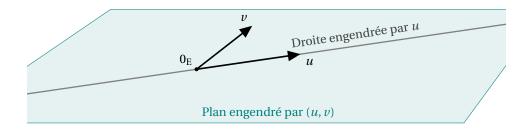
L'espace vectoriel engendré par X *est défini par l'ensemble des combinaisons linéaires d'éléments de* X. On le note Vect(X). Autrement dit, $siX = \{u_1, ..., u_n\}$, alors

$$\operatorname{Vect}(X) = \left\{ v \in E \mid \exists (\lambda_1, \dots, \lambda_n) \in \mathbb{R}^n, \quad v = \sum_{i=1}^n \lambda_i \cdot u_i \right\}.$$

Remarque. Comme son nom l'indique, Vect(X) est un sous-espace vectoriel de E. En particulier, il contient le vecteur nul

Vocabulaire.

- Un espace vectoriel engendré par un vecteur non nul est une droite vectorielle.
- Un espace vectoriel engendré par deux vecteurs non colinéaires est un plan vectoriel.



Pour rappel, deux vecteurs u, v sont **non colinéaires** s'ils sont non nuls et il n'existe pas de réel λ tel que $u = \lambda \cdot v$.

Familles génératrices, libres et bases

DÉFINITION famille libre finie

Soient E un espace vectoriel et $m \in \mathbb{N}^*$, on dit que la famille $\mathscr{F} = (u_1, ..., u_m)$ de vecteurs de E est une **famille libre** si la seule combinaison linéaire nulle est la combinaison linéaire à coefficients nuls. Autrement dit,

$$\forall (\lambda_1,\ldots,\lambda_m) \in \mathbb{R}^m, \qquad \left(\sum_{i=1}^m \lambda_i \cdot u_i = 0_{\mathbb{E}} \quad \Rightarrow \quad \forall i \in [[1,m]], \quad \lambda_i = 0\right).$$

Remarque. Soit $(u, v) \in E^2$. La famille (u, v) est libre si et seulement si les vecteurs u et v sont non colinéaires.

Exemple. Dans les cas des polynômes : une famille finie $(Q_1,...,Q_r)$ de $\mathbb{R}[x]$ est une famille libre si elle est de **degrés** échelonnés. C'est-à-dire,

$$0 \le \deg(Q_1) < \deg(Q_2) < \cdots < \deg(Q_r)$$
.

Exercice 3. ◆ Exemples

CA3

1. \P Dans \mathbb{R}^n . Montrer que la famille $(\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4)$ de \mathbb{R}^4 est libre où

$$\epsilon_1 = (3, -1, 1, 0), \quad \epsilon_2 = (1, 1, -1, 0), \quad \epsilon_3 = (-1, 2, 1, 0) \quad \text{ et } \quad \epsilon_4 = (1, 1, 1, 1).$$

- **2.** À quelle condition sur le polynôme P, la famille $(P^{(k)})_{k \in [[0;n]]}$ est une famille libre de $\mathbb{R}_n[x]$?
- **3.** Dans $\mathcal{M}_n(\mathbb{R})$. Posons $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, $C = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$ et $D = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$.
 - a) Justifier que la famille (A, B, C, D) est une famille libre de $\mathcal{M}_2(\mathbb{R})$.
 - **b)** Que dire de la liberté de la famille (A, B, C, D, I₂)?

- 4. * Dans les espaces fonctionnels. Étudier la liberté des familles suivantes.
 - a) \P La famille formée de $f_1 = \ln$, $f_2 = \exp$ et $f_3 = \mathrm{id}_{\mathbb{R}}$ dans $\mathscr{A}(\mathbb{R}_*^+, \mathbb{R})$.
 - **b)** La famille $\mathscr{F} = (\tan, \tan^2, ..., \tan^n) \operatorname{dans} \mathscr{A}(] \pi/2, \pi/2[, \mathbb{R}).$
 - c) \triangleleft La famille $(f_i)_{\in [[0:n]]}$ où $f_i: x \in \mathbb{R} \mapsto |x-i| \in \mathbb{R}$ dans $\mathscr{A}(\mathbb{R}, \mathbb{R})$.

DÉFINITION

famille génératrice finie

 $Soit \mathcal{G} = (u_1, ..., u_p)$ une famille finie de vecteurs de E.

On dit que G est une **famille génératrice** de E, si tout vecteur de E peut s'obtenir comme combinaison linéaire à partir des vecteurs de G. Autrement dit si,

Pour tout vecteur
$$v \in E$$
, il existe $\lambda_1, \ldots, \lambda_p \in \mathbb{R}$ tels que $v = \sum_{i=1}^p \lambda_i \cdot u_i$.

Remarque. Sous forme condensée, \mathcal{G} est génératrice de E si Vect(\mathcal{G}) = E.

Exercice 4

- ♦ Dans chacun des cas suivants, donner une famille génératrice de l'espace vectoriel.
 - 1. $F = \{(x; y; z) \in \mathbb{R}^3 \mid x 2y = z\}.$
 - **2.** G: l'espace vectoriel des polynômes de degré au plus *n* de degré impair.
 - 3. H: l'espace des matrices symétriques de taille 3.

CA4

p. 36

DÉFINITION base

On appelle base d'un espace vectoriel E, toute famille libre et génératrice de E.

Exemples. Les bases canoniques de \mathbb{R}^n , $\mathbb{R}_n[x]$ et $\mathcal{M}_{n,p}(\mathbb{R})$.

- La famille $(e_i)_{i=1,\cdots n}$ où $e_i = (0,\dots,0,1,0,\dots,0)$ avec 1 en i-ème position est une base de \mathbb{R}^n .
- La famille $(1, x, x^2, ..., x^n)$ est une base de $\mathbb{R}_n[x]$.
- La famille des matrices élémentaires $(E_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$ est une base de $\mathcal{M}_{n,p}(\mathbb{R})$. Pour rappel, la matrice élémentaire $E_{i,j}$ est la matrice ne contenant que des 0, sauf un 1 en position (i,j).

PROPOSITION

coordonnées d'un vecteur dans une base

Soient E un espace vectoriel et $\mathcal{B} = (u_1, ..., u_n)$ une famille finie de E à n éléments. Les propriétés suivantes sont équivalentes.

- i) La famille B est une base de E.
- ii) Pour tout vecteur v de E,

il existe un unique n-uplet $(x_1, x_2, ..., x_n) \in \mathbb{R}^n$ tel que $v = \sum_{i=1}^n x_i \cdot u_i$.

Dans ce cas, $(x_1, ..., x_n)$ sont les **coordonnées de** v **dans la base** \mathcal{B} .

1.2 Rappels : sommes de deux s.e.v et supplémentaires

DÉFINITION

somme de sous-espaces, somme directe

Soient F et G deux sous-espaces vectoriels de E.

- Le sous-espace somme est défini par $F + G = \{u + v \mid (u, v) \in F \times G\}$.
- On dit que F et G sont en **somme directe**, notée $F \oplus G$, si $F \cap G = \{0_E\}$.

Remarques.

- F+G est le plus petit sous-espace vectoriel de E (au sens de l'inclusion) contenant F et G.
- On montre l'équivalence entre F et G sont en somme directe et

$$\forall u \in F$$
, $v \in G$, $u + v = 0_E$ \Rightarrow $u = v = 0_E$.

PROPOSITION

unicité de la décomposition

Soient F et G deux sous-espaces vectoriels de E. Les propriétés suivantes sont équivalentes.

- i) Les sous-espaces F et G sont en somme directe.
- ii) Tout vecteur $u \in F + G$ s'écrit de manière unique sous la forme :

$$u = u_F + u_G$$
 avec $u_F \in F$, $u_G \in G$.

Exercice 5

→ Prouver cette équivalence.

p. 36

CA5

DÉFINITION supplémentaire

Soient E un espace vectoriel et F, G deux sous-espaces vectoriels de E.

On dit que F et G sont **supplémentaires** si tout vecteur de E se décompose de façon unique en une somme d'un vecteur de F et d'un vecteur de G. C'est-à-dire

$$\forall w \in E$$
, $\exists!(u, v) \in F \times G$, $w = u + v$.

Attention. Il n'y a pas unicité du supplémentaire. Il ne faut pas confondre supplémentaire et complémentaire.

Remarque. Le raisonnement par analyse-synthèse est particulièrement adapté à cette définition.

Exemple. Pour $E = \mathcal{M}_2(\mathbb{R})$, posons

$$F = \left\{D \in \mathscr{M}_2(\mathbb{R}) \,|\, D \text{ est diagonale}\right\} \quad \text{et} \quad G = Vect(A_1, A_2) \quad \text{avec} \quad A_1 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \ A_2 = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}.$$

Montrons que F et G sont deux sous-espaces vectoriels supplémentaires de E.

Soit
$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathcal{M}_2(\mathbb{R}).$$

- Analyse (recherche des conditions nécessaires).

Supposons qu'il existe $M_F \in F$ et $M_G \in G$ telles que $M = M_F + M_G$. En particulier, il existe $d_1, d_2, \lambda, \mu \in \mathbb{R}$ tels que

$$M_{F} = \begin{bmatrix} d_{1} & 0 \\ 0 & d_{2} \end{bmatrix} \quad \text{et} \quad M_{G} = \lambda A_{1} + \mu A_{2} = \begin{bmatrix} 0 & \lambda + \mu \\ -\mu & 0 \end{bmatrix}.$$

La condition $M = M_F + M_G$ se réécrit

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} d_1 & \lambda + \mu \\ -\mu & d_2 \end{bmatrix} \quad \text{c'est-\`a-dire} \quad \begin{cases} a & = & d_1 \\ b & = & \lambda + \mu \\ c & = & -\mu \\ d & = & d_2. \end{cases}$$

Ainsi $d_1 = a$, $d_2 = d$, $\lambda = b + c$ et $\mu = -c$. Si une telle décomposition de M existe, elle est donc unique.

- Synthèse (recherche des conditions suffisantes).

Le calcul précédent suggère de poser $M_F = \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix}$ et $M_G = (b+c)A_1 - cA_2$.

Vérifions que cette décomposition convient

- M_F est une matrice diagonale, donc $M_F \in F$.
- M_G est une combinaison linéaire de la famille (A_1,A_2) , donc $M_G \in G$.

$$- \ \mathbf{M_F} + \mathbf{M_G} = \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix} + (b+c)\mathbf{A_1} - c\mathbf{A_2} = \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix} + \begin{bmatrix} 0 & b \\ c & 0 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \mathbf{M}.$$

Le couple (M_F, M_G) est une solution du problème.

→ Conclusion.

Toute matrice $M \in \mathcal{M}_2(\mathbb{R})$ s'écrit de manière unique comme somme d'une matrice de F et d'une matrice de G. Par définition, F et G sont deux sous-espaces supplémentaires de $\mathcal{M}_2(\mathbb{R})$.

Exercice 6

- **1.** Dans \mathbb{R}^3 , on pose $F = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}, u_1 = (1, 0, 0) \text{ et } u_2 = (1, 1, 1).$ Montrer que $Vect(u_1)$ et $Vect(u_2)$ sont deux supplémentaires de F dans \mathbb{R}^3 .
- **2.** Soit $n \in \mathbb{N}^*$. On se place dans $\mathcal{M}_n(\mathbb{R})$. Posons \mathcal{S}_n et \mathcal{A}_n les sous-espaces vectoriels des matrices symétriques et antisymétriques de taille n. Justifier que \mathcal{S}_n et \mathcal{A}_n sont supplémentaires. Rappels: A est symétrique si ${}^{t}A = A$, antisymétrique si ${}^{t}A = -A$.

CA6

p. 37

PROPOSITION

caractérisation des supplémentaires

Soient F et G deux sous-espaces vectoriels de E. Les propriétés suivantes sont équivalentes.

- Les sous-espaces F et G sont supplémentaires.
- $F \cap G = \{0_E\} \ et \ F + G = E.$ ii)

On a donc:

F et G sont supplémentaires si et seulement si $F \oplus G = E$.

1.3 Rappels : précisions en dimension finie

Lorsqu'un espace vectoriel E est de dimension finie, toutes les bases ont le même nombre de vecteurs. Ce nombre est la dimension de E.

- Donner une base des espaces vectoriels suivants, préciser la dimension.
- 1. $E_1 = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \middle| a+b+c+d=0 \right\}.$ 2. $E_2 = \left\{ P \in \mathbb{R}_2[x] \middle| P'(1)=0 \right\}.$

 - **3.** $E_3 = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A \text{ est diagonale} \}.$

CA7

p. 37

PROPOSITION

cardinal d'une famille libre/génératrice

Soient E un espace vectoriel de dimension finie et \mathcal{L} , \mathcal{G} deux familles de E.

- La famille L est libre.
 La famille G est génératrice de E.

Alors

$$Card(\mathcal{L}) \leq dim(E)$$
 et $dim(E) \leq Card(\mathcal{G})$.

Remarque. La preuve du premier point est basée sur le théorème de la base incomplète. En dimension finie, on peut compléter toute famille libre de vecteurs de E en une base de E. Pour le second point, on montre que l'on peut extraire une base de E de n'importe qu'elle famille génératrice de E.

PROPOSITION cas d'égalité

Soit E un espace de dimension finie.

- Une famille libre $\mathcal L$ de cardinal $\dim(E)$ est une base.
- Une famille génératrice G de cardinal dim(E) est une base.

Exercice 8

** Seemple d'application

Soit $n \in \mathbb{N}^*$ et soient a_1, \ldots, a_n des réels distincts deux à deux. Pour tout $i \in [[1, n]]$, on pose

$$\forall \, x \in \mathbb{R}, \qquad \mathrm{L}_i(x) = \prod_{j \neq i} \frac{x - a_j}{a_i - a_j}.$$

p. 38

- **1.** En revenant à la définition, montrer que $(L_1, ..., L_n)$ est une famille libre de $\mathbb{R}_{n-1}[x]$. D'après l'énoncé précédent, cette famille est donc une base de $\mathbb{R}_{n-1}[x]$.
- 2. \triangleleft En revenant à la définition, montrer que $(L_1, ..., L_n)$ est génératrice de $\mathbb{R}_{n-1}[x]$. On retrouve le fait que la famille est une base de $\mathbb{R}_{n-1}[x]$.

CA8

PROPOSITION

existence d'un supplémentaire

Soit E un espace vectoriel de dimension finie. Tout sous-espace vectoriel de E admet un supplémentaire.

Preuve. Soit F un sous-espace vectoriel de E. Si $F = \{0_E\}$ (ou F = E), alors E (ou $\{0_E\}$) est un supplémentaire de F. Supposons donc que F n'est pas trivial.

