ECG 2 4h

DS 1 -sujetA

THEMES : REVISIONS ALGEBRE, ANALYSE ECG1
ET VALEURS/VECTEURS PROPRES

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une
part importante dans l'appréciation des copies. Les candidats sont invités a encadrer dans la mesure du possible les résultats de leurs
calculs. Ils ne doivent faire usage d’aucun document : l'utilisation de toute calculatrice et de tout matériel électronique est interdite.

Probléeme A
Etude d’une suite de polynémes

Désignant par n un entier naturel, on se propose d’étudier I'ensemble des polyndmes a coefficients réels tels que :

n

VxeR, P(x)+P(x+l)=; (*)n

Pour cela, on considere I'application ® qui, a tout élément Q de R[x], associe le polynome ®(Q) défini par :
D(Q) () =Q(x) +Qx+1).

e Ftude de l'endomorphisme ®
1. Vérifier que @ est un endomorphisme de R[x].
a) Soit P € Ker ®. Pour tout entier m, que dire du signe de P(m)P(m + 1) ? En déduire que P est le polyndéme nul.
b) Qu’en déduire sur l'injectivité de ®?
3. Notant p un entier naturel, on désigne par @, la restriction de ® a Rp[x].
a) Montrer que @ est un endomorphisme de Rp, [x].
b) En déduire que ®p, puis ® sont des isomorphismes respectivement de Ry, [x] et R[x].
4. Onnote %) = (1,x,x%,..., xP) labase canonique de Ry, [x].
a) Vérifier que la matrice de ®, dans 98y, est une matrice triangulaire supérieure dont on précisera les termes diagonaux.
b) En déduire le spectre de ®p, puis celui de .

e Ftude de la famille de polynémes (Ep) nen
5. Soit n € N. Démontrer qu'’il existe un polyndme unique de R[x] vérifiant la relation (%) ;.
On le notera E;;. Justifier que E;, est de degré n.
6. Soit n € N. Vérifier que le polynome E/ | vérifie la relation (x),. En déduire que Ej, 1’ = Ej,.
7. a) Vérifier que E;;'(0) = E,—1(0), puis E;,” (0) = E;;—_2(0). Généraliser.

b) Justifier que
k

n X
En(x)= ) E,_x(0) o
k=0 :

8. En déduire que pour tout n €N,

" |E,_(0
21E,0) < Y, 21k

e-1
puis |Ej0)| s —.
k=1 2
e Calcul des polynémes Ey,

9. Montrer que

En(x) = (=1D)"Ep(1-x)

10. En déduire, que pour 7 pair strictement positif, la valeur de E;; (0) et E;; (1), ainsi que, pour »n impair, la valeur de E; (%]
11. Déterminer Eg, E; et Ep.
12. Plus généralement, expliquer comment calculer de proche en proche les polynémes E;;.
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Probléeme B

Etude d’une série de terme général sous forme intégrale
s

Pour tout entier naturel 7 non nul, on pose u;, = f ¢ xsin(nx)(cosx)" dx.
Le but du probléme est 1'étude de la nature de la série de terme général u;, et le calcul de sa somme.
Partie A
a) Soit x € R. Exprimer sin(2x) en fonction de cos(x) et de sin(x).

b) En déduire la valeur de u;.
Pour tout n € N*, on définit la fonction f;, par:

1-(1-0)" . *
—=—— si reR
VieR, 1= t
fu(® { n si =0
Montrer que, pour tout entier n € N*, la fonction f;, est continue sur R.
1
Pour tout n€ N*, on pose I, = f fn(ndt.
0
. n n (_l)k—l
Montrer que pour tout n € N*, In= Z _
k=1\k) ok
1
a) Pour tout k € N*, calculerf 1- l‘)k_l dr.
0 "
b) En déduire pour tout n € N*, I,= Z T
k=1
Montrer que
3 n(-1P+!
VpeN*, fzxsin(pr)dx=L
0 4p
En admettant que pour tout n € N*
™ (n
VxeR, ( )sin(pr) =2"sin(nx)(cos x)"
p=0\P
I L
conclure que Up = WI”'

Partie B
Soit x € [0; 1[. Soit ¢y la fonction définie sur R\ {1} par:
xX—t
VeeR\ {1}, (Px(t)zﬁ.

a) Justifier que pour tous x € [0; 1], ¢ € [0; x], 0<@x(t) < x.
Px(t) _ x—1 a

= +—.
1-t (1-02 1-t

b) Trouver un réel a tel que pour tous x € [0;1], £ € [0; x], on a

Soit & la fonction définie sur [0; 1] par: h(x) =—-In(1-x).
a) Expliciter les dérivées successives de h.
b) Démontrer que pour tous n € N*, x € [0; 1],
n k

h(x) = Z x—+Rn(x) avec Rn(x)zf
k=1 k 0

x )"
M dr.
1-¢
Montrer que pour tous n € N*, x€ [0;1[, 0<Ry(x)<-x"In(1-x).
k
Montrer que pour tout x € [0; 1], la série de terme général x? converge.

a) Soit n € N*. Montrer que

n
Vxel0;1,  (1-x Y LxF = h(x) —Rp(x) — 2"
k=1
b) En déduire que, pour tout x € [0;1[, la série de terme général I kxk converge et que
-In(1-x)

+00 k
Vxel0;1], I x" =
[0;1] k;k T

+
Conclure sur la convergence de la série de terme général u;. et calculer la valeur de Y u k-
k=1
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Probléme C
Valeurs propres d’'une matrice en croix

Dans ce probleme, n désigne un entier supérieur ou égal a 3.

Partie A - étude d’'une exemple

On suppose dans cette partie que n = 3 et on s'intéresse a la matrice M3 suivante :

01 0
Ms=| 1 1
01 0

25. Al'aide du code suivant, donner le spectre de M3.

import numpy as np

. . 3.04 * * * * * * * *
import numpy.linalg as al
2.81
=| M=np.array([[0,1,0],[1,1,1],[0,1,0]1]) 2.6
§ R=np.zeros (11)
=| L=np.arange(-5,6) 244
M| for i in range(11): 921
R[i]l=al.matrix_rank(M-L[il*np.eye(3))
plt.plot(L,R,’r*’) 2.0 i _* % * :
plt.show () -4 -2 0 2 4

26. Pour chacune des valeurs propres, donner une base du sous-espace propre associé.

Partie B - Généralisation

On revient au cas général ol n est un entier supérieur ou égal a 3 et on considére M, la matrice suivante :

01 0 0 -~ 0
1 1 1 1 - 1
01 0 0 -~ 0
Mp=f0 1 0 0 -~ 0
01 0 0 0

1 sii=2ousij=2
Plus formellement, M, = [miyj] \<i i<n avec: mj ;= 0 s
<i,j< sinon.

