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THÈMES : RÉVISIONS ALGÈBRE, ANALYSE ECG1
ET VALEURS/VECTEURS PROPRES

La présentation, la lisibilité, l’orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une
part importante dans l’appréciation des copies. Les candidats sont invités à encadrer dans la mesure du possible les résultats de leurs
calculs. Ils ne doivent faire usage d’aucun document : l’utilisation de toute calculatrice et de tout matériel électronique est interdite.

Problème A
Étude d’une suite de polynômes

Désignant par n un entier naturel, on se propose d’étudier l’ensemble des polynômes à coefficients réels tels que :

∀x ∈R, P(x)+P(x +1) = xn

n!
(?)n

Pour cela, on considère l’application Φ qui, à tout élément Q de R[x], associe le polynôme Φ(Q) défini par :

Φ(Q)(x) = Q(x)+Q(x +1).

• Étude de l’endomorphisme Φ
1. Vérifier que Φ est un endomorphisme de R[x].
2. a) Soit P ∈ KerΦ. Pour tout entier m, que dire du signe de P(m)P(m +1) ? En déduire que P est le polynôme nul.

b) Qu’en déduire sur l’injectivité de Φ?
3. Notant p un entier naturel, on désigne par Φp la restriction de Φ à Rp [x].

a) Montrer que Φp est un endomorphisme de Rp [x].
b) En déduire que Φp , puis Φ sont des isomorphismes respectivement de Rp [x] et R[x].

4. On note Bp = (
1, x, x2, . . . , xp )

la base canonique de Rp [x].
a) Vérifier que la matrice de Φp dans Bp est une matrice triangulaire supérieure dont on précisera les termes diagonaux.
b) En déduire le spectre de Φp , puis celui de Φ.

• Étude de la famille de polynômes (En )n∈N
5. Soit n ∈N. Démontrer qu’il existe un polynôme unique de R[x] vérifiant la relation (?)n .

On le notera En . Justifier que En est de degré n.
6. Soit n ∈N. Vérifier que le polynôme E′

n+1 vérifie la relation (?)n . En déduire que En+1
′ = En .

7. a) Vérifier que En
′(0) = En−1(0), puis En

′′(0) = En−2(0). Généraliser.
b) Justifier que

En (x) =
n∑

k=0
En−k (0)

xk

k !
.

8. En déduire que pour tout n ∈N,

2 |En (0)| É
n∑

k=1

|En−k (0)|
k !

puis |En (0)| É e−1

2
.

• Calcul des polynômes En
9. Montrer que

En (x) = (−1)n En (1−x)

10. En déduire, que pour n pair strictement positif, la valeur de En (0) et En (1), ainsi que, pour n impair, la valeur de En

(
1
2

)
.

11. Déterminer E0, E1 et E2.
12. Plus généralement, expliquer comment calculer de proche en proche les polynômes En .
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Problème B
Étude d’une série de terme général sous forme intégrale

Pour tout entier naturel n non nul, on pose un =
∫ π

2

0
x sin(nx)(cos x)n dx.

Le but du problème est l’étude de la nature de la série de terme général un et le calcul de sa somme.

Partie A

13. a) Soit x ∈R. Exprimer sin(2x) en fonction de cos(x) et de sin(x).
b) En déduire la valeur de u1.

14. Pour tout n ∈N∗, on définit la fonction fn par :

∀t ∈R, fn (t ) =
{

1−(1−t )n

t si t ∈R∗
n si t = 0

Montrer que, pour tout entier n ∈N∗, la fonction fn est continue sur R.

• Pour tout n ∈N∗, on pose In =
∫ 1

0
fn (t )dt .

15. Montrer que pour tout n ∈N∗, In =
n∑

k=1

(
n

k

)
(−1)k−1

k
.

16. a) Pour tout k ∈N∗, calculer
∫ 1

0
(1− t )k−1 dt .

b) En déduire pour tout n ∈N∗, In =
n∑

k=1

1

k
.