Le sous-espace F étant de dimension finie, il admet une base (e_1, e_2, \cdots, e_p) . Par le théorème de la base incomplète, il existe des $\text{vecteurs } e_{p+1}, \cdots, e_n \text{ tels que } (e_1, \cdots, e_n) \text{ soit une base de E. On v\'erifie alors que le sous-espace H} = \text{Vect} (e_{p+1}, \cdots, e_n) \text{ est bien un le sous-espace H} = \text{Vect} (e_{p+1}, \cdots, e_n) \text{ soit une base de E. On v\'erifie alors que le sous-espace H} = \text{Vect} (e_{p+1}, \cdots, e_n) \text{ soit une base de E. On v\'erifie alors que le sous-espace H} = \text{Vect} (e_{p+1}, \cdots, e_n) \text{ soit une base de E. On v\'erifie alors que le sous-espace H} = \text{Vect} (e_{p+1}, \cdots, e_n) \text{ soit une base de E. On v\'erifie alors que le sous-espace H} = \text{Vect} (e_{p+1}, \cdots, e_n) \text{ soit une base de E. On v\'erifie alors que le sous-espace H} = \text{Vect} (e_{p+1}, \cdots, e_n) \text{ soit une base de E. On v\'erifie alors que le sous-espace H} = \text{Vect} (e_{p+1}, \cdots, e_n) \text{ soit une base de E. On v\'erifie alors que le sous-espace H} = \text{Vect} (e_{p+1}, \cdots, e_n) \text{ soit une base de E. On v\'erifie alors que le sous-espace H} = \text{Vect} (e_{p+1}, \cdots, e_n) \text{ soit une base de E. On v\'erifie alors que le sous-espace H} = \text{Vect} (e_{p+1}, \cdots, e_n) \text{ soit une base de E. On v\'erifie alors que le sous-espace H} = \text{Vect} (e_{p+1}, \cdots, e_n) \text{ soit une base de E. On v\'erifie alors que le sous-espace H} = \text{Vect} (e_{p+1}, \cdots, e_n) \text{ soit une base de E. On v\'erifie alors que le sous-espace H} = \text{Vect} (e_{p+1}, \cdots, e_n) \text{ soit une base de E. On v\'erifie alors que le sous-espace H} = \text{Vect} (e_{p+1}, \cdots, e_n) \text{ soit une base de E. On v\'erifie alors que le sous-espace H} = \text{Vect} (e_{p+1}, \cdots, e_n) \text{ soit une base de E. On v\'erifie alors que le sous-espace H} = \text{Vect} (e_{p+1}, \cdots, e_n) \text{ soit une base de E. On v\'erifie alors que le sous-espace H} = \text{Vect} (e_{p+1}, \cdots, e_n) \text{ soit une base de E. On v\'erifie alors que le sous-espace H} = \text{Vect} (e_{p+1}, \cdots, e_n) \text{ soit une base de E. On v\'erifie alors que le sous-espace H} = \text{Vect} (e_{p+1}, \cdots, e_n) \text{ soit une base de E. On v\'erifie alors que le sous-espace H} = \text{Vect} (e_{p+1}, \cdots, e_n) \text{ soit une base de E. On v\'erifie alors que le sous-espace H} = \text{Vect} (e_{p+1}, \cdots, e_n) \text{ soit une bas$ supplémentaire de F.

Remarque. Concaténation de bases.

Soient $\mathcal{B}_F = (e_1, \dots, e_p)$ et $\mathcal{B}_G = (f_1, \dots, f_r)$ des bases respectivement de F et G. On montre que si F et G sont en somme directe, alors $(e_1, ..., e_p, f_1, ..., f_r)$ est une base de F \oplus G.

On en déduit l'énoncé suivant.

PROPOSITION cas de la somme directe

Soient E un espace vectoriel de dimension finie et F, G deux sous-espaces vectoriels de E. Si F et G sont en somme directe, alors

 $\dim(F \oplus G) = \dim(F) + \dim(G)$.

Soient E un espace vectoriel de dimension finie et F, G deux sous-espaces vectoriels de E. Alors,

$$\dim(F + G) = \dim(F) + \dim(G) - \dim(F \cap G)$$
.

Exercice 9

◆ Preuve

- 1. Soit F_1 un supplémentaire de $F \cap G$ dans F. Montrer que $F_1 \oplus G = F + G$.
- p. 38

2. Conclure en prouvant la formule de Grassmann.

CA9

PROPOSITION

caractérisation des supplémentaires

Soient E un espace vectoriel de dimension finie et F, G deux sous-espaces vectoriels de E. Les trois énoncés suivants sont équivalents.

- i) F et G sont supplémentaires.
- ii) F + G = E et dim(F) + dim(G) = dim(E).
- **iii**) $F \cap G = \{0_E\}$ *et* $\dim(F) + \dim(G) = \dim(E)$.

Exercice 10

♦♦ Soit $n \in \mathbb{N} \setminus \{0; 1\}$. On considère $u = (a_1, a_2 ..., a_n) \in \mathbb{R}^n \setminus \{0_{\mathbb{R}^n}\}$ et

$$F = Vect(u)$$
 et $G = \left\{ (x_1, x_2, \dots, x_n) \in \mathbb{R}^n \middle| \sum_{k=1}^n a_k x_k = 0 \right\}.$

p. 38

- 1. \mathcal{L} F et G sont des sous-espaces vectoriels de \mathbb{R}^n , préciser les dimensions de F et G.
- **2.** Montrer que F et G sont supplémentaires dans \mathbb{R}^n .
- **3.** Représenter dans le plan les sous-espaces vectoriels F et G lorsque u = (1, 1).

CA10

1.4 Compléments : sommes de p sous-espaces vectoriels

Sommes de sous-espaces vectoriels

DÉFINITION somme de s.e.v

Soient $F_1,...,F_p$, des sous-espaces vectoriels d'un espace vectoriel E. On appelle **somme** de $F_1,...,F_p$, notée $\sum_{i=1}^p F_i$, l'ensemble

$$\sum_{i=1}^{p} F_i = \{ u_1 + \dots + u_p \mid \forall i \in [[1, p]], u_i \in F_i \}.$$

Remarque. $\sum_{i=1}^{n} F_i$ est un s.e.v de E, c'est le plus petit sous-espace vectoriel contenant tous les F_i .

Exemples.

• Soit $n \in \mathbb{N} \setminus \{0;1\}$. Notons \mathcal{T}^+ , \mathcal{T}^- et \mathcal{D} respectivement l'ensemble des matrices triangulaires supérieures strictes, inférieures strictes et diagonales de taille (n,n). Ces trois ensembles sont des sous-espaces vectoriels de $\mathcal{M}_n(\mathbb{R})$ avec

$$\mathcal{M}_n(\mathbb{R}) = \mathcal{T}^+ + \mathcal{T}^- + \mathcal{D}.$$

En effet, pour toute matrice $A = (a_{i,j})_{i,j \in [[1:n]]}$, on peut écrire

• Soit $\mathcal{F} = (e_1, e_2, \dots, e_p)$ une famille de vecteurs de E.

$$\operatorname{vect}(e_1, e_2, \dots, e_p) = \operatorname{Vect}(e_1) + \operatorname{Vect}(e_2) + \dots + \operatorname{Vect}(e_p).$$

Exercice 11

 \diamond Soient $F_1, ..., F_p$, des sous-espaces vectoriels d'un espace vectoriel E.

- Montrer que ∑_{i=1}^p F_i est bien un sous-espace vectoriel de E.
 Soit H, un sous-espace vectoriel de E tel que pour tout i ∈ [[1, n]], F_i ⊂ H. Montrer que ∑_{i=1}^p F_i ⊂ H.

CA11

p. 39

PROPOSITION somme et dimension

 $Soient \, F_1, \ldots, F_p, \, des \, sous-espaces \, vectoriels \, d'un \, espace \, vectoriel \, E.$

Si les F_i sont tous de dimension finie, **alors** $\sum_{i=1}^{p} F_i$ est aussi de dimension finie avec

$$\dim \left(\sum_{i=1}^{p} F_i\right) \leq \sum_{i=1}^{p} \dim (F_i).$$

Preuve. Rappelons que, d'après la formule de Grassmann, pour F, G deux s.e.v de E de dimension finie

$$\dim(F+G) \le \dim(F) + \dim(G)$$
 car $\dim(F \cap G) \ge 0$.

La proposition s'en déduit par récurrence.

Sommes directes, généralisation à p sous-espaces vectoriels

DÉFINITION somme directe

La somme de p sous-espaces vectoriels $F_1, F_2, ..., F_p$ d'un espace vectoriel E est dite **directe** si

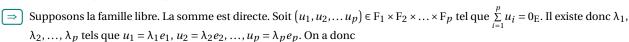
$$\forall (u_1, \dots, u_p) \in F_1 \times \dots \times F_p, \qquad u_1 + \dots + u_p = 0_E \implies u_1 = \dots = u_p = 0_E.$$

La somme directe des s.e.v F_1 , F_2 ,..., F_p *est notée* $F_1 \oplus F_2 \oplus ... \oplus F_p$.

Exemples.

- En reprenant l'exemple précédent, on a même $\mathcal{M}_n(\mathbb{R}) = \mathcal{T}^+ \oplus \mathcal{T}^- \oplus \mathcal{D}$.
- Si pour tout $i \in [[1; p]]$, $F_i = \text{Vect}(e_i)$ où e_i est un vecteur de E non nul alors la somme $\sum_{i=1}^{p} F_i$ est directe si et seulement si la famille $(e_1, e_2, ..., e_p)$ est libre.

Preuve. Raisonnons par double implication.



$$\lambda_1 e_1 + \lambda_2 e_2 + \ldots + \lambda_p e_p = 0_E$$
.

Comme la famille est libre, chaque λ_i vaut 0, $u_i = \lambda_i e_i = 0_E$. La somme est directe.

 \subseteq Soient $\lambda_1, \lambda_2, ..., \lambda_p \in \mathbb{R}$ tels que

$$\underbrace{\lambda_1 e_1}_{\in \mathcal{F}_1} + \underbrace{\lambda_2 e_2}_{\in \mathcal{F}_2} + \dots + \underbrace{\lambda_p u_p}_{\in \mathcal{F}_p} = 0_{\mathcal{E}}.$$

Si la somme est directe, chaque $\lambda_i e_i$ vaut 0_E . Comme $e_i \neq 0_E$, on a $\lambda_i = 0$. La famille est libre.

Exercice 12

◆ Soient F₁, F₂ et F₃ trois s.e.v de E tels que

$$F_1 \cap F_2 = \{0_E\}, \quad F_2 \cap F_3 = \{0_E\} \quad \text{et} \quad F_1 \cap F_3 = \{0_E\}.$$
 p. 39

A-t-on nécessairement $F_1 \oplus F_2 \oplus F_3$?

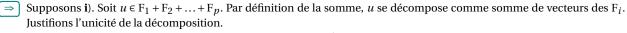
CA12

PROPOSITION somme directe et unicité

Soient $F_1, F_2, ..., F_p$ des sous-espaces vectoriels d'un espace vectoriel E. On a équivalence entre :

- La somme $\sum_{i=1}^{p} F_i$ est directe.
- Tout vecteur de $F_1 + F_2 + ... + F_p$ s'écrit d'une manière unique comme somme de vecteurs de $F_1, F_2, ..., F_p$. $\forall u \in \mathcal{F}_1 + \mathcal{F}_2 + \ldots + \mathcal{F}_p$ $\exists! (u_1, u_2, \dots, u_p) \in F_1 \times F_2 \times \dots \times F_p$ Autrement dit, $u = u_1 + u_2 + ... + u_p$.

Preuve. Raisonnons par double implication.



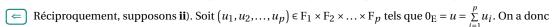
Soient $u_1 \in F_1$, $v_1 \in F_1$, $u_2 \in F_2$, $v_2 \in F_2$, ..., $u_p \in F_p$, $v_p \in F_p$ tels que

$$u = \sum_{i=1}^{p} u_i$$
 et $u = \sum_{i=1}^{p} v_i$.

Par linéarité de la somme

$$\sum_{i=1}^{p} \underbrace{(u_i - v_i)}_{\in \mathbb{F}_i} = \sum_{i=1}^{p} u_i - \sum_{i=1}^{p} v_i = u - u = 0_{\mathcal{E}}.$$

Par définition de la somme directe, pour tout indice i, $u_i - v_i = 0_E$, puis $u_i = v_i$. Ceci prouve l'unicité de l'énoncé ii).



Par unicité de la décomposition, pour tout $i \in [[1; p]]$, $u_i = 0_E$. La somme est directe.

Rappel sur la concaténation.

Lorsqu'on dispose de plusieurs familles de vecteurs de E, on peut les concaténer. C'est-à-dire, les regrouper pour former une nouvelle famille.

THÉORÈME

caractérisation par concaténation de bases

Soient $F_1, ..., F_p$ des sous-espaces vectoriels de dimension finie d'un espace vectoriel E. Soient $\mathcal{B}_1, \mathcal{B}_2, \ldots, \mathcal{B}_p$, des bases respectivement de F_1, F_2, \ldots, F_p . On a équivalence entre les énoncés suivants.

- La somme $\sum_{i=1}^{p} F_i$ est directe.
- **ii**) La famille \mathcal{B}_i , obtenue par concaténation des familles \mathcal{B}_i , est une base de $\sum_{i=1}^p F_i$.

Supposons la somme $\sum_{i=1}^p \mathbf{F}_i$ directe. Soit $u \in \sum_{i=1}^p \mathbf{F}_i$. Le vecteur u s'écrit de manière unique sous la forme

$$u = u_1 + u_2 + \dots + u_p$$
 avec $u_i \in \mathcal{F}_i$.

De plus, par définition d'une base, chaque u_i s'écrit de manière unique dans la base \mathcal{B}_i . Au final, u s'écrit de manière unique comme combinaison linéaire de la famille \mathscr{B} . Ceci étant vrai pour tout vecteur u arbitrairement choisi, \mathscr{B} est donc

Réciproquement, supposons que ${\mathcal B}$ est une base de $\sum\limits_{i=1}^p {\bf F}_i$. Notons

$$\mathcal{B} = (\underbrace{e_1, e_2, \dots, e_{j_1}}_{\begin{subarray}{c} \textbf{vecteurs} \\ \textbf{de } \mathcal{B}_1 \end{subarray}}_{\begin{subarray}{c} \textbf{vecteurs} \\ \textbf{de } \mathcal{B}_2 \end{subarray}}, \dots, \underbrace{e_{j_{p-1}+1}, e_{j_{p-1}+2} \dots, e_{j_p}}_{\begin{subarray}{c} \textbf{vecteurs} \\ \textbf{de } \mathcal{B}_p \end{subarray}}_{\begin{subarray}{c} \textbf{vecteurs} \\ \textbf{de } \mathcal{B}_p \end{subarray}}).$$

Soit $(u_1, u_2, ..., u_p) \in F_1 \times F_2 \times ... \times F_p$ tel que $u_1 + u_2 + ... + u_p = 0_E$. Or, pour tout indice i, le vecteur u_i se décompose dans la base \mathcal{B}_i de F_i

$$\exists \, (\lambda_k) \in \mathbb{R} \qquad u_i = \sum_{k=j_{i-1}+1}^{j_i} \lambda_k e_k \qquad \text{(avec la convention } j_0 = 0\text{)}.$$

Puis par somme $\sum_{i=1}^{p}\sum_{k=1}^{j_p}\lambda_k e_k = 0_E$. Comme la famille $\mathscr{B} = (e_k)_{k \in [[1;j_p]]}$ est libre, pour chaque indice k, $\lambda_k = 0$, puis pour chaque indice i, $u_i = 0_E$. On a vérifié la définition, la somme $\sum_{i=1}^p \mathbf{F}_i$ est directe.