De plus, on note € = (ej,ey,..., ep) labase canonique de .4, 1 (R).

27. Préciser le rang de M. En déduire une premiere valeur propre de M.
28. Onposeeg] = 1,1,...,1]1 = e] + ez +--- + e;,. Montrer que (€1, e2) forme une base de 'image de M,,.
29. Montrer qu'un vecteur propre de M, associé a une valeur propre non nulle est nécessairement dans I'image de M;,.
30. Soient a et A deux réels.
Montrer que le vecteur €] + aey est vecteur propre de My, associé a la valeur propre A si et seulement si :

A=a+1 et A2—A-n+1=0.
31. a) Discuter, suivant les valeurs de ¢ réel, le nombre de solutions de I’équation suivante d’'inconnue réelle A :
A —A-t+1=0
b) En déduire que les deux autres valeurs propres de M, sont de la forme (1 + v4n —3)/2.

32. Montrer que toutes les valeurs propres de M; sont dans I'ensemble Z des entiers relatifs si et seulement si n est de la forme n =
1+r(r—1) ou r est un entier relatif.
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33. Quelles sontles trois premiéres valeurs de n = 3 pour lesquelles M, ne possede
que des valeurs propres appartenant a I’ensemble Z?
On pourra s'aider du graphe ci-contre obtenu avec

x=np.linspace(-3,4,100)
plt.plot(x,x*(x-1)+1)
plt.grid ()

plt.show ()

Editeur

34. Onsuppose que n=1+r(r —1) avec r entier supérieur ou égal a 2.
Déterminer les valeurs propres de M et donner une base de chaque sous-
espace propre de My,.

144

12 A

10 A

Partie C - Vérification avec python

On admet le résultat suivant :

THEOREME

Soit A une matrice de My, (R) de terme général (a; j). Pour chaque indice i € [[1; nl], on pose

Iiz{xE[Rl |a,~i—x|< Z |a,]‘}
Jj#i

Si A est une valeur propre de A,
alors A appartient a au moins un des intervalles];.

35. Alaide du résultat admis, justifier que si A est valeur propre de My, alors |A| < 7.

36. a) Ecrire un programme qui prend en argument 7 et construit la matrice M.

b) Adapter le code de la question 25 pour construire un programme python d’en-
téte test1(n), quirenvoie 1 si toutes les valeurs propres de M, sont entiéeres et

0 sinon.

37. a) Ecrire un programme python test2 qui prend en argument 7 et teste si 72 s’écrit

sous la forme 1+ r(r — 1) ol r est un entier.
b) Commenter le test ci-contre.

for n in range(3,15):
print (’n=’,n,’ résultats’, testl(n),test2(n))

Editeur

résultats
résultats
résultats
résultats
résultats
résultats
résultats
résultats
résultats
résultats
résultats
résultats

ol NoNooNoNoNN pNoNoRoN
ol NoNoNoRoNoN DN oNoNoN

Bonus Prouver le théoreme admis en montrant que le noyau de A — Al est réduit a {051} lorsque A n'appartient a aucun intervalle I;.

Y ’ EiNSTEIN
ALGEBRE

Le Chat, Geluck
—FIN -
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ECG 2 4h

DS 1 - sujet*

THEMES : REVISIONS ALGEBRE, ANALYSE ECG1
ET VALEURS/VECTEURS PROPRES

part importante dans Uappréciation des copies. Les candidats sont invités a encadrer dans la mesure du possible les résultats de leurs
calculs. Ils ne doivent faire usage d'aucun document : l'utilisation de toute calculatrice et de tout matériel électronique est interdite.

Probléeme A
Moyenne arithmético-géométrique et intégrales elliptiques

Partie A : lamoyenne M, ;,

Etant donnés deux réels a et b strictement positifs, on définit deux suites réelles (ay) ;=0 et (bn) n=0 par

an+bp
ans1 = ———
ap = a, bp=b et VneN, 2

bp+1 =V anbn.

1. Ecrire un programme python qui prend en arguments 7, 4, b et renvoie les termes ay, by.
Ci-dessous , les premiers termes avec a = 1000 et b = 0.0001

1000 - (] ® an

bn

800 -

600

400

200+

0 2 2 6 8
2. Montrer que pour tout n € N*, on a ap = by, ap+1 < an €t by = by
3. En déduire que les suites (ay) et (by) convergent vers une limite commune.
Cette limite commune s’appelle la moyenne arithmético-géométrique des réels a, b et sera notée M, p,.

e Estimation de l'erreur

4. Pour tout n €N, on pose ey, = a, — by,.
a) En considérant I'expression afl N

b) Endéduire que pourtout neN*,ona ep41 <e,2/(8by).

5. On définit la suite (1) ,en* par

ble, vérifier que ep4+1 = en2/(8an+2).

u; =In(e;) et VneNF¥, Ups1 =2Up —In(8by).

a) Donner une expression explicite de u; en fonction de n, e; et by .
b) Enjustifiant par récurrence que la suite de terme général u, —In(e,) est positive, montrer que pour tout n € N*, e, < ce™v2"
ol y et ¢ sont deux réels positifs que I'on exprimera en fonction de e; et b;.
6. Déduire de toute cette étude un programme python qui prend en arguments a, b et renvoie une approximation de M, 5, a 10~ 8-pres.
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10.

11.

12.

. Pour tous t € RY, u € RY, on pose f,, (1) =

Partie B

Pour tous a, b € R}, on pose

+o00o du
1(a, b) =f .
0 J@+ud) (2 +u?)

a) Justifier que l'intégrale I(a, b) est bien définie.

b) Calculer cette intégrale dans le cas particulier ou a = b.
a) Justifier que le changement de variable u = % (v - “—Ub
b) En déduire que I(aj, b1) =1(a, b), ol a; et by sont définis a la partie A.

Indication : on pourra établir que

) sur I'intégrale I(aj, by) est bien licite.

1 v2,  ab2
u2+u12:—(1/2+a2)(v2+b2) et u2+b12:—(1+—)
42 4

1
V2 + u?
Soit a € R} fixé.
Justifier que pour tous f1, 2, 51, $2 € [&; +00l, tout u € Ry

| fu (0] < fulo),

t 2 _ t 2
puis | fu(r) = fu(r2)| < |12—2|fu(0()3
4
et ensuite |fu(t1)fu (s1) — fu () fu (s2)| < fu% (‘tlz - t22| + ‘512 —522|J.