17. Montrer que

∀p ∈N∗,
∫ π

2

0
x sin(2px)dx = π(−1)p+1

4p

18. En admettant que pour tout n ∈N∗

∀x ∈R,
n∑

p=0

(
n

p

)
sin(2px) = 2n sin(nx)(cos x)n

conclure que un = π

2n+2
In .

Partie B

19. Soit x ∈ [0;1[. Soit ϕx la fonction définie sur R\ {1} par :

∀t ∈R\ {1}, ϕx (t ) = x − t

1− t
.

a) Justifier que pour tous x ∈ [0;1[, t ∈ [0; x], 0 Éϕx (t ) É x.

b) Trouver un réel a tel que pour tous x ∈ [0;1[, t ∈ [0; x], on a
ϕx (t )

1− t
= x −1

(1− t )2
+ a

1− t
.

20. Soit h la fonction définie sur [0;1[ par : h(x) =− ln(1−x).
a) Expliciter les dérivées successives de h.
b) Démontrer que pour tous n ∈N∗, x ∈ [0;1[,

h(x) =
n∑

k=1

xk

k
+Rn (x) avec Rn (x) =

∫ x

0

(
ϕx (t )

)n

1− t
dt .

21. Montrer que pour tous n ∈N∗, x ∈ [0;1[, 0 É Rn (x) É−xn ln(1−x).

22. Montrer que pour tout x ∈ [0;1[, la série de terme général xk

k converge.

23. a) Soit n ∈N∗. Montrer que

∀x ∈ [0;1[, (1−x)
n∑

k=1
Ik xk = h(x)−Rn (x)− In xn+1.

b) En déduire que, pour tout x ∈ [0;1[, la série de terme général Ik xk converge et que

∀x ∈ [0;1[,
+∞∑
k=1

Ik xk = − ln(1−x)

1−x
.

24. Conclure sur la convergence de la série de terme général uk et calculer la valeur de
+∞∑
k=1

uk .
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Problème C
Valeurs propres d’une matrice en croix

Dans ce problème, n désigne un entier supérieur ou égal à 3.

Partie A - étude d’une exemple

On suppose dans cette partie que n = 3 et on s’intéresse à la matrice M3 suivante :

M3 =
 0 1 0

1 1 1
0 1 0

 .

25. À l’aide du code suivant, donner le spectre de M3.

import numpy as np
import numpy . linalg as al

M=np. array ([[0 ,1 ,0] ,[1 ,1 ,1] ,[0 ,1 ,0]])
R=np. zeros (11)
L=np. arange ( -5 ,6)
for i in range (11):

R[i]= al. matrix_rank (M-L[i]* np.eye (3))
plt.plot(L,R,’r*’)
plt.show ()

E
d

it
eu

r

26. Pour chacune des valeurs propres, donner une base du sous-espace propre associé.

Partie B - Généralisation

On revient au cas général où n est un entier supérieur ou égal à 3 et on considère Mn la matrice suivante :

Mn =



0 1 0 0 · · · 0
1 1 1 1 · · · 1
0 1 0 0 · · · 0
0 1 0 0 · · · 0
...

...
...

...
...

...
0 1 0 0 · · · 0


.

Plus formellement, Mn =
[

mi , j

]
1Éi , jÉn

avec : mi , j =
{

1 si i = 2 ou si j = 2

0 sinon.
De plus, on note C = (e1,e2, . . . ,en ) la base canonique de Mn,1(R).

27. Préciser le rang de Mn . En déduire une première valeur propre de Mn .
28. On pose ε1 = t[1,1, . . . ,1] = e1 +e2 +·· ·+en . Montrer que (ε1,e2) forme une base de l’image de Mn .
29. Montrer qu’un vecteur propre de Mn associé à une valeur propre non nulle est nécessairement dans l’image de Mn .
30. Soient α et λ deux réels.

Montrer que le vecteur ε1 +αe2 est vecteur propre de Mn associé à la valeur propre λ si et seulement si :

λ= α+1 et λ2 −λ−n +1 = 0.

31. a) Discuter, suivant les valeurs de t réel, le nombre de solutions de l’équation suivante d’inconnue réelle λ :

λ2 −λ− t +1 = 0

b) En déduire que les deux autres valeurs propres de Mn sont de la forme (1±p
4n −3)/2.