Exercice 13

 $\bullet \bullet$ **Exemple.** Dans \mathbb{R}^4 , on pose

$$F = \{(x, y, z, t) | x - y = z + t = 0\}, \quad G = Vect(u), \quad H = Vect(v) \quad avec \begin{cases} u = (1, 0, 1, 0) \\ v = (0, 1, 0, 1). \end{cases}$$
1. Donner une base de F.

- 2. Vérifier que F ⊕ G ⊕ H = \mathbb{R}^4 à l'aide du théorème précédent.

CA13

THÉORÈME

caractérisation en dimension finie

Soient F_1, \ldots, F_p des sous-espaces vectoriels de dimension finie d'un espace vectoriel E. On a l'équivalence entre les énoncés suivants.

- La somme $\sum_{i=1}^{p} F_i$ est directe.
- **ii**) $\dim\left(\sum_{i=1}^{p} F_{i}\right) = \sum_{i=1}^{p} \dim\left(F_{i}\right).$

Preuve. Raisonnons de nouveau par double implication.

Si la somme $\sum_{i=1}^{p} F_i$ est directe alors la famille \mathscr{B} obtenue par concaténation de différentes bases de F_i en est une base. Par définition de la dimension :

 $\dim\left(\sum_{i=1}^{p} F_{i}\right) = \operatorname{Card}(\mathscr{B}) = \sum_{i=1}^{p} \operatorname{Card}\left(\mathscr{B}_{i}\right) = \sum_{i=1}^{p} \dim\left(F_{i}\right).$

L'énoncé ii) est prouvé.

- Réciproquement, s'il y a égalité des dimensions.
 - \rightarrow La famille \mathscr{B} contient dim $\left(\sum_{i=1}^{p} F_{i}\right)$ vecteurs.
 - \rightarrow Par définition de la somme, \mathscr{B} est une famille génératrice de $\sum_{i=1}^{p} F_{i}$.

On sait alors (voir cas d'égalité page 7) que la famille \mathcal{B} est alors une base de $\sum_{i=1}^{p} F_i$. D'après le théorème précédent, on conclut que la somme $\sum_{i=1}^{p} F_i$ est directe.

Remarque. Donnons une seconde démonstration de cet énoncé.

Pour cela, rappelons un résultat sur les produits cartésiens d'espaces vectoriels. Si F_1 , F_2 , ..., F_p sont des espaces vectoriels de dimension finie, alors $\prod_{i=1}^{p} F_i$ est un espace vectoriel de dimension finie avec

$$\dim\left(\prod_{i=1}^p F_i\right) = \sum_{i=1}^p \dim(F_i).$$

La somme $\sum_{i=1}^{p} F_i$ est directe si et seulement si l'application linéaire

$$\begin{cases}
\prod_{i=1}^{p} F_{i} & \rightarrow \sum_{i=1}^{p} F_{i} \\
(u_{1}, u_{2}, \dots, u_{p}) & \mapsto u_{1} + u_{2} + \dots + u_{p}
\end{cases}$$

est injective. Comme l'application est toujours surjective par définition de la somme de sous-espaces vectoriel, la somme est directe si et seulement si cette application linéaire est un isomorphisme, si et seulement si on a l'égalité des dimensions.

Exemple. Reprenons l'exemple précédent.

$$\dim\left(\mathcal{T}^+\right)+\dim\left(\mathcal{T}^-\right)+\dim\left(\mathcal{D}\right)=\frac{n(n-1)}{2}+\frac{n(n-1)}{2}+n=n^2=\dim\left(\mathcal{M}_n(\mathbb{R})\right).$$

Exercice 14

◆ Soient F₁, F₂ et F₃ trois sous-espaces vectoriels de E tels que

$$\begin{split} F_1 \cap F_2 &= \{0_E\}, \quad F_2 \cap F_3 = \{0_E\}, \quad F_1 \cap F_3 = \{0_E\} \\ &= dim(F_1) + dim(F_2) + dim(F_3) = dim(E). \end{split}$$

A-t-on nécessairement $F_1 \oplus F_2 \oplus F_3 = E$?

CA14

Exercice 15

***** Exemple** Dans $\mathbb{R}_3[x]$, on pose :

$$\begin{split} F &= \big\{ P \in \mathbb{R}_3[x] \mid P(0) = P(1) = P(2) = 0 \big\}, \qquad V = \big\{ P \in \mathbb{R}_3[x] \mid P(1) = P(2) = 0 \big\}, \\ G &= \big\{ P \in \mathbb{R}_3[x] \mid P(1) = P(2) = P(3) = 0 \big\}, \qquad H = \big\{ P \in \mathbb{R}_3[x] \mid P(x) = P(-x) \big\}. \end{split}$$

- 1. Préciser les dimensions de chacun de ces sous-espaces vectoriels de $\mathbb{R}_3[x]$.
- **2.** \P Montrer que $V \oplus H = \mathbb{R}_3[x]$.
- 3. \P Justifier que $F \oplus G \oplus H = \mathbb{R}_3[x]$.

CA15

2 Matrices et applications linéaires

2.1 Rappels : définitions et théorèmes

Si $\mathcal{B} = (e_1, ..., e_n)$ est une base d'un espace vectoriel E, alors pour tout vecteur u de E, il existe un unique n-uplet $(x_1, ..., x_n) \in \mathbb{R}^n$ tel que

$$u = \sum_{i=1}^{n} x_i e_i.$$

Dans ce cas, $(x_1, ..., x_n)$ sont les **coordonnées de** u **dans la base** \mathcal{B} . On définit la **matrice colonne des coordonnées** de u dans la base \mathcal{B} par

$$\operatorname{Mat}_{\mathscr{B}}(u) = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}.$$

Exercice 16

Les questions sont indépendantes.

- 1. Dans \mathbb{R}^3 , posons $u_1 = (1,1,1)$, $u_2 = (1,2,3)$, $u_3 = (1,1,0)$. Vérifier que (u_1,u_2,u_3) est une base de \mathbb{R}^3 , et donner la matrice des coordonnées du vecteur v = (0,1,0) dans cette base.
- **2.** Donner la matrice des coordonnées de $(1+x)^n$ dans la base canonique de $\mathbb{R}_n[x]$.

CA16

Généralisation. Soient $\mathscr{F} = (u_1, ..., u_p)$ une famille de vecteurs de E et \mathscr{B} une base de E.

Pour tout $k \in [[1, p]]$, on note $(x_{1,k}, x_{2,k}, \dots, x_{n,k})$ les coordonnées de u_k dans la base \mathcal{B} .

On appelle **matrice de la famille** \mathscr{F} **dans la base** \mathscr{B} , notée $\mathrm{Mat}_{\mathscr{B}}(\mathscr{F})$, la matrice dont les colonnes sont les matrices coordonnées des vecteurs de \mathscr{F} dans la base \mathscr{B} :

$$\mathrm{Mat}_{\mathscr{B}}(\mathscr{F}) = \begin{bmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,p} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n,1} & x_{n,2} & \cdots & x_{n,p} \end{bmatrix} \in \mathcal{M}_{n,p}(\mathbb{R}).$$

Autrement dit, la matrice $\mathrm{Mat}_{\mathscr{B}}(\mathscr{F})$ s'obtient en concaténant les matrices colonnes des coordonnées des vecteurs de la famille.

DÉFINITION

matrice d'une application linéaire

Soient E, F deux espaces vectoriels de dimension finie et $\mathscr{B}_E = (e_1, ..., e_p)$, \mathscr{B}_F deux bases respectives de E et F. **La matrice de** $\varphi \in \mathscr{L}(E,F)$ **relativement aux bases** \mathscr{B}_E **et** \mathscr{B}_F est la matrice de la famille $(\varphi(e_1),...,\varphi(e_p))$ dans la base \mathscr{B}_F :

$$\operatorname{Mat}_{\mathscr{B}_{F}}(\varphi(e_{1}),...,\varphi(e_{p})).$$

Elle est notée Mat $_{\mathscr{B}_{F},\mathscr{B}_{E}}(\varphi)$.

Représentation

Notons (e_1, \dots, e_p) et $(\varepsilon_1, \dots, \varepsilon_n)$ des bases de E et F. Une manière commode de se représenter la matrice est de placer en colonne les composantes des images de la base (e_1, \dots, e_p) par φ dans la base d'arrivée $(\varepsilon_1, \dots, \varepsilon_n)$. Le coefficient en position (i, j) de la matrice est la composante de $\varphi(e_i)$ suivant le vecteur ε_j .

	$\varphi(e_1)$	$\varphi(e_2)$	$\varphi(e_p)$			
[*				*	ϵ_1
	:	٠.	:	···	:	ϵ_2
	÷		*		:	:
	÷		:	٠.	÷	:
	*	•••	•••	•••	*	$]$ ε_n

Remarques.

- La matrice $Mat_{\mathscr{B}_F,\mathscr{B}_E}(\phi)$ a dim(E) colonnes et dim(F) lignes.
- Dans le cas d'un endomorphisme (E = F), on peut choisir $\mathscr{B}_E = \mathscr{B}_F$. On note simplement $\mathrm{Mat}_{\mathscr{B}_E}(\phi)$ au lieu de $\mathrm{Mat}_{\mathscr{B}_E,\mathscr{B}_E}(\phi)$.

Exemples.

- La matrice de l'application identité $Mat_{\mathscr{B}_E}$ (id_E) est la matrice identité I_p où p = dim(E).
- La matrice de l'application nulle $u \in E \mapsto 0_F \in F$ est $0_{n,p}$ avec $n = \dim(F)$, $p = \dim(E)$.

THÉORÈME isomorphisme

Soient E, F deux espaces vectoriels de dimension finie (de dimension respective p et n) et \mathcal{B}_E , \mathcal{B}_F deux bases respectives de E et F.

Alors l'application
$$\Phi: \left\{ \begin{array}{ccc} \mathcal{L}(E,F) & \to & \mathcal{M}_{n,p}(\mathbb{R}) \\ \phi & \mapsto & \operatorname{Mat}_{\mathscr{B}_F,\mathscr{B}_E}(\phi) \end{array} \right.$$
 est un isomorphisme d'espace vectoriel.

En particulier, pour tous φ , $\psi \in \mathcal{L}(E,F)$ et $\lambda \in \mathbb{R}$,

$$Mat_{\mathscr{B}_F,\mathscr{B}_E}(\phi+\psi)=Mat_{\mathscr{B}_F,\mathscr{B}_E}(\phi)+Mat_{\mathscr{B}_F,\mathscr{B}_E}(\psi)\quad et\quad Mat_{\mathscr{B}_F,\mathscr{B}_E}(\lambda\phi)=\lambda\,Mat_{\mathscr{B}_F,\mathscr{B}_E}(\phi).$$

Conséquences.

• À toute matrice $A \in \mathcal{M}_{n,p}(\mathbb{R})$ correspond une unique application linéaire de \mathbb{R}^p dans \mathbb{R}^n dont A soit la matrice dans les bases canoniques.

Elle est appelée l'application linéaire canoniquement associée à la matrice A.

• En dimension finie, il ne peut avoir d'isomorphisme si la dimension de l'espace de départ ne coïncide pas avec la dimension de l'espace d'arrivée. Ainsi, l'espace vectoriel des applications linéaires de E dans F est aussi de dimension finie et

$$\dim (\mathcal{L}(E,F)) = \dim (\mathcal{M}_{n,p}(\mathbb{R})) = pn = \dim(E) \times \dim(F).$$

THÉORÈME image d'un vecteur

Soient E, F deux espaces vectoriels de dimension finie de bases respectives \mathscr{B}_{E} , \mathscr{B}_{F} . Soient $\varphi \in \mathcal{L}(E,F)$ et $u \in E$.

- **Si on note** \mid U la matrice colonne des coordonnées de u dans la base \mathscr{B}_{E} .

 - $\stackrel{}{\longrightarrow} V$ la matrice colonne des coordonnées de $\varphi(u)$ dans la base \mathscr{B}_F . $\stackrel{}{\longrightarrow} A = \operatorname{Mat}_{\mathscr{B}_F,\mathscr{B}_E}(\varphi)$, la matrice de l'application φ dans les bases \mathscr{B}_E , \mathscr{B}_F ,

alors AU = V.

Preuve. Posons $\mathscr{B}_{E} = (e_1, \dots, e_p), \mathscr{B}_{F} = (\varepsilon_1, \dots, \varepsilon_n)$ et $u = \sum_{i=1}^{p} x_j e_j$, de sorte que $U = {}^{t}[x_1 \dots x_p]$.

Par définition:

$$\rightarrow \quad \mathbf{A} = (a_{i,j}) \in \mathcal{M}_{n,p}(\mathbb{R}), \quad \text{où} \quad \forall j \in [[1;p]], \quad \varphi(e_j) = \sum_{i=1}^n a_{i,j} \varepsilon_i.$$

$$\rightarrow$$
 AU = ${}^t[y_1 \quad \cdots \quad y_n]$, où $\forall i \in [[1; n]]$, $y_i = \sum_{j=1}^p a_{i,j} x_j$.

Alors

$$\varphi(u) = \varphi\left(\sum_{j=1}^{p} x_j e_j\right) = \sum_{j=1}^{p} x_j \varphi(e_j) = \sum_{j=1}^{p} \sum_{i=1}^{n} a_{i,j} x_j \varepsilon_i = \sum_{i=1}^{n} \left(\sum_{j=1}^{p} a_{i,j} x_j\right) \varepsilon_i.$$

D'où le résultat car $V = {}^{t}[y_1 \quad \cdots \quad y_n]$.

Remarques.