Justifier que pour tous a, @', b, b’ € [a; +o0], il existe un réel C, ne dépendant que de o, tel que
ll(a,b) - 1@, b)| < C-(|a? - a®| + |b? - b2
En généralisant la relation I(a, b) =1(ay, b1), montrer que pour tous a, b >0, on a

I(a,b) =

2Ma,b ’
a) Al'aide du changement de variable u = btan t, justifier que
/2 dr
I(a,b) = f .
0 \/(12 cos(f)? + b? sin(r)?

b) Proposer deux méthodes pour estimer numériquement l'intégrale précédente.

Probleme B
Sommes de Césaro, matrices stochastiques et périodiques

Dans tout le probléeme, p désigne un entier naturel supérieur ou égal a deux. On note ./ (R) I'algébre des matrices carrées a coeffi-
cients réels et I, la matrice identité.
* Pour tout élément M de .4/ (R) et pour tout couple (i, j) d’entiers compris entre 1 et p, on note [M]; ; le coefficient de M situé sur
la i-iéme ligne et la j-iéme colonne.
* Une matrice M appartenant a .#p (R) est dite stochastique si elle satisfait au deux conditions suivantes :

i) Pour tout couple (i, j) d’entiers compris entre 1 et p, [M]; j = 0;

p
ii) Pour tout entier i compris entre 1 et p, ¥ [M]; j =1.
j=1
* On dit qu'une suite indexée par n, (Mp) = (Mg, My,...,My,...) de matrices appartenant a .4, (R) converge vers un élément M de

A [R) si, pour tout couple (i, j), la suite des coefficients ([Mn]l-,j] converge vers [M]; j; on dit alors que M est la limite de la suite
Mp).
* Etant donné une matrice A appartenant a .4 (R), pour tout entier 7 > 0, on note Cy, la matrice définie par la relation :

Cp= ﬁ(lp+A+Az+...+A”).

* On dit enfin qu'une matrice A de .4 (R) est r-périodique, ol r est un entier strictement positif, si A" = 1.

Lobjectif de ce probléme est d’étudier quelques propriétés des matrices stochastiques et notamment, la convergence de la suite de
matrices (Cj) lorsque A est stochastique et r-périodique.
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21.

22.

23.

24.
25.

Partie I : Etude d’'un exemple

Soit a un nombre réel. Pour tout entier n = 0, on pose

[1+<x+a2+...+(x” )

Yn= n+1

a) Simplifier 'expression de vy, en distinguant deuxcas: a# leta=1.
b) Etudier en fonction de , la convergence de la suite () et, en cas de convergence, préciser sa limite.

Onprend p=2et

N =W =
N =Wl N

Soit w I'endomorphisme de R? canoniquement associé a A.
a) Déterminer les valeurs propres de w et une base (fi, f2) de vecteurs propres de w.
b) Nous verrons que si l'on considere P la matrice de la famille (f1, f>) dans la base canonique alors

0

1 .
0 —=

En déduire une expression de Ak, pour tout entier k >0 2 I'aide de P et P!,
Déterminer deux matrices U et V appartenant a .#>» (R), telles que, pour tout k € N :

1 k
k
A"=U+ (— —) \Y
6
On pourra se contenter d’exprimer U etV a l'aide deP etP™1.
Pour tout 7 € N, exprimer C;, en fonction de n,U et V et déterminer la limite C de la suite de matrice (Cy) ;N -
Prouver que 'endomorphisme v de R? canoniquement associé a C est un projecteur dont on précisera le noyau et I'image.

Partie I : Etude de C;, lorsque A est r-périodique

On désigne par r un entier strictement positif.
Soit (o) une suite r-périodique de nombres réels, c’est-a-dire telle que, pour tout entier k € N, o, , = . On pose :

1
Y:;(a0+(x1+...+(xr_1).

Pour tout n € N, on pose : Yn= (dp+ay +---+ay) (x)

n+1
Prouver que pour tout k€ N,
1
Y= (@ gy o+ Oy )

Montrer que la suite de terme général B, = (n+ 1)y, — (n+ 1)y est r-périodique. En déduire que (B,,) est bornée.
Etablir que (Y;,) converge et préciser sa limite.

Soit A une matrice r-périodique appartenant a .4, (R).

Montrer que, pour tout couple (i, j) d’entiers compris entre 1 et p, la suite de réels de terme général o = (AF] i,j est r-périodique.

En déduire que la suite de matrices (Cy); converge vers :

C:%(Ip+A+...+Ar_1).

Soient [el, e,..., ep) la base canonique de R?, u et v les endomorphismes de R” canoniquement associés aux matrices A et C.

a) Prouver que u” = idpp.
b) Montrer que vou=uovetque uov=uv.
On note E (1) et E; (v) les sous-espaces propres respectivement de u et v associés a la valeur propre 1. Etablir les égalités

Ei1(uw) =E1(v) et Im(v)=Ej(u).

Montrer que v est un projecteur. Il projette donc sur G = Im(v) parallélement a F = Ker(v).
Etablir enfin que Ker(v) = Im(u — idgp).
On pourra d’abord prouver que Im(u —idgp) < Ker(v).
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27.

28.
29.

30.
31.

32.
33.
34.
35.

36.

37.

38.

39.

40.

Soit (ay) une suite de nombres réels r-périodique a partir d'un certain rang positif m, c’est-a-dire telle que pour tout k = m,a ., , =
. On définit () par la relation (%).
Prouver que Yy, admet une limite que I'on précisera.

!

Pour cela, on pourra considérer la suite a’k = Q4 » Observer que ((x "

) est r-périodique, et prouver que, Y, étant associée i [(x’k) parla
relation (%), Yy, — Yn tend vers 0 lorsque n tend vers +oo.
Soit A une matrice de .4 (R) r-périodique a partir d'un certain rang positif m, c’est-a-dire telle que pour tout k = m, AR+ = AR,

Prouver que la suite (C;;) admet une limite que I'on précisera.

Partie III : Etude de matrices stochastiques

On note :
— Spl'ensemble des matrices stochastiques de .4 (R);
— Dpl'ensemble des matrices déterministes, c’est-a-dire stochastiques et dont tous les coefficients sont tous égaux a 0 ou 1;
— Apl'ensemble des matrices déterministes et inversibles;
—  Enfin, on introduit U la matrice colonne ne contenant que des « 1 » :

1
U= |.| ety ®.

Matrices stochastiques

Vérifier que la condition ii) est équivalente au fait que U soit vecteur propre pour la valeur propre 1.