32. Montrer que toutes les valeurs propres de Mn sont dans l’ensemble Z des entiers relatifs si et seulement si n est de la forme n =
1+ r (r −1) où r est un entier relatif.
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33. Quelles sont les trois premières valeurs de n Ê 3 pour lesquelles Mn ne possède
que des valeurs propres appartenant à l’ensemble Z?
On pourra s’aider du graphe ci-contre obtenu avec

x=np. linspace ( -3 ,4 ,100)
plt.plot(x,x*(x -1) +1)
plt.grid ()
plt.show ()E

d
it

eu
r

34. On suppose que n = 1+ r (r −1) avec r entier supérieur ou égal à 2.
Déterminer les valeurs propres de Mn et donner une base de chaque sous-
espace propre de Mn .

Partie C - Vérification avec python

On admet le résultat suivant :

THÉORÈME

Soit A une matrice de Mn (R) de terme général (ai j ). Pour chaque indice i ∈ [[1;n]], on pose

Ii =
{

x ∈R | ∣∣ai i −x
∣∣É ∑

j 6=i

∣∣∣ai j

∣∣∣} .

Si λ est une valeur propre de A,
alors λ appartient à au moins un des intervalles Ii .

35. À l’aide du résultat admis, justifier que si λ est valeur propre de Mn alors |λ| É n.
36. a) Écrire un programme qui prend en argument n et construit la matrice Mn .

b) Adapter le code de la question 25 pour construire un programme python d’en-
tête test1(n), qui renvoie 1 si toutes les valeurs propres de Mn sont entières et
0 sinon.

37. a) Écrire un programme python test2 qui prend en argument n et teste si n s’écrit
sous la forme 1+ r (r −1) où r est un entier.

b) Commenter le test ci-contre.

for n in range (3 ,15):
print (’n=’,n,’ ré sultats ’, test1 (n),test2 (n))

E
d

it
eu

r

Bonus Prouver le théorème admis en montrant que le noyau de A−λIn est réduit à {0n,1} lorsque λ n’appartient à aucun intervalle Ii .

Le Chat, Geluck

– FIN –
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THÈMES : RÉVISIONS ALGÈBRE, ANALYSE ECG1
ET VALEURS/VECTEURS PROPRES

La présentation, la lisibilité, l’orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une
part importante dans l’appréciation des copies. Les candidats sont invités à encadrer dans la mesure du possible les résultats de leurs
calculs. Ils ne doivent faire usage d’aucun document : l’utilisation de toute calculatrice et de tout matériel électronique est interdite.

Problème A
Moyenne arithmético-géométrique et intégrales elliptiques

Partie A : la moyenne Ma,b

Étant donnés deux réels a et b strictement positifs, on définit deux suites réelles (an )nÊ0 et (bn )nÊ0 par

a0 = a, b0 = b et ∀n ∈N,

an+1 = an +bn

2

bn+1 =
√

an bn .

1. Écrire un programme python qui prend en arguments n, a, b et renvoie les termes an , bn .
Ci-dessous , les premiers termes avec a = 1000 et b = 0.0001

2. Montrer que pour tout n ∈N∗, on a an Ê bn , an+1 É an et bn+1 Ê bn .
3. En déduire que les suites (an ) et (bn ) convergent vers une limite commune.

Cette limite commune s’appelle la moyenne arithmético-géométrique des réels a, b et sera notée Ma,b .

• Estimation de l’erreur
4. Pour tout n ∈N, on pose en = an −bn .

a) En considérant l’expression a2
n+1 −b2

n+1, vérifier que en+1 = en
2/(8an+2).

b) En déduire que pour tout n ∈N∗, on a en+1 É en
2/(8b1).