· Cette relation s'écrit directement

$$\operatorname{Mat}_{\mathscr{B}_{F}}(\varphi(u)) = \operatorname{Mat}_{\mathscr{B}_{F},\mathscr{B}_{F}}(\varphi) \operatorname{Mat}_{\mathscr{B}_{F}}(u).$$

• Cette formule s'étend par concaténation aux matrices d'une famille de vecteurs. Soient $\varphi \in \mathcal{L}(E,F)$ et (u_1, \dots, u_q) une famille de vecteurs de E. Alors

$$\operatorname{Mat}_{\mathscr{B}_{F}}(\varphi(u_{1}), \cdots, \varphi(u_{q})) = \operatorname{Mat}_{\mathscr{B}_{F}, \mathscr{B}_{E}}(\varphi) \operatorname{Mat}_{\mathscr{B}_{E}}(u_{1}, \cdots, u_{q})$$
 (•)

THÉORÈME

produit matriciel et composition d'applications

Soient E, F, G trois espaces vectoriels de dimension finie de bases respectives \mathcal{B}_{E} , \mathcal{B}_{F} , \mathcal{B}_{G} . Soient $\varphi \in \mathcal{L}(E,F)$ et $\psi \in \mathcal{L}(F,G)$. Alors

$$\operatorname{Mat}_{\mathscr{B}_{G},\mathscr{B}_{F}}(\psi \circ \varphi) = \operatorname{Mat}_{\mathscr{B}_{G},\mathscr{B}_{F}}(\psi) \cdot \operatorname{Mat}_{\mathscr{B}_{F},\mathscr{B}_{F}}(\varphi).$$

Preuve. Posons $\mathscr{B}_E = (e_1, \dots, e_p)$. Par définition de la matrice de $\psi \circ \varphi$ dans les bases \mathscr{B}_E et \mathscr{B}_G , on a

$$\begin{aligned} \operatorname{Mat}_{\mathscr{B}_{G},\mathscr{B}_{E}}(\psi \circ \varphi) &= \operatorname{Mat}_{\mathscr{B}_{G}} \left(\psi \circ \varphi(e_{1}), \cdots, \psi \circ \varphi(e_{p}) \right) \\ &= \operatorname{Mat}_{\mathscr{B}_{G}} \left(\psi(\varphi(e_{1})), \cdots, \psi(\varphi(e_{p})) \right) \end{aligned}$$

$$\operatorname{Mat}_{\mathscr{B}_{G},\mathscr{B}_{F}}(\psi \circ \varphi) = \operatorname{Mat}_{\mathscr{B}_{G},\mathscr{B}_{F}}(\psi) \operatorname{Mat}_{\mathscr{B}_{F}}(\varphi(e_{1}), \cdots, \varphi(e_{p})), \quad \text{d'après l'égalité } (\bullet).$$

Or par définition,

$$\operatorname{Mat}_{\mathscr{B}_{F},\mathscr{B}_{E}}(\varphi) = \operatorname{Mat}_{\mathscr{B}_{F}}(\varphi(e_{1}), \cdots, \varphi(e_{p})),$$

donc finalement

$$\operatorname{Mat}_{\mathscr{B}_{G},\mathscr{B}_{E}}(\psi \circ \varphi) = \operatorname{Mat}_{\mathscr{B}_{G},\mathscr{B}_{F}}(\psi) \operatorname{Mat}_{\mathscr{B}_{F},\mathscr{B}_{E}}(\varphi).$$

COROLLAIRE

inversibilité et isomorphisme

Soient E, F deux espaces vectoriels de dimension finie, \mathscr{B}_{E} , \mathscr{B}_{F} deux bases respectives de E et F. Soit $\phi \in \mathscr{L}(E,F)$. Les propriétés suivantes sont équivalentes.

- i) L'application linéaire φ est bijective.
- **ii**) La matrice $Mat_{\mathscr{B}_F,\mathscr{B}_E}(\varphi)$ est inversible.

Dans ce cas,

$$\operatorname{Mat}_{\mathscr{B}_{E},\mathscr{B}_{F}}(\varphi^{-1}) = \operatorname{Mat}_{\mathscr{B}_{F},\mathscr{B}_{E}}(\varphi)^{-1}.$$

Exercice 17

◆ ♣ Prouver cet énoncé grâce au théorème précédent. On pourra utiliser la caractérisation de la bijectivité.

p. 40

CA17

Exercice 18

♦ Les questions 1 et 2 sont indépendantes.

- **1.** \mathbf{Q} Soient $a, b, c, d \in \mathbb{R}$ et $\varphi \in \mathcal{L}(\mathbb{R}^2)$ défini par $\varphi(x, y) \mapsto (ax + by, cx + dy)$. À quelle condition sur a, b, c et d, φ est bijective?
- 2. a) \P Soit $n \in \mathbb{N}^*$. Déterminer A, la matrice de $\varphi : P \in \mathbb{R}_n[x] \mapsto P(x+1) \in \mathbb{R}_n[x]$ dans la base canonique.
 - **b)** Justifier que A est inversible et déterminer A^{-1} .

CA18

2.2 Rappels : noyau, image et rang

Les définitions et le calcul

DÉFINITION

noyau, image et rang d'une matrice

Pour toute matrice $A \in \mathcal{M}_{n,p}(\mathbb{R})$, on définit

Le noyau de A par

$$\operatorname{Ker}(A) = \{ X \in \mathcal{M}_{p,1}(\mathbb{R}) \mid AX = 0_{n,1} \}.$$

L'image de A par

$$\operatorname{Im}(\mathsf{A}) = \big\{ \mathsf{Y} \in \mathcal{M}_{n,1}(\mathbb{R}) \, | \, \exists \mathsf{X} \in \mathcal{M}_{p,1}(\mathbb{R}), \quad \mathsf{A}\mathsf{X} = \mathsf{Y} \big\} = \big\{ \mathsf{A}\mathsf{X} \, | \, \mathsf{X} \in \mathcal{M}_{p,1}(\mathbb{R}) \big\}.$$

Le rang de A, noté $\operatorname{rg}(A)$, est le rang de la famille de ses vecteurs colonnes dans $\mathcal{M}_{n,1}(\mathbb{R})$. Autrement dit, si $A = \begin{bmatrix} C_1 & C_2 & \cdots & C_p \end{bmatrix}$ alors

$$\operatorname{rg}(A) = \dim (\operatorname{Vect}(C_1, C_2, \dots, C_p)).$$

• Propriétés de calculs.

→ Le rang est invariant par transposition, autrement dit

$$\forall A \in \mathcal{M}_{n,p}(\mathbb{R}), \quad \operatorname{rg}(A) = \operatorname{rg}(^{t}A).$$

- Le rang est invariant par les opérations élémentaires :
 - L'échange de lignes ou de colonnes $(L_i \leftrightarrow L_j \text{ ou } C_i \leftrightarrow C_j)$.
 - La multiplication d'une ligne ou d'une colonne par $\lambda \in \mathbb{R}^*$ ($L_i \leftarrow \lambda L_i$ ou $C_i \leftarrow \lambda C_i$).
 - L'addition d'une autre ligne ou colonne $(L_i \leftarrow L_i + L_j \text{ ou } C_i \leftarrow C_i + C_j)$.

Remarque. On a toujours $rg(A) \le p$. De plus, le rang est invariant par transposition, autrement dit

$$\forall A \in \mathcal{M}_{n,p}(\mathbb{R}), \qquad \operatorname{rg}(A) = \operatorname{rg}(^tA).$$

En particulier, on a aussi $rg(A) \le n$.

Exercice 19

→ Calculer les noyaux des matrices suivantes :

$$A = \begin{bmatrix} -1 & 2 & -1 \\ 3 & -3 & 0 \\ -2 & 2 & 0 \end{bmatrix} \quad \text{et} \quad B_{\alpha} = \begin{bmatrix} 2 - \alpha & 3 & 1 \\ 5 & 6 + \alpha & 1 \\ 1 & 1 & -2 - \alpha \end{bmatrix} \quad \text{où} \quad \alpha \in \mathbb{R}.$$

CA19

Exercice 20

◆ Calculer le rang des matrices suivantes :

$$A = \begin{bmatrix} 4 & 2 & -1 \\ 3 & 2 & 0 \\ -2 & 2 & 5 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 & -1 & 4 \\ 2 & 1 & 0 & 9 \\ -1 & 2 & 5 & -5 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} - \alpha I_2 \quad \text{avec} \quad \alpha \in \mathbb{R}.$$

CA20

DÉFINITION

noyau, image et rang d'une application linéaire

Pour tout $\varphi \in \mathcal{L}(E,F)$, on définit

Le noyau de ϕ par

$$Ker(\varphi) = \{ u \in E \mid \varphi(u) = 0_F \}.$$

L'image de φ par

$$\operatorname{Im}(\varphi) = \{ v \in F \mid \exists u \in E, \quad \varphi(u) = v \} = \{ \varphi(u) \mid u \in E \}.$$

Le rang de φ , noté $\operatorname{rg}(\varphi)$, est défini par $\operatorname{rg}(\varphi) = \dim(\operatorname{Im}(\varphi))$.

Exercice 21

♦ On admet que les applications suivantes sont linéaires. Déterminer leur noyau.

$$\phi_1: P \in \mathbb{R}[x] \mapsto P'' \in \mathbb{R}[x], \qquad \phi_2: P \in \mathbb{R}_2[x] \mapsto \left(P(1), P(0), P(-1)\right) \in \mathbb{R}^3,$$

$$\phi_3: P \in \mathbb{R}[x] \mapsto P - P' \in \mathbb{R}[x] \quad \text{et} \quad \phi_4: P \in \mathbb{R}[x] \mapsto P(x+1) - P(x-1) \in \mathbb{R}[x].$$

CA21

Remarque. Si $(e_1,...,e_n)$ est une base de E, alors $\operatorname{Im}(\varphi) = \operatorname{Vect}(\varphi(e_1),...,\varphi(e_n))$. Ainsi le rang de φ correspond au rang de la famille image $(\varphi(e_1),...,\varphi(e_n))$.

PROPOSITION

rang d'une matrice et d'une application linéaire

Soient E, F deux espaces vectoriels de dimension finie et \mathscr{B}_{E} , \mathscr{B}_{F} deux bases respectivement de E et F. Soient $\varphi \in \mathscr{L}(E,F)$ et $A = \operatorname{Mat}_{\mathscr{B}_{F},\mathscr{B}_{E}}(\varphi)$. Alors,

$$rg(A) = rg(\phi)$$
.

Formule du rang et conséquences

THÉORÈME formule du rang

Soient E, F deux espaces vectoriels avec E de dimension finie et $\varphi \in \mathcal{L}(E,F)$. Alors

$$\dim(\operatorname{Ker}(\varphi)) + \operatorname{rg}(\varphi) = \dim(E).$$

Rappels. L'application $\varphi \in \mathcal{L}(E,F)$ est injective si et seulement si $Ker(\varphi) = \{0_E\}$.

L'application ϕ est surjective si et seulement si $\text{Im}(\phi) = F$. Dans le cas où F est de dimension finie, on a aussi la surjectivité de ϕ si et seulement si $\text{rg}(\phi) = \text{dim}(F)$. À partir de la formule du rang, on montre les énoncés suivants :

• Version endomorphisme

Soient E un espace vectoriel de dimension finie n et ϕ un endomorphisme de E. On a équivalence entre :

- i) φ est injective (Ker(φ) = {0_E}).
- ii) φ est surjective $(rg(\varphi) = n)$.
- iii) φ est bijective.

Version matricielle

Soit $A \in \mathcal{M}_n(\mathbb{R})$. On a équivalence entre :

- i) $Ker(A) = \{0_{n,1}\}.$
- ii) rg(A) = n.
- iii) A est inversible.

Exercice 22

- \Rightarrow Soient $f \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)$ et $g \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^3)$.
 - 1. Montrer que $rg(g) \le 2$.
 - **2.** En déduire que $g \circ f$ n'est ni injective, ni surjective.

CA22

p. 43

2.3 Compléments : matrices de passage

DÉFINITION

cas particulier des matrices de passages

Soient E, un espace vectoriel de dimension finie et \mathcal{B} , \mathcal{C} , deux bases de E.

La matrice $\operatorname{Mat}_{\mathscr{B}}(\mathscr{C})$ est appelée matrice de passage de la base \mathscr{B} à la base \mathscr{C} . On la note $\operatorname{P}_{\mathscr{B},\mathscr{C}}$.

Autrement dit, la j-ème colonne de $P_{\mathscr{B},\mathscr{C}}$ est la matrice coordonnée du j-ème vecteur de \mathscr{C} dans la base \mathscr{B} .

Exemple. Soient u=(1,2) et v=(3,4). La famille $\mathscr{C}=(u,v)$ est une base de \mathbb{R}^2 . La matrice de passage de la base canonique $\mathscr{B}=(e_1,e_2)$ de \mathbb{R}^2 à la base \mathscr{C} est

$$P_{\mathscr{B},\mathscr{C}} = \left[\begin{array}{cc} 1 & 3 \\ 2 & 4 \end{array} \right].$$

On vérifie que $e_1 = -2u + v$ et $e_2 = 3/2u - 1/2v$, d'où

$$P_{\mathscr{C},\mathscr{B}} = \left[\begin{array}{cc} -2 & 3/2 \\ 1 & -1/2 \end{array} \right].$$

 \wedge

!\ Attention. On sera vigilant sur l'ordre.

Remarque. Pour \mathcal{B} et \mathcal{C} , deux bases de E, on a

$$\operatorname{Mat}_{\mathscr{B},\mathscr{C}}(\operatorname{id}_{\operatorname{E}}) = \operatorname{Mat}_{\mathscr{B}}(\mathscr{C}) = \operatorname{P}_{\mathscr{B},\mathscr{C}}.$$

En effet, si on note $\mathscr{C} = (e_1, ..., e_n)$ et $\mathscr{B} = (\varepsilon_1, ..., \varepsilon_n)$

Remarque. Avec trois bases \mathcal{B} , \mathcal{C} et \mathcal{D} de E, on a aussi

$$P_{\mathscr{B},\mathscr{D}} = P_{\mathscr{B},\mathscr{C}} \cdot P_{\mathscr{C},\mathscr{D}} \qquad (\bullet$$

Exercice 23

♦ On considère la base canonique $\mathscr{B} = (1, x, x^2)$ de $\mathbb{R}_2[x]$. Soient $a, b \in \mathbb{R}$ avec $a \neq b$. On considère les familles de polynômes $\mathscr{C} = (1, x - a, (x - a)^2)$ et $\mathscr{D} = ((x - a)^2, (x - a)(x - b), (x - b)^2)$.

- **1.** a) Justifier que \mathscr{C} et \mathscr{D} sont deux autres bases de $\mathbb{R}_2[x]$.
- **b**) Calculer $P_{\mathscr{B},\mathscr{C}}$, $P_{\mathscr{B},\mathscr{D}}$ et $P_{\mathscr{C},\mathscr{D}}$. Vérifier par le calcul que $P_{\mathscr{B},\mathscr{D}} = P_{\mathscr{B},\mathscr{C}} \cdot P_{\mathscr{C},\mathscr{D}}$.
- 2. Prouver la relation (\bullet) dans le cas général de trois bases \mathscr{B} , \mathscr{C} et \mathscr{D} de E.