Prouver que, pour tout couple (A, 1) de nombres réels tels que A = 0,1 = 0 et A + u = 1, et pour tout couple (M, N) d’éléments de Sp,
la matrice AM + uN appartient encore a Sp.

Prouver que le produit MN de deux éléments M et N de S, appartienta Sp,.

Soit A un élément de Sp. Prouver que, pour tout entier n € N, C;, appartienta Sp.

Que peut-on en déduire pour la limite C de (Cy,), lorsqu’elle existe?

Matrices déterministes

Montrer qu'une matrice M est déterministe si et seulement si tous ses coefficients sont égaux a 0 ou 1 et si chaque ligne de M
contient exactement un coefficient égal a 1.

En déduire que D), est un ensemble fini et préciser le nombre de ses éléments.

Montrer que le produit MN de deux éléments M et N de D, appartienta Dp,.

Soit A une matrice déterministe. Prouver qu'il existe un entier r = 1 et un entier m = 0 tels que A”*" = A™_ En déduire que, dans ces
conditions, A est r-périodique a partir de ce rang m et que, si de plus A est inversible, A est r-périodique.

Soit A une matrice déterministe inversible. Prouver que A~} I'est aussi.

Ftude de la suite (C,,) associée 2 une matrice A déterministe

En utilisant les résultats de la partie II, établir le résultat suivant :

Soit A une matrice déterministe inversible, alors (C;) converge vers une matrice stochastique C telle que C2 = C.
Etendre ce résultat au cas oi1 A est déterministe non inversible.

Matrices stochastiques inversibles
Soient X et Y des éléments de S, tels que XY = I,. On se propose de montrer que X et Y sont déterministes inversibles.

On pose X = [(x,-,j] Y= [f)iyj) et, pour tout j compris entre 1 et p,

W :maX{ﬁl,jrﬁZ,j""'ﬁP:j}'

a) Prouver que p ji= 1. Pour cela, on pourra calculer le coefficient [XY] i
pp p

b) Montrer que ¥ ¥ B; ;= ¥ p;. En déduire que tous les coefficients de Y sont égauxa 0 ou 1.
i=1j=1 j=1

c) Prouver queY et X appartiennenta Ap.
Généralisation. Soient U et V deux matrices de Sp, telles que le produit UV appartienne a Ap. Prouver que U et V appartiennent a
Ap. On pourra utiliser le résultat de la question 36.

- FIN -
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ECG 2

DS 1 A - solution

Probléeme A

1. Notons que si P € R[x], ®(P) € R[x].
Soient \,peRetP,QeR[x]:

DAP+pQ)(x) = AP+ pQ)(x) + AP+ pQ)(x +1)
=AP(x) + pQ(x) + AP(x + 1) + pQ(x+1)
=APX) +P(x+ 1)) + Q) +Qx+1))

O(AP + pQ) (x) = AD(P) (x) + p@(Q) (x).

Ces deux propriétés font de ® un endomorphisme.
2.a) Par définition du noyau :
VieR, P(H)+P(t+1)=0.
On en déduit que
P(m)P(m+1) = —P(m)? <0.

De plus, P est polynomiale donc continue sur [m2; m+1]. Le
théoréme des valeurs intermédiaires s’applique et P s’an-
nule au moins une fois sur [m; m + 1]. Cela étant valable
pour tout m € Z, P admet une infinité de racines, c’est le
polyndme nul.

2.b) On a
ker® = {OR[JC]}

On sait alors que @ est injective.

3.a) C'est une conséquence directe du fait que Rp[x] est
stable par ®
VPERy[x],  ®(P)eRplx].
3.b) Linjectivité de @ induit I'injectivité de ®p. Or @), est
un endomorphisme de dimension finie, c’est donc un
isomorphisme de Rp[x]. Justifions que @ est un isomor-
phisme, on a déja l'injectivité, il reste a prouver la surjecti-
vité.
Soit Q € R[x]. I existe p € N tel que Q € Ry [x]. Or ®p est un
isomorphisme, en particulier, il est surjectif et

APeRplxl], @, ([P)=Q.

Ensuite, par définition de la restriction

4.a) Soit i € [[0; p]l.

® (xi) =x'+(1+x" (Formule dubinome)

YA
=2x'+ ) ||+
j=0 J
[N —
ER;_1[x]
On en déduit que la matrice de @), est triangulaire supé-
rieure avec uniquement des "2" sur la diagonale.

4.b) On sait que

sp(®p) = Sp (Matgg, (¥p)) = 2}

car le spectre se lit sur la diagonale pour une matrice tri-
angulaire.
Précisons maintenant le spectre de ®.
Soit peN.Si A€ Sp (®p), il existe P € Ry [x]\ {Opy } tel que
®p(P) =AP. D’'ou ®(P) = AP et A € Sp(¢). On a donc les in-
clusions:
VpeN, Sp(®p)c<Sply)

puis U Sp(®@p) =Sp@) (%)

peN
Réciproquement, si A € Sp(®), il existe P € R[x] \ {0} tel que
®(P) = AP. si p =degP, on a aussi

PER,[x]\ {0} @p(P)=AP.

D’ol1 A € Sp(®p). Cela prouve l'inclusion inverse dans (x)
et donc I'égalité
Sp() = U Sp(®p) =2}
peN
5. Larelation (%) s’écrit

xn
®d(P) = —
n!

Comme ® est un isomorphisme,

xn
p=o¢! (—)
n!
Il'y abien une unique solution a (x) . Soit d le degré de E,.
On peut donc écrire E;; = adxd +Q(x) ot Q(x) € Ry_; [x].
En revenant a la condition (%), on a alors
le
aq x4+ e+ DY)+ QW + Qe+ 1) = =,
1 — n.

—

de degré d €Rg-1 [x]

En identifiant les degrés d = degE,;, = n.

P e R[x], P(P) =Q.
6.0na
La surjectivité est établie, ce qui conclut. n+l
Vx€eR, Ept1(0)+Ep+1(x+1) = ——.
(n+1)!
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En dérivant, on obtient par somme et composition

xn

+1
x" =

(n+1)! n’

E, (0 +Ep(x+1)=

Ainsi Ej 41 vérifie (*) ;. Par unicité de la solution
!
Eyr1=En.
7.a) Comme Ej, =E;_1, on a en particulier
E},(0) = Ep_1 (0).

Puis Ej) =E/

h—1=En—2,dott
E}(0) =E;_2(0).
Par récurrence pour tout ne N, keN, k< n

EX(0) = E,,_1(0).

7.b) D’apres la formule de Taylor sur les polyndmes avec
degEy, =n.

n ® xk n xk

Ep(x) = Z Ey (0)—' = Z En_k(O)—'-

=0 L k!

8.0nakE,(1)+E;0) = 0—'; =0 (pourne N*) et Eg(0) = % (car
E( est constant). D’olt

12E;(0)] = [En(1) —En(0)]

n lk
k=0 :

i E,—«(0)

]
R

" E,,_(0
2|E,(0)] < Z M
=k

Justifions par récurrence forte que pour tout n € N

e—1
2
— Initialisation. Eg(0) = 1/2, 22(0) est vraie.

En(0)] < <L

—  Hérédité. Soit n € N*. Supposons 22(0), (1), ..
22(n—1) vraies. D’apres I'inégalité précédente

.

l n
En@ls= ) —<=-) —<s—x=<1.
2 2
car e =2,7. < 3. Ainsi & (n) est vraie.
— Conclusion. Pour tout n € N, &(n) est vraie.

9. Posons P (x) = (-1)"E,; (1 — x). On a alors
Pp(x)+Pp(x+1) = (-1" En(1—x) +Ep(—x))
et en reprenant (%), en changent de variable x — —x

—\ n
Pu(x)+Pp(x+1) = (—1)"(( x) ): x
n! n!

On en déduit que Py, vérifie (x) ;. Par unicité de la solution

Pn =Ej,.

10. On a en évaluant en 0
En(0) = (=1)"En(1)
orE;(0) +Ep(1) = % =0 (carn=0).Dou
En(0) = (=)™ 'Ep(0).
En particulier si n est pair (non nul)
En(0)=-En(0) puis Ep(0)=0=Ex(1)
— En évaluanten 1/2, on a aussi
-l

Pour n impair,

11.On avu que

1
Eg = 3 (polynéme constant)

* Déterminons E; sachant que ce dernier s’annule en 1/2.
Par le théoreme fondamental :

1
E1(x) =E1(x) —E; (5)

X X
=j E’l(t)dtzf Eo()dr (g.6)
1/2 1/2

E(x)—fJCldt—l(x 1)
P 2™ 200 2)

 Ensuite, on détermine E; sachant que ce polynéme s’an-
nuleen0:

Ep (x) = E2(x) —E2(0)

X X
=f Eé(t)dt:f E1 () dt
0 0
X
=1f (t—l)dtzl[xz—x)
2Jo 2 4

12. On peut donc calculer de proche en proche E; avec la
relation de récurrence :

Eg=1/2

X E,()dt sin estpair
Byt (0 = | 2 En e
Jo En(n)dt  sinestimpair.

Probleme B
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13.a) Soit x € R.
sin(2x) = sin(x + x) = 2sin(x) cos(x).

13.b) Intégrons par parties sachant que les fonctions consi-
dérées sont de classe €.

n/2
Uy = [ xsin(x) cos(x)dx
0

n/2 X
:f —sin(2x)dx
0 2

x( cos(2x)) Z f% 1 ( cos(2x))
—|- - —|- dx
2 0 o 2 2

2

s ()+1fi @xd
—— COS(Tt - CoS(zX X

8 4 Jo

[sin(2x)] 0%

|3 ol H

+
uy =

14. Par quotient de fonctions continues sur R*, f;; est conti-
nue sur R*. Puis pour ¢ # 0

1-1-pn" t
e

Dol fal0) — 1= fu(0).

C’est la continuité de f; en 0. Ce qui conclut sur la conti-
nuité sur R.

15. On a par la formule du binéme

Li-a-n"
- [ 200,
0 t

16.a) On effectue le changement affine u=1-¢

1 0 1
f (l—t)k_ldt:f uk_l(—du):f uk-1 du:l.
0 1 0 k

16.b) Pour ¢ €]0;1], on a aussi la somme géométrique

n n-1 n
k-1 k_1-0-0

1-1¢ = 1-0)"= ———
kgl( : kg’o( ST A
1-a+n"

=—

Le résultat s’en déduit par intégration.

17. Procéder par intégration par parties.

18.

p=0 p
1 2 (n /2
=2—nz pfo xsin(2px)dx (sommea p=1)
p=1
1 i n\m(-1)P*+!
2” p:l p 4p
b1d n (_l)p—l 2
= 2n+2 Z (=1
p:l p
b
Un on+2 n
19.a) Soient x € [0;1], £ € [0; x]
x—t=0 x—t
{1—t>0 donc cpx(t)—mzo.
De plus,
(D) = x+ I-x x(1-0+t-x
Px 1-¢ 1-1
t(1-x) .
= = 0 (par quotient).
Ainsi Px(t) < x.

Ce qui conclut.

19.b) Soient x € [0; 1], € [0; x],

x—1 a x—14+a(l-1)
=
1-pH2 1-t (1-12
_x—at—1+a
o (1-n?

On constate que a = 1 convient.

20.a) Par composition entre une fonction affine et le loga-
rithme, h est €° sur son ensemble de définition. De plus
pour tout k € N*

fPw=cnhPa-xn
Or on montre par récurrence que

Dk k-1
tk

vieR:, W=
D'ott WO () = =~
En particulier, on a k¥ (0) = (k- 1)L.

20.b) Pour n fixé, h est de classe €"**! et la formule de Taylor
avec reste intégral s’applique (2(0) = 0)

n h(k)(o) k xh(’”l)(t) "
h(x)_kX::O—k! x +f oo X0t
& (k-1 g fxn! (x-0"
=L Y wasgn
n xk x(px(t)n
hm_kg17+f0 > dz.
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21. On reprend les inégalités de la question 19.a), la fonction
s+— s™ est croissante sur R*

nt X"
0< @) <x™ puis Os(pf()t <1

Par croissance de I'intégrale (avec les bornes dans le bon
sens)

X tn X n
o:f Odtsf @x0” 4, \f Y dr=—x"In(1-x).
0 0o 1-1¢ 0o 1-t

22. Soit x fixé dans [0;1[. On a

—x"In(1 - x) — 0
—+00

Par encadrement
Ry (x) — 0.
n—oo

On en déduit avec la relation de la question 20
é % — h.
C’est la définition de la convergence de la série avec
f L n-n.
ok
23.a) Soit x € [0;1[. On pose I =0

n n n
1-0 Y LxF=Y k- Y 1kt

k=1 k=1 k=1
n K n+1 k
=2 Lext= ) Tgqx
k=1 k=1
¢ k 1
= 3 (=) ¥ - Lux™
k=1
n
_ Z %xk_lnxnﬂ

=~
Il
—

n
A-x Y Lk = h(x) - Ry (0 — 1,2
k=1

avec |'égalité de la question 20.