CA23

p. 43

PROPOSITION

coordonnées et changement de bases

Soient \mathcal{B} , \mathcal{C} deux bases d'un espace vectoriel de dimension finie E.

Soit u un vecteur de E dont $U_{\mathscr{B}}$ et $U_{\mathscr{C}}$ sont les matrices colonnes des coordonnées respectivement dans les bases \mathscr{B} et \mathscr{C} alors

$$U_{\mathcal{B}} = P_{\mathcal{B},\mathcal{C}}U_{\mathcal{C}}.$$

Preuve. L'énoncé est une conséquence du théorème page 14. Soit $u \in E$ tel que $U_{\mathscr{B}}$ (respectivement $U_{\mathscr{C}}$) est respectivement la matrice colonne du vecteur u dans la base \mathscr{B} (resp. \mathscr{C}). À partir de $u = \mathrm{id}_E(u)$:

$$\operatorname{Mat}_{\mathscr{B}}(u) = \operatorname{Mat}_{\mathscr{B},\mathscr{C}}(\operatorname{id}_{E})\operatorname{Mat}_{\mathscr{C}}(u), \quad \text{puis} \quad \operatorname{U}_{\mathscr{B}} = \operatorname{P}_{\mathscr{B},\mathscr{C}}\operatorname{U}_{\mathscr{C}}.$$

Exercice 24

♦ Soient $\mathcal{B} = (e_1, e_2, e_3)$ une base de \mathbb{R}^3 et $\mathcal{B}' = (e_1 + e_2, 2e_2 + e_3, 3e_3)$. Existe-t-il un vecteur non nul de \mathbb{R}^3 ayant les mêmes coordonnées dans ces deux bases? p. 43 On pourra dans un premier temps, traduire matriciellement le problème.

CA24

PROPOSITION inversibilité

Soient \mathcal{B} , \mathcal{C} deux bases d'un espace vectoriel de dimension finie E. La matrice $P_{\mathcal{B},\mathcal{C}}$ est inversible avec

$$\left(\mathbf{P}_{\mathscr{B},\mathscr{C}}\right)^{-1} = \mathbf{P}_{\mathscr{C},\mathscr{B}}.$$

Autrement dit, l'inverse de la matrice de passage de la base \mathcal{B} à la base \mathcal{C} est la matrice de passage de la base \mathcal{C} à la base \mathcal{B} .

Preuve. On a vu que $Mat_{\mathscr{B}}(\mathscr{C}) = Mat_{\mathscr{B},\mathscr{C}}(id_E)$. Comme $id_E \circ id_E = id_E$, on a

$$\left\{ \begin{array}{lcl} \operatorname{Mat}_{\mathscr{B},\mathscr{C}}(\operatorname{id}_E) \cdot \operatorname{Mat}_{\mathscr{C},\mathscr{B}}(\operatorname{id}_E) & = & \operatorname{Mat}_{\mathscr{B},\mathscr{B}}(\operatorname{id}_E) & = & \operatorname{I}_n \\ \\ \operatorname{Mat}_{\mathscr{C},\mathscr{B}}(\operatorname{id}_E) \cdot \operatorname{Mat}_{\mathscr{B},\mathscr{C}}(\operatorname{id}_E) & = & \operatorname{Mat}_{\mathscr{C},\mathscr{C}}(\operatorname{id}_E) & = & \operatorname{I}_n. \end{array} \right.$$

Par définition, $Mat_{\mathscr{B},\mathscr{C}}(id_E)$ est inversible et

$$Mat_{\mathscr{B}\mathscr{C}}(id_{E}) = Mat_{\mathscr{C}\mathscr{B}}(id_{E})^{-1}.$$

On en déduit le résultat.

Exemples. Vérifions la proposition précédente sur deux cas.

• On se place dans \mathbb{R}^3 . Considérons $\mathscr{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 et $\mathscr{C} = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$, la famille définie par

$$\varepsilon_1 = (1, 1, 1), \qquad \varepsilon_2 = (2, 3, 2) \quad \text{et} \quad \varepsilon_3 = (-1, -2, 0).$$

On vérifie que la famille $\mathscr C$ est une famille libre de $\mathbb R^3$, elle contient exactement 3 vecteurs. C'est donc une base de $\mathbb R^3$. Il vient

$$P_{\mathcal{B},\mathcal{C}} = \operatorname{Mat}_{\mathcal{B}}(\mathcal{C}) = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 3 & -2 \\ 1 & 2 & 0 \end{bmatrix}.$$

D'après ce qui précède, P.g. & est inversible. On peut calculer l'inverse par un pivot de Gauss, on trouve

$$P_{\mathcal{B},\mathcal{C}}^{-1} = \begin{bmatrix} 4 & -2 & -1 \\ -2 & 1 & 1 \\ -1 & 0 & 1 \end{bmatrix}.$$

On peut vérifier ce calcul, par exemple, à l'aide de la première colonne

$$e_1 = 4\varepsilon_1 - 2\varepsilon_2 - \varepsilon_3 \iff (1,0,0) = 4(1,1,1) - 2(2,3,2) - (-1,-2,0).$$

• Matrices de rotation

Soit $\alpha \in \mathbb{R}$. Dans \mathbb{R}^2 , notons $\mathscr{B} = (e_1, e_2)$ la base canonique et la famille \mathscr{C} composée des deux vecteurs

$$\varepsilon_1 = (\cos(\alpha), \sin(\alpha))$$
 et $\varepsilon_2 = (-\sin(\alpha), \cos(\alpha))$.

Les vecteurs ε_1 et ε_2 s'obtiennent par rotation d'un angle α de centre l'origine à partir des vecteurs e_1 et e_2 . La matrice de passage de \mathscr{B} à \mathscr{C} est alors :

$$P_{\mathscr{B},\mathscr{C}} = \left[\begin{array}{cc} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{array} \right].$$

Cette matrice est de déterminant $\cos(\alpha)^2 + \sin(\alpha)^2 = 1 \neq 0$. La formule de l'inverse pour les matrices (2, 2) donne

$$P_{\mathscr{B},\mathscr{C}}^{-1} = \left[\begin{array}{cc} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{array} \right].$$

Or, les vecteurs e_1 et e_2 s'obtiennent aussi à partir de ε_1 et ε_2 par une rotation d'un angle $-\alpha$. La matrice de passage de $\mathscr C$ à $\mathscr B$ s'obtient donc ici en remplaçant α par $-\alpha$ dans l'expression de $P_{\mathscr B,\mathscr C}$. En utilisant la parité du cosinus et l'imparité du sinus, il vient :

$$P_{\mathscr{C},\mathscr{B}} = \left[\begin{array}{cc} \cos(-\alpha) & -\sin(-\alpha) \\ \sin(-\alpha) & \cos(-\alpha) \end{array} \right] = \left[\begin{array}{cc} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{array} \right].$$

On retrouve bien l'égalité $P_{\mathscr{C},\mathscr{B}} = (P_{\mathscr{B},\mathscr{C}})^{-1}$.

formule de changement de bases

Soient $\varphi \in \mathcal{L}(E)$ avec E de dimension finie, \mathscr{B} et \mathscr{C} deux bases de E. Alors

$$Mat_{\mathscr{C}}(\varphi) = P_{\mathscr{B}\mathscr{C}}^{-1} \cdot Mat_{\mathscr{B}}(\varphi) \cdot P_{\mathscr{B}\mathscr{C}}.$$

Preuve. Partons de l'égalité $\varphi = id_E \circ \varphi \circ id_E$. Matriciellement, on obtient

$$\begin{split} \text{Mat}_{\mathscr{C}}(\phi) &= \text{Mat}_{\mathscr{C},\mathscr{B}}\left(\text{id}_{E}\right) \cdot \text{Mat}_{\mathscr{B}}(\phi) \cdot \text{Mat}_{\mathscr{B},\mathscr{C}}\left(\text{id}_{E}\right) \\ &= P_{\mathscr{C},\mathscr{B}} \cdot \text{Mat}_{\mathscr{B}}(\phi) \cdot P_{\mathscr{B},\mathscr{C}}. \end{split}$$

Enfin, la proposition précédente donne le résultat :

$$\operatorname{Mat}_{\mathscr{C}}(\varphi) = \operatorname{P}_{\mathscr{B},\mathscr{C}}^{-1} \cdot \operatorname{Mat}_{\mathscr{B}}(\varphi) \cdot \operatorname{P}_{\mathscr{B},\mathscr{C}}.$$

Remarque. On peut généraliser la formule de changement de bases. Si $\phi \in \mathcal{L}(E,F)$ avec E et F, deux espaces de dimension finie. Si \mathcal{B}_E , \mathcal{C}_E (resp. \mathcal{B}_F , \mathcal{C}_F) sont deux bases de E (resp. de F) alors on montre qu'en précédemment

$$\operatorname{Mat}_{\mathscr{C}_{F},\mathscr{C}_{E}}(\varphi) = \operatorname{P}_{\mathscr{B}_{F},\mathscr{C}_{F}}^{-1} \operatorname{Mat}_{\mathscr{B}_{F},\mathscr{B}_{E}}(\varphi) \operatorname{P}_{\mathscr{B}_{E},\mathscr{C}_{E}}.$$

Exercice 25

♦ Soient $a, b ∈ \mathbb{R}$, $A = \begin{bmatrix} a & b & b \\ b & a & b \\ b & b & a \end{bmatrix}$ et φ l'endomorphisme de \mathbb{R}^3 dont A est la matrice dans

la base canonique $\mathcal{B} = (e_1, e_2, e_3)$. Posons de plus $\mathcal{C} = (u_1, u_2, u_3)$ avec

$$u_1 = e_1 - e_3$$
, $u_2 = e_1 - 2e_2 + e_3$ et $u_3 = e_1 + e_2 + e_3$.

- 1. On admet que \mathscr{C} est une base de \mathbb{R}^3 . Préciser B, la matrice de φ dans la base \mathscr{C} .
- **2.** Expliciter la relation entre A et B. À quelles conditions sur a et b, l'endomorphisme ϕ est un isomorphisme?

CA25

2.4 Compléments : matrices semblables

DÉFINITION matrices semblables

Soient A, B $\in \mathcal{M}_n(\mathbb{R})$.

On dit que A est **semblable** à B s'il existe une matrice inversible P telle que $B = P^{-1} \cdot A \cdot P$.

Exercice 26

Exercice 27

- **♦ Vrai ou faux?** Pour tous A, B, C ∈ $\mathcal{M}_n(\mathbb{R})$.
- 1. A est semblable à A.
- 2. Si A est semblable à B, alors B est semblable à A.
- 3. Si A est semblable à B, et B est semblable à C, alors A est semblable à C.
- **4.** Pour tout $p \in \mathbb{N}$, si A est semblable à B alors A^p est semblable à B^p .
- 5. Si A est semblable à B et A est inversible alors A^{-1} est semblable à B^{-1} .

CA26

p. 44

Exemple. Les matrices suivantes sont semblables :

$$\mathbf{M} = \left[\begin{array}{ccc} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{array} \right] \quad \text{et} \quad \mathbf{D} = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -4 \end{array} \right].$$

- $\ \, \ \, \ \, \ \,$ Justifions l'exemple en considérant $\phi,$ l'endomorphisme canoniquement associé à la matrice M.
- 1. a) Prouver l'existence de $u \in \mathbb{R}^3$ tel que $\text{Vect}(u) = \text{Ker}(\phi \text{id}_{\mathbb{R}^3})$.

 De même, on prouve que v = (4, 3, -2), w = (-2, 3, -2) vérifient

$$\operatorname{Vect}(v) = \operatorname{Ker}(\varphi - 2\operatorname{id}_{\mathbb{P}^3}) \quad et \quad \operatorname{Vect}(w) = \operatorname{Ker}(\varphi + 4\operatorname{id}_{\mathbb{P}^3}).$$

- **b)** Vérifier que (u, v, w) est une base de \mathbb{R}^3 .
- 2. Démontrer que M et D sont semblables.

CA27

PROPOSITION

endomorphisme et similitude

Soient A, B $\in \mathcal{M}_n(\mathbb{R})$, deux matrices et E un espace vectoriel de dimension finie n.

Les matrices A et B sont semblables si et seulement si A et B représentent un même endomorphisme de E. C'est-à-dire il existe deux bases \mathcal{B} , \mathcal{C} de E et $\phi \in \mathcal{L}(E)$ tels que

$$A = Mat_{\mathscr{B}}(\varphi)$$
 et $B = Mat_{\mathscr{C}}(\varphi)$.

Preuve. C'est une conséquence du théorème de changement de base en précisant que toute matrice inversible peut être vue comme une matrice de changement de base.

Exemple. Pour trois réels *a*, *b* et *c*, on pose

$$A = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \quad \text{et} \quad B = \begin{bmatrix} c & 0 \\ b & a \end{bmatrix}.$$

Justifions que A et B sont semblables. Soit φ l'endomorphisme canoniquement associé à la matrice A. Si $\mathscr{B} = (e_1, e_2)$ désigne la base canonique de \mathbb{R}^2 , on a

$$\varphi(e_1) = ae_1$$
 et $\varphi(e_2) = be_1 + ce_2$.

La matrice B est semblable à A si l'on peut trouver une base $\mathscr{C} = (\epsilon_1, \epsilon_2)$ telle que

$$\varphi(\varepsilon_1) = c\varepsilon_1 + b\varepsilon_2$$
 et $\varphi(\varepsilon_2) = a\varepsilon_2$.

On constate que le choix $\varepsilon_1 = e_2$ et $\varepsilon_2 = e_1$ convient.

On peut vérifier par le calcul, si on pose

$$P = P_{\mathcal{B},\mathcal{C}} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix},$$

on trouve que $PBP^{-1} = A$. Les matrices sont bien semblables.

COROLLAIRE

invariance du rang par similitude

Soient A, B $\in \mathcal{M}_n(\mathbb{R})$.

Si A et B sont semblables, alors elles ont même rang.

Preuve. Si A et B sont deux matrices semblables, alors elles représentent le même endomorphisme $\phi \in \mathcal{L}(\mathbb{R}^n)$ dans des bases différentes. Ainsi, avec la proposition précédente

$$rg(A) = rg(\phi) = rg(B)$$
.

Exercice 28

3

💠 🗣 La réciproque est fausse. Pouvez-vous donner un contre exemple?

p. 44

CA28

Compléments : trace d'une matrice

DÉFINITION trace

Soit $A \in \mathcal{M}_n(\mathbb{R})$. On définit la **trace** de A, notée Tr(A), comme la somme des coefficients diagonaux de A. Autrement dit, pour $A = (a_{i,j})_{i,j \in [[1,n]]}$,

$$Tr(A) = \sum_{i=1}^{n} a_{i,i}.$$

Exercice 29

 \Rightarrow Calculer Tr (I_n), Tr (0_n), Tr (J) et Tr (K) où

CA29

À partir des règles de calculs usuelles, on montre que :

PROPOSITION forme linéaire

L'application trace Tr : $\mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$ *est une forme linéaire. C'est-à-dire, pour tous* A, B $\in \mathcal{M}_n(\mathbb{R})$, $\lambda \in \mathbb{R}$,

$$Tr(A + B) = Tr(A) + Tr(B)$$
 et $Tr(\lambda A) = \lambda Tr(A)$.