23.b) Soit x € [0;1[ fixé. Ona Ry (x) — 0
n—oo

n
0<I,x"! < (Z 1) 2 < px™tL
k=1

Par les croissances comparées nx"*!

+1

n—Q»QO et par enca-
drement I, x" e 0. Par passage a la limite dans 1'éga-
—00

lité de la question 23.a)
Lk
(1-x) k; Lx" — h(x).
Le résultat s’en déduit en divisant 1 — x.

24.D’apres ce qui précede avec x =1/2 € [0; 1]

o ~In(1-1/2)

2

ko =2In2
Zok T 1o n@

Enreprenant la question 18, on ala convergence de la série

avec
7t I _ nin(2)

Zk4z

o2k 2

Probleme C

25. Le programme affiche sur un graphe les valeurs
1g(A—AlI3) pour A€ [[-5;5].

On détecte une valeur propre dés que rang n'est pas 3.
Comme la matrice est de taille (3,3), il y a au plus 3 valeurs
propres. Au final, on lit
Sp (M3) = {-1;0;2}.
26. Un calcul donne

1 1
EZ(M3)=Vect( 2 ), EO(M3)=Vect( 0 )

w4}

27.On constate que rg (M) = 2. Comme n = 3,la matrice M,
n’est pas inversible,

et E_1(M3)= Vect(

0eSp(Mpy).
28. Par définition
ImM,, = Vect(Cy,Co,...,Cpn)

ol C; désigne la i-éme colonne de M;;,. Comme C; =C3 =
Ci=-=Cp
ImM,, = Vect(Cq,C»)

etlafamille (Cy, Cp) est génératrice de 'image. De plus, Cp
est linéairement indépendantes de Cy, la famille (Cy,Co)
est libre.

D’ol1 (C1,Cp) = (€1,€1) est une base de 'image de M.

29. Soit X un vecteur propre de M;, associé a A # 0. Par défi-
nition )
MX=AX puis M(XX) =X
D’ou XeImMy,.
30. On cherche A € R tel que
Mp (1 +ae2) =A(e1 +aez) (o)
or
Mper =My (e1+ex+e3+...+ep)
=Mpe; +Myuezx +Mpuez +---+Mpep
=eytertexr+---t+en
Mpuer =(n—-1ey +¢€;.

et My, (aep) = aMp ez = ae]. Ainsi I'égalité (e) est équiva-
lente a
(1+a)ey+(n—1)ex = Ay + Aaen
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— l+a=A
(n—-1)= A«

Car la famille (g1, e2) est libre. Le systeme est alors équi-
valent a

l+a=A
n—-1=AA-1).

D’ot le résultat.

31.a) Le discriminant est :
A=(-1)%2—4x1x(—t+1)=4r-3.

Ainsi :
— t=3/4sietseulementsiil y adeuxracines réelles
— t=3/4sietseulementsiil y aune unique racine.
— t<3/4sietseulementsiil yaaucune racine.

31.b) Précisons que par un compte des dimensions (le noyau
est de dimension n—2 ), il n'y a pas de plus de 3 valeurs
propres. 11 y a déja 0. Notons de plus que tout vecteur
propre s’écrit sous la forme

A
A€l +Azex = Aq(e1 + )\_2 e2)

2L

=a

Dés lors les valeurs propres sont bien données par les éga-
lités de la question 30.

Il y a donc deux autres valeurs propres si et seulement si
n > 3/4. Ce qui est toujours le cas. Les deux autres valeurs
propres sont alors :

1-v4n-3 1+v4n-3
M=o et =

32. Inversion la seconde relation :

2\ =1+V4n-3
= (2Ah-1D=Vin-3 < (@\-12%=4n-3

= AM-n+l=n = AMl-D+l=n

De plus
Al+A2=1 et A;=1-Ao.

Cette derniere relation permet de justifier que A1,Ap € Z si
etseulementsiAp € Z. En posant A; = r, on al’équivalence
demandée.

33. Il faut repérer les coordonnées entieres de
(r,rr=1)+1).

On trouve n € {3;7;13}.

14

13
121

10 1

34. On sait que My, est de rang 2, donc 'espace propre pour
la valeur propre 0 est de dimension n—2 On constate (avec
I'aide de 'exemple pour n = 3) que la famille suivante est
une base de Eg (My;)

1 (1) 1
0 0 0
-1 0
o || ] .

0 :
: 0
0 0 -1

(on décale vers le bas le "-1"). En effet, elle est libre, avec
n — 2 vecteurs. Par un compte des dimensions, les autres
sous-espaces propres sont de dimension 1. Pour la valeur
propre r, on sait d’apres la question 30 que €1 + (r — 1)ex
est vecteur propre. Donc

Er Mp) =Vect(e1 +(r—1)e2)
De méme avec 1 — r, 'autre valeur propre
E1—r (My) =Vect(e] —re2).
35. Dans notre exemple, pour i € [[1; n]] \ {2}

a;;=0 et Zaij:l
i#]
Danscecasl; ={xeR||x|<1}.
sii=2,
a» =1 et Z a,-j=n—l.
J#2
Dans ce cas Iz = {x € R,|x — 1| < n—1}. Par inégalité trian-
gulaire, on a pour tout x € I

xI<|x—-1+1|<|x-1|+1<n

D’apres le théoréme admis, A appartient a l'un des inter-
valles I;, en particulier

Al < n.

36.a) En prenant garde au décalage d’indice en python, on a
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def matrice(mn):
M=np.zeros ([n,n])
for i in range(n):
M[1,i]=1
M[i,1]1=1
return M

Un petit test :

>>> matrice (4)

array ([[0., 1., 0., 0.1,
(1., 1., 1., 1.1,
[0., 1., 0., 0.1,
[o., 1., 0., 0.11)
36.b)
def testil(m):
d=0

M=matrice (n)

for i in range(-n,n+1):
d+=(n-al.matrix_rank (M-i*np.eye(n)
))
if d==n:
return 1
return O

37.a)

def test2(n):
for r in range(n):
if r*(r-1)+1==n:
return 1
return 0

37.b) Le test est concluant car on retrouve les valeurs obte-
nues a la question 33. On a bien des valeurs propres en-
tiéres si et seulement si n s’écrit sous la forme r(r —1) + 1.
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- solution

import numpy as np

def suite(mn,a,b):

for i in range(n):
c=a
# pour sauvegarder la valeur de an
a=(a+b) /2
# calcul de a_(n+1)
b=np.sqrt (c*a)
# calcul de b_(n+1)

return a,b

Si on demande la liste des n premiers termes de la suite pour
faire l'affichage, on peut écrire :

def suite2(n,a,b):

A=np.zeros(n)

B=np.zeros(n)

A[0]l=a

B[0]=b

for i in range(n-1):
Ali+1]=(A[i]+B[i])/2
Bl[i+1]l=np.sqrt (A[il*B[il)

return A,B

A,B=suite2(10,1000,0.0001)
indice=np.arange (0,10,1)
plt.plot(indice,A,’0”’)
plt.plot(indice ,B, %)
plt.legend([’an’,’bn’])
plt.show ()

.SoitneN

ap+1—bpt1 = % (ﬂn+bn—2\/a_n\/EJ~
- % (\/a—n_\/b_,,]z >0.

Avec le décalage d’indice, on en déduit que pour tout n €
N* (carn+1€eN),ona

an = by
 Soit ne N*
Ap+l—an = an-zan —an= bn;an <0
D’out an+1 < apn
et
bn—bns1 = by =/ anbn = /by (v/bn — Van) <0.
Finalement bpu+1 = by.

. Notons que pour tout n € N*

ay = ay = by = by.

La suite (ay) ;=1 (on commence a 1) est décroissante et mi-
norée, elle converge.

La suite (by) ;=1 est croissante et majorée, elle converge.
Justifions la convergence vers une limite commune. Pour
cela, on pose 4, £}, € R tels que

a, — lg et bnn—> Cp.
—00

n—oo
Les relations :
an+b
VneN, anp+1 = Rl
2
donnent par passage a la limite
Oq+10
g = a=’h puis £4=1¢p.

Ce qui conclut.

4.a) Soit n e N*

1
ﬂn+12 - bn+12 = 1 (an+ bn)z —anbp

1 2_1 2
=—(an—D>b =—€en .
De plus, I'identité remarquable

2 2
an+1° = bpe1” = (@n+1 = bn+1) (@pe1 +bpv1)
=en+l-2an42
donne finalement

en®

1 2 .
en+l-2ap+2=—ep” DPUiS ept1 =
4 8an+2

car ap4+2 #0.

4.b) Comme la suite (ap) ,en* €st minorée par by, on a direc-

tement

en?

8b;’
5.a) On reconnait une suite arithmético-géométrique.
Soit £eR tel que

en+l S

¢=20—-1In(8b;) soit €=In(8h;).

La suite de terme général v, = uy — ¢ est géométrique car
pour tout 7 € N*

£=20—-1In(8by) L
Up+1 =2up—In(8b)) Lo

La différence Ly — L1 donne
Vpt1 = Ups1—L=2(up—~0) =2vp,.

Ainsi

YreN*,  p,=2""1y
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oil vy = u —0=1In(e/(8hy)).

On conclut
1 e%
* _ _on—1,
VneN*,  up=vp+0=2 ln(—8b1]+ln(8b1).

5.b) Justifions par récurrence que la propriété
Pn): up—In(ey) =0
est vraie pour tout n € N*.
— Initialisation. C’est direct car u; = In(ey). (1) est
vraie.
— Hérédité. Soit n € N*. Supposons 2 (n) vraie.

Un+1 —In(ep+1) =2uy +In(8b1) — 2In(en) —In(8by)).
=2(up—1In(ey))=0.

Ce qui conclut la récurrence.

Des lors
In(en) <upn
Puis
ep <eln = ce V2"
ouonaposé:

2

1 e el
c=8b; et =——In{-L|=In[——).
=73 (8b1) ((2\/§)ab)
6. On utilise la relation
e e

en+l1 = S0
" 8an+2 8bn

pour obtenir le programme :

def approx(a,b):

a=(a+b) /2

b=np.sqrt (a*b)

erreur =a-b

while erreur>10%*(-8):
c=a
# pour sauvegarder la wvaleur de an
a=(a+b)/2
# calcul de a_(n+1)
b=np.sqrt (c*a)
# calcul de b_(n+1)
erreur=erreur **2/(8%*b)

return a

7.a) Lintégrande est continue sur [0; +oo[, on a donc une in-
tégrale généralisée en +oo. De plus,
1 1
V@1 2\ o u
Par le critere d’équivalence des intégrales de fonctions po-

sitives et le critere de Riemann (avec 2 > 1), on a bien la
convergence de I(a, b).

7.b) On effectue le changement de variable affine v = u/a

U
Finalement, I(a,a) = —.
2a

8.a) La fonction

v €]0; +oo] 1(1/ ab)
; w»—)— _——
¢ 2 v

est de classe € avec

, 1( ab)
Vv €]0; 400, o W)==|1+—]|>0.
2 v?

La fonction ¢ est donc strictement monotone et 6. Le

changement de variable est donc licite.
Précisons de plus que

@) v:)>+ -oo et @) it +00.

8.b) Suivons l'indication :

1 b)2
Wia== (v—a—) +(a+b)2)
4 v

1 a®b?
—|v?+ == -2ab+d?+b?+2ab
4 v?

1 a®b?

P+ ——+a®+p?

4 v2

L4, 2,2 2(2 .2

:—2(v+ab+v(a+b))
4v

1
u+a12=— v+ a®|(v?+b?).
4y?

Par produit, on a donc
(4 + ar?)(u? + 0 ?)
1

:4—2(1/2 + az) (v2 + bz)

ab)\?

1+ —
V2

Effectuons maintenant le changement de variable indiqué

W) = u du_ ,(U)_1(1+ab)
PI=u v TS v2 )

Lorsque v varie de 0" & +oo, u varie de —oo a +oo.