Vocabulaire. Une forme linéaire est une application linéaire à valeurs dans \mathbb{R} .

Exercice 30

++

1. Donner la dimension de Ker(Tr). Préciser une base.

p. 45

2. Expliciter un supplémentaire du noyau.

CA30

Remarque. On peut aussi noter que la trace est invariante par transposition :

$$\forall A \in \mathcal{M}_n(\mathbb{R}), \quad \operatorname{Tr}(^t A) = \operatorname{Tr}(A).$$

PROPOSITION trace et produit

Pour tous A, B $\in \mathcal{M}_n(\mathbb{R})$

$$Tr(AB) = Tr(BA)$$
.

1. Prouver cette proposition. Si on note $[M]_{i,j}$, le coefficient en position (i,j) de la matrice M, on rappelle que pour $A \in \mathcal{M}_{n,p}(\mathbb{R})$ et $B \in \mathcal{M}_{p,q}(\mathbb{R})$, $[AB]_{i,j} = \sum\limits_{k=1}^p [A]_{i,k}[B]_{k,j}$.

Exercice 31

2. Justifier que pour tout $k \in \mathbb{N}$, $\text{Tr}((AB)^k) = \text{Tr}((BA)^k)$.

3. a) Écrire un programme **Tr3** qui prend en argument trois matrices A, B, C de $\mathcal{M}_n(\mathbb{R})$ et renvoie Tr(ABC).

b) Tester et commenter avec Tr3(A,B,C) et Tr3(B,A,C) où

$$A = \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right], \quad B = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right], \quad C = \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right].$$

CA31

COROLLAIRE

invariance par similitude

Soient $A \in \mathcal{M}_n(\mathbb{R})$ et $P \in \mathcal{M}_n(\mathbb{R})$, inversible. Alors

$$Tr(A) = Tr(P^{-1}AP).$$

Preuve. D'après la proposition précédente

$$\operatorname{Tr} \left(\mathbf{P}^{-1} \mathbf{A} \mathbf{P} \right) = \operatorname{Tr} \left(\mathbf{P}^{-1} (\mathbf{A} \mathbf{P}) \right) = \operatorname{Tr} \left((\mathbf{A} \mathbf{P}) \mathbf{P}^{-1} \right) = \operatorname{Tr} \left(\mathbf{A} \mathbf{P} \mathbf{P}^{-1} \right) = \operatorname{Tr} \left(\mathbf{A} \mathbf{I}_n \right) = \operatorname{Tr} (\mathbf{A}).$$

Remarque. Autrement dit, deux matrices semblables ont même trace. Cette propriété permet de définir la trace d'un endomorphisme (voir exercice 59). La réciproque est fausse, par exemple la matrice I_n et J (de taille (n,n) et ne contenant que des "1") ont même trace pourtant elles ne sont pas semblables $(rg(J) = 1 \neq n = rg(I_n))$ pour n > 1).

Exercice 32

- ♦ Soient A, B ∈ $\mathcal{M}_n(\mathbb{R})$.
- 1. Que dire de A si $Tr(A^tA) = 0$?

p. 45

2. Que dire de A et B si pour tout $X \in \mathcal{M}_n(\mathbb{R})$, Tr(AX) = Tr(BX)?

CA32

4

Compléments : les espaces stables

DÉFINITION espace stable

Soient $\varphi \in \mathcal{L}(E)$ et F une partie de E. On dit que F est une **partie stable** par φ si

$$\forall u \in F$$
, $\varphi(u) \in F$.

Exemple. Soit φ : $f \in \mathscr{C}(\mathbb{R}, \mathbb{R}) \mapsto f' \in \mathscr{C}(\mathbb{R}, \mathbb{R})$. Les espaces $\mathbb{R}[x]$ et Vect(cos, sin) sont des parties stables de φ .

Exercice 33

Les questions sont indépendantes.

- 1. Montrer que toute somme de s.e.v stables par ϕ reste stable par ϕ .
- 2. Soient ϕ , $\psi \in \mathcal{L}(E)$ tels que $\phi \circ \psi = \psi \circ \phi$. Montrer que le noyau et l'image de ψ sont stables par ϕ .

CA33

p. 45

Remarques.

• Soit F un sous-espace vectoriel de E avec (e_1, \dots, e_p) une famille génératrice de F. Alors F est une partie stable par φ si et seulement si, pour tout $i \in [[1;p]], \varphi(e_i) \in F$.

Preuve. Supposons que pour tout $i \in [[1;p]]$, $\varphi(e_i) \in F$. Soit $u \in F$. La famille $(e_1, ..., e_p)$ étant génératrice, il existe $\lambda_1, \lambda_2, ..., \lambda_p \in \mathbb{R}$ tels que $u = \sum_{i=1}^p \lambda_i e_i$. Comme φ est linéaire et F stable par combinaison linéaire

$$\varphi(u) = \sum_{i=1}^{p} \lambda_i \underbrace{\varphi(e_i)}_{\in F} \in F.$$

L'espace F est donc stable par $\phi.$ La réciproque est évidente.

• Si F est un sous-espace vectoriel stable par ϕ , on peut définir la restriction de ϕ à F par

$$\varphi|_{F}: \left\{ \begin{array}{ccc} F & \rightarrow & F \\ u & \mapsto & \varphi(u). \end{array} \right.$$

L'application $\phi|_F$ définit alors un endomorphisme de F.

Exercice 34

 \diamondsuit Soient $φ ∈ \mathscr{L}(E)$ injectif et F un sous-espace vectoriel de dimension finie de E stable par φ. Montrer que l'endomorphisme induit par φ sur F est un isomorphisme.

p. 46

CA34

Exercice 35

♦ Soient $a, b \in \mathbb{N}^*$. Soit Φ l'application linéaire de $\mathbb{R}[x]$ vers lui-même définie par

$$\Phi(P)(x) = (a+bx)P(x) + x(1-x)P'(x).$$

- **1.** Justifier qu'il existe un entier n unique tel que $\mathbb{R}_n[x]$ soit stable par Φ .
- 2. Soit Φ_n , l'endomorphisme restreint à $\mathbb{R}_n[x]$. Écrire la matrice A de Φ_n dans la base canonique de $\mathbb{R}_n[x]$.

CA35

p. 46

Exercices

- Les exercices classiques à bien maîtriser sont repérés par 🔌 .
- Les questions avec indications sont marquées par \triangleleft .
- Enfin, l'icône ci-contre signifie que le code est disponible sur le site de classe dans l'onglet informatique. Dans la version numérique, il suffit de cliquer dessus pour ouvrir le lien.

Révisions en algèbre linéaire

Exercice 36. Vrai ou faux?

CA36

- 1. La somme de deux matrices inversibles est inversible.
- 2. Toute matrice carrée est la somme de deux matrices inversibles.

» Solution p. 46

Exercice 37. \blacklozenge Soient E un espace vectoriel de dimension 2 et $f \in \mathcal{L}(E)$ tel que $f \circ f = -\operatorname{id}_E$. Soit u, un vecteur non nul de E.

CA37

- 1. Est-ce que f est injective? surjective?
- **2.** Justifier que (u, f(u)) est une base de E.
- **3.** Donner la matrice de f dans cette base.
- **4.** $\leftrightarrow \leftrightarrow$ Généraliser le résultat précédent où E est de dimension 2*n*.

≫ Solution p. 46

Exercice 38.
$$\spadesuit \spadesuit$$
 On pose $A = \begin{bmatrix} -4 & 0 & 3 \\ 0 & 2 & 0 \\ -10 & 0 & 7 \end{bmatrix}$.

CA38

1. 🕰 En examinant les instructions en Python suivantes, calculer les puissances de A.

2. \P Peut-on trouver $B \in \mathcal{M}_3(\mathbb{R})$ telle que $B^2 = A$?

Exercice 39. \blacklozenge Peut-on trouver deux matrices A, B $\in \mathcal{M}_n(\mathbb{R})$ telles que AB – BA = I_n?

4 CA39

≫ Solution p. 47

Exercice 40. \blacklozenge Liberté d'une famille d'applications de $\mathscr{A}(\mathbb{R}, \mathbb{R})$

CA40

On pose

$$f_1: x \in \mathbb{R} \mapsto \cos(x), \quad f_2: x \in \mathbb{R} \mapsto 1 + \sin(x^2) \quad \text{et} \quad f_3: x \in \mathbb{R} \mapsto \cos(2x).$$

1. Donner les développements limités de f_1 , f_2 et f_3 en 0 à l'ordre 4.

2. En déduire que la famille (f_1, f_2, f_3) est libre.

≫ Solution p. 47

Exercice 41. ♦ **Sample 1** Rang et composition

CA41

Soient E, F, G trois espaces vectoriels de dimension finie, $\phi \in \mathcal{L}(E,F)$ et $\psi \in \mathcal{L}(F,G)$.

- 1. Montrer que $rg(\psi \circ \varphi) \leq min\{rg(\psi); rg(\varphi)\}.$
- **2.** Justifier que $\text{Im}(\phi + \psi) \subset \text{Im}(\phi) + \text{Im}(\psi)$. Puis, en déduire que $\text{rg}(\phi + \psi) \leq \text{rg}(\phi) + \text{rg}(\psi)$.
- **3.** a) Pour tout isomorphisme $\varphi \in \mathcal{L}(E', E)$, on a $\operatorname{rg}(f \circ \varphi) = \operatorname{rg}(f)$.
 - **b)** Pour tout isomorphisme $\psi \in \mathcal{L}(F, F')$, on a $rg(\psi \circ f) = rg(f)$.

≫ Solution p. 47

Exercice 42. $\spadesuit \spadesuit$ Soient E un espace vectoriel de dimension finie et $f, g \in \mathcal{L}(E)$ tels que

CA42

CA43

$$E = \operatorname{Im} f + \operatorname{Im} g$$
 et $E = \operatorname{Ker} f + \operatorname{Ker} g$.

Montrer que ces sommes sont directes.

≫ Solution p. 48

Exercice 43. ◆ On définit les matrices et l'application

$$A = \left[\begin{array}{cc} 2 & 1 \\ 5 & 3 \end{array} \right], \quad B = \left[\begin{array}{cc} 4 & 1 \\ 7 & 2 \end{array} \right] \in \mathscr{M}_2(\mathbb{R}) \quad \text{et} \quad \phi : \left\{ \begin{array}{cc} \mathscr{M}_2(\mathbb{R}) & \to & \mathscr{M}_2(\mathbb{R}) \\ M & \mapsto & AMB. \end{array} \right.$$

- 1. Vérifier que φ est linéaire.
- **2.** Justifier que φ est une application bijective et exprimer φ^{-1} .
- 3. Montrer que la famille $\mathscr{B}=(I_2,A,B,AB)$ est une base de $\mathscr{M}_2(\mathbb{R})$, déterminer la matrice de ϕ dans \mathscr{B} . Pour simplifier les calculs, on pourra utiliser ce calcul Python:

>> Solution p. 48

```
import numpy as np
A=np.array([[2,1],[5,3]])
print (np.dot(A,A)-5*A+np.eye(2))
B=np.array([[4,1],[7,2]])
print(np.dot(B,B)-6*B+np.eye(2))
```

>>> # script executed [[0. 0.] [[0. 0.]

Exercice 44. • • Soit φ un endomorphisme d'un espace vectoriel E de dimension n. On suppose que φ est de rang 1.

CA44

- 1. Montrer qu'il existe un réel λ tel que $\varphi^2 = \lambda \varphi$. Pour rappel φ^2 désigne $\varphi \circ \varphi$.
- 2. \P Montrer que si $\lambda \neq 1$, φ id_E est bijective et exprimer son application réciproque à l'aide de φ .

≫ Solution p. 49

Exercice 45. ** Exemples de formes linéaires

CA45

 $\varphi_1(P) = P(1), \quad \varphi_2(P) = P(0), \quad \varphi_3(P) = P(-1) \quad \text{ et } \quad \psi(P) = \int_{-1}^{1} P(t) dt.$ Pour tout $P \in \mathbb{R}_2[x]$, posons :

- 1. Justifier que φ_1 et ψ sont des formes linéaires de $\mathbb{R}_2[x]$. On admet que φ_2 et φ_3 sont elles-aussi des formes linéaires.
- **2.** Justifier que (ϕ_1, ϕ_2, ϕ_3) est une base de $\mathcal{L}(\mathbb{R}_2[x], \mathbb{R})$.
- **3.** a) Justifier l'existence de $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$ tels que pour tout $P \in \mathbb{R}_2[x]$,

$$\int_{-1}^{1} P(t)dt = \lambda_1 P(1) + \lambda_2 P(0) + \lambda_3 P(-1).$$

b) Préciser les valeurs de λ_1 , λ_2 et λ_3 .

Exercice 46. *** Égalité de Bézout

CA46

Soient $a_1, a_2, ..., a_p, b_1, b_2, ..., b_q$ p+q réels distincts. On considère les polynômes

$$A(x) = \prod_{i=1}^{p} (x - a_i)$$
 et $B(x) = \prod_{i=1}^{q} (x - b_i)$.

On note n=p+q-1 et $E=\mathbb{R}_n[x]$ l'espace vectoriel des polynômes de degré inférieur ou égal à n. On introduit de plus,

$$F_A = \big\{ P \in E \,|\, A \text{ divise } P \big\} \quad \text{ et } \quad F_B = \big\{ P \in E \,|\, B \text{ divise } P \big\}.$$

- 1. Montrer que F_A et F_B sont des sous-espaces vectoriels de E. Préciser les dimensions de F_A et F_B.
- **2.** Vérifier que $E = F_A \oplus F_B$.
- 3. En déduire qu'il existe deux polynômes U et V tels que UA + VB = 1.

≫ Solution p. 50

Exercice 47. $\spadesuit \spadesuit$ Soit $n \in \mathbb{N}^*$. On considère, pour $k \in [[0, n]]$, les polynômes P_k définie par $P_k(x) = (1 - x)^k x^{n - k}$.

- 1. Préciser le degré de P_k .
- **2.** Soit $k \in [[0, n]]$. Simplifier $\sum_{i=0}^{k} {k \choose i} P_i$.
- **3.** En déduire que $(P_k)_{0 \le k \le n}$ est une base de $\mathbb{R}_n[x]$.
- **4. a)** Montrer que pour $0 \le i \le n$, $\sum_{k=i}^{n} {k \choose i} = {n+1 \choose i+1}$.
 - **b**) Déterminer les coordonnées du polynôme $Q(x) = \sum_{j=0}^{n} x^{j}$ dans la base $(P_k)_{0 \le k \le n}$.

≫ Solution p. 50

Exercice 48. * Produit cartésien et formule de Grassmann

CA48

CA47

Soient F, G deux espace vectoriels. F × G est un espace vectoriel pour les lois définies par : pour tout $\alpha \in \mathbb{R}$ et tous (x_1, x_2) , $(y_1, y_2) \in F \times G$

$$(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2), \quad \alpha(x_1, x_2) = (\alpha x_1, \alpha x_2).$$

1. Justifier que si F et G sont de dimensions finies, alors $F \times G$ est de dimension finie et

$$\dim(F \times G) = \dim(F) + \dim(G)$$
.

- **2. a)** Vérifier que l'application $f: F \times G \rightarrow E$, $(x, y) \mapsto x + y$ est linéaire.
 - **b)** Déterminer Im(f) et Ker(f).
 - c) Retrouver la formule de Grassmann

$$\dim(F + G) = \dim(F) + \dim(G) - \dim(F \cap G).$$

≫ Solution p. 51

Exercice 49. ***

d'après oraux ESCP 2001 # CA49

Soit $E = \mathcal{M}_n(\mathbb{R})$ l'espace vectoriel des matrices carrées d'ordre n ($n \ge 2$). On note S (respectivement A) le sous-espace vectoriel de E formé des matrices symétriques, (respectivement antisymétriques).

Soient (α, β) deux réels donnés non nuls, et f l'application définie sur E par, pour tout $M \in E$: $f(M) = \alpha M + \beta^t M$

- **1.** Montrer que $E = S \oplus A$.
- **2.** Exprimer f à l'aide de p et q, où q = I p, quand p désigne le projecteur sur S de direction A.
- **3.** Exprimer $f^2 = f \circ f$ en fonction de f et de I.
- **4.** Déterminer une condition nécessaire et suffisante pour que f soit un automorphisme de E. Exprimer alors f^{-1} en fonction de f et de I.
- **5.** Exprimer, pour tout $k \in \mathbb{N}^*$, f^k en fonction de p, q, α , β . En déduire la puissance $k^{\text{ème}}$ de la matrice :

$$A = \left[\begin{array}{cccc} \alpha + \beta & 0 & 0 & 0 \\ 0 & \alpha & \beta & 0 \\ 0 & \beta & \alpha & 0 \\ 0 & 0 & 0 & \alpha + \beta \end{array} \right].$$

Exercice 50. \spadesuit Soient $A \in \mathcal{M}_{3,2}(\mathbb{R})$, $B \in \mathcal{M}_{2,3}(\mathbb{R})$ telles que

CA51

$$AB = \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

Soient (e_1, e_2, e_3) la base canonique de \mathbb{R}^3 et f, g les endomorphismes canoniquement associés à A et B.

- 1. Vérifier que $g(e_2)$ et $g(e_3)$ forment une base de \mathbb{R}^2 . Notons \mathscr{C} cette base.
- **2.** Expliciter la matrice de $g \circ f$ dans cette nouvelle base.
- 3. Calculer BA.

≫ Solution p. 52

Le cas nilpotent

Exercice 51. ** Variante sur les endomorphismes nilpotents

CA52

Soit φ un endomorphisme sur E de dimension 4 tel que $\varphi^5 = 0_{\mathscr{L}(E)}$.

- 1. Justifier que $\varphi^4 = 0_{\mathscr{L}(E)}$.
- **2.** Dans la suite, on suppose de plus que $\phi^3 \neq 0_{\mathscr{L}(E)}$. Peut-on avoir $\text{Ker}\varphi = \text{Ker}\varphi^2$? Même question avec $\text{Ker}\varphi^2 = \text{Ker}\varphi^3$.
- 3. En déduire que dim $Ker \phi^3 = 3$.
- 4. Conclure en montrant qu'il existe une base dans laquelle les coefficients de la matrice de φ dans cette base sont nuls partout, sauf sur la deuxième diagonale inférieure.

≫ Solution p. 52

Exercice 52. \leftrightarrow Soient E un espace vectoriel de dimension finie $n \ge 2$ et φ un endomorphisme de E tel que :

CA53

$$\exists p \in \mathbb{N}^*, \quad \varphi^p = 0_{\mathscr{L}(E)} \quad \text{et} \quad \varphi^{p-1} \neq 0_{\mathscr{L}(E)}.$$

On dit que φ est un endomorphisme nilpotent d'indice p.

- $\operatorname{Ker}(\varphi) \subset \operatorname{Ker}(\varphi^2) \subset ... \subset \operatorname{Ker}(\varphi^p) = \operatorname{E}.$ 1. Montrer que Vérifier que toutes ces inclusions sont strictes.
- 2. Soit \mathscr{B}_1 une base de $\mathrm{Ker}(\varphi)$. On la complète en une base \mathscr{B}_2 de $\mathrm{Ker}(\varphi^2)$. On continue le procédé en complétant, pour tout entier $k \in [[0, p-1]]$ une base \mathcal{B}_k de $\operatorname{Ker}(\varphi^k)$ en une base \mathcal{B}_{k+1} de $\operatorname{Ker}(\varphi^{k+1})$. On trouve ainsi une succession de bases $\mathscr{B}_1 \subset \mathscr{B}_2 \subset ... \subset \mathscr{B}_p$, où \mathscr{B}_p est une base de E.

Donner la forme de la matrice de φ dans la base \mathscr{B}_p . Préciser sa diagonale.

3. En déduire que si $A \in \mathcal{M}_n(\mathbb{R})$ est telle qu'il existe $p \in \mathbb{N}$ tel que $A^p = 0_n$, alors A est de trace nulle. Que dire de $\operatorname{Tr}(A^k)$ pour tout $k \in \mathbb{N}^*$?

>> Solution p. 52

Exercice 53. \Leftrightarrow Soient E un espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$.

CA54

On suppose que, pour tout $u \in E$, il existe un entier $n_u \in \mathbb{N}$ tel que $f^{n_u}(u) = 0_E$. Montrer qu'il existe un entier n tel que $f^n = 0_{\mathscr{L}(E)}$.

Exercice 54. *** Sommutant d'une matrice nilpotente

CA59

Soit $A \in \mathcal{M}_3(\mathbb{R})$ une matrice non nulle telle que $A^2 = 0$.

1. A Montrer que la matrice A est semblable à la matrice

$$B = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

2. \P En déduire la dimension du sous-espace vectoriel \mathscr{C}_B et celle de $\mathscr{C}_A = \{ M \in \mathscr{M}_3(\mathbb{R}) \mid AM = MA \}$.

≫ Solution p. 53

Compléments de deuxième année

Exercice 55. \blacklozenge Soit $\varphi \in \mathcal{L}(E)$.

CA55

Démontrer que les sous-espaces vectoriels $Ker(\phi)$, $Ker(\phi-id_E)$ et $Ker(\phi+id_E)$ sont en somme directe.

>> Solution p. 54

Exercice 56. \blacklozenge Somme directe dans $\mathbb{R}_n[x]$

CA56

Soit $n \in \mathbb{N}^*$ fixé. Pour tout $i \in [[0; n]]$, on définit $F_i = \{P \in \mathbb{R}_n[x] \mid \forall j \in [[0; n]] \setminus \{i\}, P(j) = 0\}$.

1. Justifier que pour tout $i \in [[0; n]]$,

$$F_i = \text{Vect}(L_i)$$
 où $L_i = \prod_{\substack{j=0 \ j \neq i}}^n (x - j).$

2. Vérifier que la somme $F_0 + F_1 + \cdots + F_n$ est directe, puis l'égalité $\bigoplus_{i=0}^n F_i = \mathbb{R}_n[x]$.

≫ Solution p. 54

Exercice 57. \blacklozenge Soit A un élément donné de $\mathcal{M}_2(\mathbb{R})$ non colinéaire à I₂. On note φ l'endomorphisme de \mathbb{R}^2 dont A est la matrice #CA57 associée dans la base canonique (e_1, e_2) de \mathbb{R}^2 On pose : $w = e_1 + e_2$.

- 1. En considérant les trois vecteurs e_1 , e_2 et w, montrer qu'il existe au moins un élément non nul x de \mathbb{R}^2 tel que la famille $(x, \varphi(x))$ soit une base de \mathbb{R}^2 .
- 2. Montrer que la matrice M associée à φ dans la base $(x, \varphi(x))$ est de la forme

$$\begin{bmatrix} 0 & a \\ 1 & b \end{bmatrix}$$

où a et b sont deux réels, indépendants de la base $(x, \varphi(x))$, que l'on exprimera en fonction de det(A) et Tr(A). On pourra admettre que le déterminant est un invariant de similitude.

3. En déduire que la matrice A est semblable à sa transposée t A.

≫ Solution p. 54

Exercice 58. \leftrightarrow Soit φ un endomorphisme de \mathbb{R}^n de rang 1.

CA50

1. On suppose que $\operatorname{Im}(\varphi) \cap \operatorname{Ker}(\varphi) \neq \{0_{\mathbb{R}^n}\}$. Justifier que $\operatorname{Im}(\varphi) \subseteq \operatorname{Ker}(\varphi)$, puis qu'il existe une base de \mathbb{R}^n dans laquelle φ est représenté par la matrice :

2. On suppose que $\operatorname{Im}(\varphi) \cap \operatorname{Ker}(\varphi) = \{0_{\mathbb{R}^n}\}$. Démontrer qu'il existe une base de \mathbb{R}^n dans laquelle φ est représente par la matrice :

- 3. En déduire que dans $\mathcal{M}_n(\mathbb{R})$ deux matrices de rang 1 sont semblables si et seulement si elles ont la même trace.
- 4. Bonus cube. À quelle condition sur sa trace une matrice de rang 1 est diagonalisable?

 \gg Solution p. ??

Exercice 59. ◆ **Sample 1** Trace d'un endomorphisme

CA58

Soient $\varphi \in \mathcal{L}(E)$ avec E de dimension finie et \mathscr{B} une base de E. On définit la trace de φ par

$$Tr(\varphi) = Tr(Mat_{\mathscr{B}}(\varphi)).$$

- 1. \triangleleft Justifier que la trace de φ ne dépend pas du choix de la base.
- 2. Exemples
 - a) \P Soit $n \in \mathbb{N}^*$. Calculer la trace de φ où $\varphi : P \in \mathbb{R}_n[x] \mapsto P P' \in \mathbb{R}_n[x]$.
 - **b)** \P On pose $\varphi : A \in \mathcal{M}_n(\mathbb{R}) \mapsto {}^t A \in \mathcal{M}_n(\mathbb{R})$.
 - i) Justifier que le sous-espace des matrices symétriques de taille (n,n) (noté \mathcal{S}_n) et celui des matrices antisymétriques (noté \mathcal{S}_n) sont supplémentaires dans $\mathcal{M}_n(\mathbb{R})$. Préciser les dimensions.
 - ii) En déduire la trace de φ .
 - c) 4 Soit *p* un projecteur de E de dimension finie. Vérifier que la trace d'un projecteur d'un espace vectoriel de dimension finie est égale à son rang.

≫ Solution p. 55

Exercice 60. $\bullet \bullet \bullet$ Pour tout $A \in \mathcal{M}_n(\mathbb{R})$, on définit l'application $\Phi_A : \mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$ par $\Phi_A(X) = \text{Tr}(AX)$.

CA60

- 1. Montrer que Φ_A est une forme linéaire.
- 2. \P Soit φ une forme linéaire sur $\mathcal{M}_n(\mathbb{R})$, justifier qu'il existe $A \in \mathcal{M}_n(\mathbb{R})$ telle que $\varphi = \Phi_A$.

≫ Solution p. 55

Exercice 61. 💠 🐿 Base de polynômes de Lagrange

CA61

Soient $a_0, a_1, ..., a_n, n+1$ réels deux à deux distincts. Notons $\mathcal{B} = (1, x, ..., x^n)$ la base canonique de $\mathbb{R}_n[x]$ et $(e_0, ..., e_n)$, la base canonique de \mathbb{R}^{n+1} .

1. A Montrer que l'application suivante est un isomorphisme :

$$\phi : \left\{ \begin{array}{ccc} \mathbb{R}_n[x] & \to & \mathbb{R}^{n+1} \\ \mathbb{P} & \mapsto & \left(\mathbb{P}(a_0), \dots, \mathbb{P}(a_n) \right). \end{array} \right.$$

2. Pour tout $i \in [[0;n]]$, on définit le polynôme $L_i = \varphi^{-1}(e_i)$. Montrer que la famille $\mathscr{C} = (L_0,...,L_n)$ est une base $de \mathbb{R}_n[x]$ et que

$$\forall P \in \mathbb{R}_n[x], \qquad P = \sum_{i=0}^n P(a_i) L_i.$$

3. Préciser $P_{\mathscr{B},\mathscr{C}}^{-1}$. Pour rappel, $P_{\mathscr{B},\mathscr{C}}$ désigne la matrice de passage de la base \mathscr{B} à la base \mathscr{C} .

≫ Solution p. 56

Exercice 62. *** Secteurs cycliques et espaces stables

CA62

Soient E, un espace vectoriel de dimension finie $n \ge 2$ et $\varphi \in \mathcal{L}(E)$. On dit qu'un vecteur $u \in E$ est *cyclique* pour φ s'il existe un entier m non nul tel que la famille $\mathcal{B}_{u,m} = \left(u, \varphi(u), \varphi^2(u), \ldots, \varphi^{m-1}(u)\right)$ soit une famille génératrice de E. *Pour rappel*, $\varphi^i(u) = \varphi \circ \varphi \circ \ldots \circ \varphi(u)$ *avec i compositions*.

- 1. Comparer m et n.
- 2. \P Montrer que si u est cyclique pour φ , alors $\mathscr{B}_{u,n}$ est une base de E.
- 3. Application

Dans la suite, on suppose que les seuls sous-espaces vectoriels stables par ϕ sont $\{0_E\}$ et E.

- a) \P Justifier qu'il existe $m \in \mathbb{N}$ tel que la famille $\mathscr{B}_{u,m}$ soit libre mais $\mathscr{B}_{u,m+1}$ n'est pas libre.
- **b)** Vérifier que Vect($\mathscr{B}_{u,m}$) est un espace stable par φ .
- c) En déduire que tout vecteur $u \in E \setminus \{0_E\}$ est cyclique.
- d) \triangleleft On note $a_0, a_1, \ldots, a_{n-1}$ les coordonnées de $\varphi^n(u)$ dans la base $\mathscr{B}_{u,n}$. Justifier que

$$\varphi^{n} = a_{0} \cdot id_{F} + a_{1} \cdot \varphi + ... + a_{n-1} \cdot \varphi^{n-1}$$
.

e) Donner la matrice de φ dans la base $\mathcal{B}_{u,n}$ à l'aide des réels a_i .