+00 du
I(dl,b1)=f
0 /(u?+ad)(u?+b3)
B 1f+°° du
2J-00 \/(u2+a%][u2+brf)

~ lf+oo 3 (1+ab/v?)dv
=51,

%\/(vz +a?) (v?+b?) (1 + “V—é’)z

parité

+00 +00 =2
(a,a) = i:l __a +00 dv
o a?+ur a o 14(%)2 2[0
e dy 1 " V2 v a) (02 1?)
I _ - 00
- afo o - al @l La1, b)) =1(a, b).
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9. La fonction f;, est décroissante et positive sur [o;+oo],
donc t1 = aimpose |f (#1) | < f(«). Ensuite

Jfu@) = fu(t) = ! - !
ViE+u? )+ u?
t22+u2—\/tf+—u2
B ,/tf+u2-\/t22+u2
fu(tl)—fu(tz):(\/t§+u2—\/[12+u2)fu(t1)fu(t2)-
Or
\/t22+u2—\/tf+u2
_(\/t§+u2—\/tf+u2)[\/t§+u2+\/tf+u2)
B Vi +ud+ )2+ u?
_(B+?)-(F+u?) -4
_\/t§+u2+\/t%+u2_\/t§+u2+\/t%+u2'
On obtient
2_ 2 2_ 2
| fu(01) = fu (82)| < ﬁ%fmnfu (t2) < @fu(a)e’.

Pour la derniere inégalité, on commence par écrire

Su(t1) fu (s1) = fu (£2) fu (s2)
=fu(t1) (fu (s1)— fu (52)) + fu (s2) (fu (t) = fu (12))-

Par inégalité triangulaire et en reprenant les majorations
précédentes :

[ fu (21) fu (s1) = fu (£2) fu (s2)]
<|fu || fu (1) = fu ()] + | fur (52)| | fue (1) = fu (22)]

Ll (12 gl g)

10. On a par linéarité des intégrales convergentes

|i(a,b)-1(d",b)| = Uo+oo fu(@ fu®) = fu (@) fu (V') du

s‘[(]+oo|fu(fl)fu(b)—fu (a’)fu (b,)| du

|a2_a72|+|b2_b/2| +00 .
< fo Jul@*du.

2
Le résultat s’en déduit en posant

1 ptoo

C=- fu(a)4du.
2Jo

(I'intégrale étant bien convergente).
11. En reprenant le résultat de la question 8, on a :
VneN, I(an, bn) =1(a,b).

Par conséquent lim I(ap,by) =1(a,b).
[y

Or on a aussi

1My, M) = Lan, b)| < C|ah M2 |+ |ph M3 |
On a de plus

2 2 2 2

ah-M2 |+ [ph-M2 | — o.

Donc par encadrement
lim I(ay,by) =1Mg, b,Mg,b).
n—+o0o

On conclut arec la question 7.b)

T
ZMa'b'

I(a,b) =1(Mg, p, Mg p) =

12.a) Le changement de variable proposé est ¢! et stricte-
ment croissant sur ]0; % [avec
b

u= dr.
cos?t

De plus

uzbtantt—ao et u=btant — +oo.

Or on montre que

puis
cos? t _ 1 _ 1
b2 b2tan?t+b?  u+b?’
Comme 1 € [0; %], cos t est positif et on obtient la simplifi-
cation de I'intégrande :

cost/b B 1
Va2 +p2tan2t Vil +b2-vVad+u?

Le changement de variable donne alors

f% dr
0 Va2cos?t+bsin?t
dr

fo costV a2+ btan? t

I

2 cost/b bdt

= . 3
0 Va?+b*tan?t COS°I

+00 1

= du
0 Vul+b?-va?+u?

=I(a, b).

IS

12.b) Pour calculer numériquement cette intégrale, on peut :
— Utiliser la méthode des rectangle.

— Utiliser le programme de la question 6 puis la relation
de la question 11.

13.a) On est dans le cas d'une progression géométrique de
raison a.

— Sia#1l
1 1_(xl’l+1
Yn= n+1. 1-«a
— Sia=1
_n+1_1
Yn=aTh
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13.b) Si |a| < 1, on sait que o> n—0>00 et alors

n—oo
Sia=-1,0ona

1 l_(_l)n+l

=TT 2 oo
— Sia=1

— Sia>1, ona par les croissances comparées

— +00.
Yn n—oo

— Sia< 1, la suite (Yy),¢n change de signe a chaque
rang a partir d'un certain rang sans converger.

14.a) Déterminons le spectre. Soit A € R

On constate que 1 est racine évidente. Par les relation co-
efficients/racines, —1/6 est ’autre racine. Ainsi

1
Sp(A)-{l,—g}.

e A4 4]

A=0,1DeR?, f,=(4,-3)eR?

On vérifie ensuite que

1
Al

1
1

On conclut en posant

de sorte que w(f1) = fi, w(f2) = f> avec f1, f> non nuls.
Ces deux vecteurs forment une famille libre de R? a 2 élé-
ments, ¢’est une base de R2.

14.b) Par récurrence, on établit

1 0
VkeN, Ak=p -1
© [ 0 (-1/6)k ]
15. Posons
_ 1 0 1 B 0 0 -1
U=>pP 0 0 }P et V—P[ 0 1 ]P
de sorte que
k
K 1 0 1Y ro 01},
A_P([OO+(6)[01 P

lk
k_
AF=u+ ——) %
6
16. Soit n e N*.
1 &, 1 & 1)\¥
= =— U+|-2| v
" n+1,§’0 n+1k§0( ( )
Y (-1/6)F
_ =0
n+1
Chn=U+y,V

ol Y, est défini a la question 13 avec a = —1/6.
D’apres 13.b) y5, njo»oo et

On pose donc C=U.
17. Comme
2 1 0.4 1 0.4
=] ) 2] 2 0 e
2
_ 1 0 -1
oy
_ 1 0 -1
L
c*=C

On a donc vo v = v avec v linéaire, c’est un projecteur.
Si on note P = [F1,F2] les colonnes de P, on a

awr[ ] ] ¢

et

e

1 0 0
CFz—P[ 0 0 ][ 1 ]—02,1.
Ces relations se traduisent par
v(f)=f et v(H)= Opz.

On en déduit (sachant que le noyau et I'image sont de di-
mension 1)

Kerv = Vect ( f2) = Vect((4, -3))
Im v = Vect (1) = Vect((1,1)).

18. Raisonnons par récurrence sur la propriété
1
P y=1 (ot ++ + Qg 1)
— Initialisation. 22(0) est vraie par définition de y.

— Heérédité. Soit k € N. Supposons Z2(k) vraie.

1
7 (01 o+ ey 14r-1)

1
= — (g1 +o o O o + X r)

(Otggy +++ +Qpyro1 +Og)  (r-périodicité)

(g + Qegy +-o + Qg 1)

=< Nl=SNl—=

Deés lors, 22(k +1) est vérifiée, ce qui termine la récurrence.
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