 \gg Solution p. 57

Exercice 63. \blacklozenge Soient $A \in \mathcal{M}_2(\mathbb{R})$ non nulle telle que Tr(A) = 0 et ϕ son endomorphisme canoniquement associé.

CA63

- **1.** \P Justifier qu'il existe $x \in \mathbb{R}^2$ tel que la famille $(x, \varphi(x))$ soit libre.
- 2. 🗣 En déduire que A est semblable à une matrice de diagonale nulle.

≫ Solution p. 58

Exercice 64. \blacklozenge On se place dans \mathbb{R}^3 et on note \mathscr{C} , la base canonique. On considère \mathscr{P} le plan vectoriel d'équation 2x-y-z=0, #CA64 la droite vectorielle $\mathscr{D} = \operatorname{Vect}(u)$ où u=(1,-1,1).

- **1.** Vérifier que $\mathbb{R}^3 = \mathcal{P} \oplus \mathcal{D}$.
- Soit B, une base adaptée à la décomposition précédente et p le projecteur sur P parallèlement à D. Préciser la matrice M = Mat_B(p).
- **3.** Expliciter la matrice de passage entre \mathscr{C} et \mathscr{B} . En déduire la matrice $\mathrm{Mat}_{\mathscr{C}}(p)$.

≫ Solution p. ??

Exercice 65. $\diamond \diamond \diamond \diamond$ Soient $E_1, ..., E_n$ des sous-espaces vectoriels de E tels que

CA65

$$E_1 \oplus \cdots \oplus E_n = E$$
.

On note p_i le projecteur sur E_i parallèlement à $\bigoplus_{j \neq i} E_j$. Montrer que $p_i \circ p_j = 0_{\mathscr{L}(E)}$ si $i \neq j$ et que

$$p_1 + \cdots + p_n = \mathrm{id}_{\mathrm{E}}$$
.

≫ Solution p. ??

Exercice 66. *** 🖎

d'après l'oral HEC # CA67

Soit u un endomorphisme non nul de \mathbb{R}^3 .

1. On suppose que $u^2 = 0$. Montrer qu'il existe une base de \mathbb{R}^3 dans laquelle la matrice de u est

$$\mathbf{A} = \left[\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right].$$

Déterminer alors les sous-espaces vectoriels F de \mathbb{R}^3 stables par u, c'est à dire tels que $u(F) \subset F$.

2. On suppose que $u^2 \neq 0$ et $u^3 = 0$. Montrer qu'il existe une base de \mathbb{R}^3 dans laquelle la matrice de u est

$$B = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right].$$

Déterminer alors les sous-espaces vectoriels de \mathbb{R}^3 stables par u.

≫ Solution p. ??

Python

Exercice 67. ♦

Écrire un programme Python qui compte le nombre de matrices non inversibles parmi les matrices de tailles (25, 25) :

$$M(a,b) = \begin{bmatrix} a & b & \cdots & \cdots & b \\ b & a & \ddots & \cdots & b \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & a & b \\ b & b & \cdots & b & a \end{bmatrix} \quad \text{avec} \quad -50 \le a, b \le 50.$$

Indication. On pourra utiliser les commandes **ones([n,p])** qui renvoie une matrice de $\mathcal{M}_{n,p}(\mathbb{R})$ ne contenant que des 1, **eye(n)** pour la matrice I_n et **np.linalg.matrixrank(A)** pour le rang de la matrice A.

≫ Solution p. 58

Exercice 68. * Antitransposée et matrices antidiagonales

≫ Solution p. 58

1. a) Compléter le programme suivant qui prend en argument une matrice A et renvoie sa transposée.

```
def transpo(A):
    [n,p]=np.shape(A)
    B=np.zeros(...)
    for i in ...:
        for j in ...:
        B[...,..]=
    return B
```

b) On définit l'antitransposée d'une matrice carrée A par la matrice C obtenue par symétrie par rapport à l'antidiagonale. Par exemple,

$$A_0 = \left[\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array} \right] \quad \text{et} \quad C_0 = \left[\begin{array}{ccc} 9 & 6 & 3 \\ 8 & 5 & 2 \\ 7 & 4 & 1 \end{array} \right].$$

Comment modifier le programme précédent pour obtenir un nouveau programme qui prend en argument une matrice A et qui renvoie son antitransposée.

2. Une matrice T est dite antidiagonale si les coefficients situés en dehors de l'antidiagonale sont nuls. Par exemple,

$$T_0 = \left[\begin{array}{ccc} 0 & 0 & 3 \\ 0 & 4 & 0 \\ -2 & 0 & 0 \end{array} \right] \quad \text{ et } \quad P_3 = \left[\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array} \right].$$

À l'aide de Python, que peut-on conjecturer sur les puissances d'une matrice antidiagonale? *Indication. On pourra utiliser la commande* np.dot(A,B) *pour faire le produit* AB.

- 3. Prouver votre résultat. Indication. On pourra considérer TP_n où T est une matrice antidiagonale de taille (n,n) et P_n est la matrice construite sur le même modèle que P_3 .
- 4. À quelle condition sur ses coefficients, une matrice antidiagonale est inversible?

Indications et solutions

A Indication de l'exercice 1

p. 2

Vérifier que E_2 , E_7 , E_8 et E_{10} sont les seuls espaces vectoriels.

Q Indication de l'exercice 2

p. 2

Soit $u_1 \in E_1 \setminus E_2$. En considérant $u_1 + v \in E_1 \cup E_2$, montrer que pour tout vecteur $v \in E_2$, $v \in E_1$.

Indication de l'exercice 3

p. 3

- **2.** Il faut et il suffit que P soit de degré n.
- **4.a)** Utiliser les croissances comparées pour justifier que la famille est libre.
- **4.b**) Utiliser un argument de dérivabilité. La fonction f_i n'est pas dérivable en i.

Indication de l'exercice 8

p. 7

2. Justifier que pour tout $P \in \mathbb{R}_{n-1}[x]$, on a

$$P = \sum_{i=1}^{n} P(a_i) L_i.$$

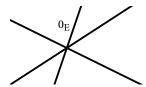
A Indication de l'exercice 10

p. 8

1. Justifier que G est de dimension n-1 en exhibant une base. On pourra supposer que $a_n \neq 0$.

♦ Indication de l'exercice 11

p. 9



♦ Indication de l'exercice 13

p. 11

Déterminer une base (w_1, w_2) de F. Vérifier ensuite que la famille (u, v, w_1, w_2) est une base de \mathbb{R}^4 . Conclure avec la proposition précédente.

4 Indication de l'exercice 14

p. 12

Adapter le schéma de l'indication 12 ci-dessus dans \mathbb{R}^3 .

№ Indication de l'exercice 15

p. 12

2. Vérifier que

 $\dim V + \dim H = \mathbb{R}_3[x]$ et $V \cap H = \{0\}$.

3. Il faut justifier que l'on peut retirer les parenthèses

$$(F \oplus G) \oplus H = F \oplus G \oplus H.$$

Q Indication de l'exercice 17

p. 15

Pour rappel:

Soit $f: E \rightarrow F$. Les propriétés suivantes sont équivalentes :

- → f est bijective.
- → Il existe une application $g : F \to E$ telle que : $f \circ g = id_F$ et $g \circ f = id_E$.

Dans ce cas, $g = f^{-1}$.

Q Indication de l'exercice 18

p. 15

- Donner la matrice de l'application dans la base canonique puis conclure avec le déterminant.
- **2.b**) Remarquer que ϕ est bijective avec $\phi^{-1}: P \mapsto ...$

♦ Indication de l'exercice 27

p. 20

Tout est vrai!

♦ Indication de l'exercice 28

p. 21

On pourra regarder les matrices semblables à I_n et les matrices de même rang que I_n .

♦ Indication de l'exercice 38

p. 25

- **1.** Écrire A sous la forme $A = PDP^{-1}$ avec D diagonale. Exprimer ensuite A^p à l'aide de P, D et P^{-1}
- **2.** Partir d'une matrice S telle que $S^2 = D$.

4 Indication de l'exercice 39

p. 25

Pensez à la trace.

4 Indication de l'exercice 42

o. 26

Écrire les formules du rang pour f et g ainsi que la formule de Grassmann avec Im f + Im g et Ker f + Ker g.

4 Indication de l'exercice 44

p. 26

2. Exprimer l'application réciproque sous la forme $\alpha \phi + \beta id_E$.

4 Indication de l'exercice 57

p. 29

- **1.** Tester avec $x = e_1$, $x = e_2$ et enfin $x = e_1 + e_2$.
- **2.** Regarder la matrice de φ dans la base de \mathbb{R}^2 , $(x, \varphi(x))$.

№ Indication de l'exercice 59

p. 29

- **1.** Appliquer la formule de changement de base et la relation Tr(AB) = Tr(BA).
- **2.a**) Écrire la matrice de φ dans la base canonique de $\mathbb{R}_n[x]$.
- **2.b)i.** Vérifier que dim $\mathcal{S}_n = n(n+1)/2$ et dim $\mathcal{A}_n = n(n-1)/2$.
- **2.b)ii.** Écrire la matrice de l'application ϕ dans une base ${\mathscr B}$ adaptée à la décomposition

$$\mathscr{S}_n \oplus \mathscr{A}_n = \mathscr{M}_n(\mathbb{R}).$$

3.c) Raisonner par analyse-synthèse. Pour $u \in E$

$$u = \underbrace{p(u)}_{\in \operatorname{Im} p} + \underbrace{\left(u - p(u)\right)}_{\in \operatorname{Ker} p}$$

Q Indication de l'exercice 54

p. 28

- 1. Justifier l'existence de $v \in \text{Ker} \varphi \setminus \text{Im} \varphi$ et $w \in \mathbb{R}^3 \setminus \text{Ker} \varphi$. Montrer que la famille $(u, \varphi(w), w)$ est une base. Que dire de la matrice de φ dans cette base?
- **2.** Écrire $A = P^{-1}BP$. Justifier que $M \in \mathcal{C}_A$ si et seulement si $PMP^{-1} \in \mathcal{C}_B$. Que peut-on en déduire sur les dimensions de \mathcal{C}_R et \mathcal{C}_A ?

Calculer ensuite $\dim \mathscr{C}_B$ en déterminant les conditions sur les coefficients de

$$\mathbf{M} = \left[\begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right]$$

pour que $M \in \mathscr{C}_B$.

A Indication de l'exercice 60

p. 30

2. Pour tout couple $(i, j) \in [[1; n]]^2$, on pose $\Phi_{ij} = \Phi_{E_{ij}}$ Montrer que la famille (Φ_{ij}) est une base de l'espace vectoriel des formes linéaires sur $\mathcal{M}_n(\mathbb{R})$.

Utiliser ensuite la dimension de

$$\dim (\mathcal{L}(\mathcal{M}_n(\mathbb{R}), \mathbb{R}))$$

pour justifier que l'on obtient une base. Conclure.

№ Indication de l'exercice 61

p. 30

1. Par un argument de dimension, il suffit de montrer que ϕ est injective. Montrer ensuite que si $P \in \text{Ker} \phi$, P est nécessairement le polynôme nul.

Q Indication de l'exercice 62

p. 30

- 2. Procéder par récurrence sur la propriété : la famille $\mathcal{B}_{u,k}$ est une famille libre (avec $k \in [[1;n]]$).
- 3.a) Que dire de la liberté de la famille

$$(id_E, \varphi, \ldots, \varphi^p)$$

avec $p > \dim \mathcal{L}(E)$?

3.d) Vérifier l'égalité pour tout vecteur de la base $\mathcal{B}_{u,n}$.

Exercice 1

p. 2CA1

Non, E₁ n'est pas un e.v.

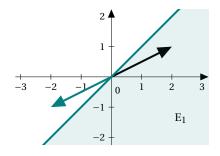
Par exemple, E_1 n'est pas stable par multiplication par un réel.

$$(2,1) \in E_1$$
,

mais

$$-1 \cdot (2,1) = (-2,-1) \notin E_1$$
.

Graphiquement, E₁ est un demi-plan.



- Afin de prouver que E_2 est un espace vectoriel, on peut prouver que c'est un sous-espace vectoriel de \mathbb{R}^3 . Pour cela, on vérifie que E_2 est non vide et stable par combinaison linéaire.
- \rightarrow E₂ est non vide car (0,0,0) ∈ E₂.
- → Soient $\lambda \in \mathbb{R}$, $X = (x, y, z) \in E_2$ et $X' = (x', y', z') \in E_2$. Par définition de E_2 , on a 2x + z = y et 2x' + z' = y'.

Il vient

$$X + \lambda X' = (x, y, z) + \lambda (x', y', z') = (x + \lambda x', y + \lambda y', z + \lambda z').$$

Puis

$$2(x + \lambda x') + (z + \lambda z') = (2x + z) + \lambda(2x' + z') = y + \lambda y'.$$

C'est-à-dire.

$$X + \lambda X' \in E_2$$
.

En conclusion, E_2 est sous-espace vectoriel de \mathbb{R}^3 , puis

E₂ est un espace vectoriel.

• E₃ n'est pas un espace vectoriel,

puisque l'élément neutre pour addition n'appartient pas à F2

$$(0,0,0) \notin E_3$$
 car $0-0 \neq 2$.

• Non, E₄ n'est pas un espace vectoriel.

Il n'est pas stable par somme. Par exemple,

$$X = (1, 1, 0) \in E_4$$
 car $1^2 + 0^2 = 1$

et
$$X' = (-1, 1, 0) \in E_4$$
 car $(-1)^2 + 0^2 = 1$.

Par contre, $X + X' = (0, 1, 0) \notin E_3$ car $0^2 + 0^2 \neq 1$.

• Non, E₅ n'est pas un espace vectoriel.

Il n'est pas stable par somme. Par exemple $(1,1,0) \in E_5$, $(0,0,1) \in E_5$ mais $(1,1,1) \notin E_5$.

• E₆ n'est pas un espace vectoriel.

Le polynôme nul $x \in \mathbb{R} \to 0 \in \mathbb{R}$ n'est pas dans E_6 .

- Prouvons que E_7 est un sous-espace vectoriel du espace vectoriel $\mathscr{A}(\mathbb{R},\mathbb{R})$.
- → L'application nulle $x \in \mathbb{R} \mapsto 0 \in \mathbb{R}$ est clairement un élément de E_6 qui n'est donc pas vide.
- \rightarrow Soient f, g ∈ E₆ et λ ∈ \mathbb{R} . On a par définition de f + λg ,

$$(f + \lambda g)(3) = f(3) + \lambda g(3) = 0 + \lambda \cdot 0 = 0 \implies f + \lambda g \in \mathcal{E}_6.$$

 E_6 est stable par combinaison linéaire, c'est un sous-espace vectoriel de $\mathscr{A}(\mathbb{R},\mathbb{R})$. D'où

E₇ est un espace vectoriel.