5. On définit la suite (un )n∈N∗ par
u1 = ln(e1) et ∀n ∈N∗, un+1 = 2un − ln(8b1).

a) Donner une expression explicite de un en fonction de n, e1 et b1.
b) En justifiant par récurrence que la suite de terme général un−ln(en ) est positive, montrer que pour tout n ∈N∗, en É ce−γ2n

où γ et c sont deux réels positifs que l’on exprimera en fonction de e1 et b1.
6. Déduire de toute cette étude un programme python qui prend en arguments a, b et renvoie une approximation de Ma,b à 10−8-près.
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Partie B

Pour tous a, b ∈R+∗ , on pose

I(a,b) =
∫ +∞

0

du√(
a2 +u2

)(
b2 +u2

) .

7. a) Justifier que l’intégrale I(a,b) est bien définie.
b) Calculer cette intégrale dans le cas particulier où a = b.

8. a) Justifier que le changement de variable u = 1
2

(
v − ab

v

)
sur l’intégrale I(a1,b1) est bien licite.

b) En déduire que I(a1,b1) = I(a,b), où a1 et b1 sont définis à la partie A.
Indication : on pourra établir que

u2 +a1
2 = 1

4v2
(v2 +a2)(v2 +b2) et u2 +b1

2 = v2

4

(
1+ ab

v2

)2
.

9. Pour tous t ∈R∗+, u ∈R+∗ , on pose fu (t ) = 1√
t 2 +u2

.

Soit α ∈R+∗ fixé.
Justifier que pour tous t1, t2, s1, s2 ∈ [α;+∞[, tout u ∈R+∗ ∣∣ fu (t1)

∣∣É fu (α),

puis
∣∣ fu (t1)− fu (t2)

∣∣É ∣∣t1
2 − t2

2
∣∣

2
fu (α)3

et ensuite
∣∣ fu (t1) fu (s1)− fu (t2) fu (s2)

∣∣É fu (α)4

2

(∣∣∣t1
2 − t2

2
∣∣∣+ ∣∣∣s1

2 − s2
2
∣∣∣) .

10. Justifier que pour tous a, a′, b, b′ ∈ [α;+∞[, il existe un réel C, ne dépendant que de α, tel que∣∣I(a,b)− I(a′,b′)
∣∣É C ·

(∣∣∣a2 −a′2∣∣∣+ ∣∣∣b2 −b′2∣∣∣) .

11. En généralisant la relation I(a,b) = I (a1,b1), montrer que pour tous a, b > 0, on a

I(a,b) = π

2Ma,b
.

12. a) À l’aide du changement de variable u = b tan t , justifier que

I(a,b) =
∫ π/2

0

dt√
a2 cos(t )2 +b2 sin(t )2

.

b) Proposer deux méthodes pour estimer numériquement l’intégrale précédente.

Problème B
Sommes de Césaro, matrices stochastiques et périodiques

Dans tout le problème, p désigne un entier naturel supérieur ou égal à deux. On note Mp (R) l’algèbre des matrices carrées à coeffi-
cients réels et Ip la matrice identité.
• Pour tout élément M de Mp (R) et pour tout couple (i , j ) d’entiers compris entre 1 et p, on note [M]i , j le coefficient de M situé sur
la i -ième ligne et la j -ième colonne.
• Une matrice M appartenant à Mp (R) est dite stochastique si elle satisfait au deux conditions suivantes :

i) Pour tout couple (i , j ) d’entiers compris entre 1 et p, [M]i , j Ê 0 ;

ii) Pour tout entier i compris entre 1 et p,
p∑

j=1
[M]i , j = 1.

• On dit qu’une suite indexée par n, (Mn ) = (M0,M1, . . . ,Mn , . . .) de matrices appartenant à Mp (R) converge vers un élément M de

Mp (R) si, pour tout couple (i , j ), la suite des coefficients
(
[Mn ]i , j

)
converge vers [M]i , j ; on dit alors que M est la limite de la suite

(Mn ).
• Étant donné une matrice A appartenant à Mp (R), pour tout entier n Ê 0, on note Cn la matrice définie par la relation :

Cn = 1

n +1

(
Ip +A+A2 + . . .+An

)
.

• On dit enfin qu’une matrice A de Mp (R) est r -périodique, où r est un entier strictement positif, si Ar = Ip .

L’objectif de ce problème est d’étudier quelques propriétés des matrices stochastiques et notamment, la convergence de la suite de
matrices (Cn ) lorsque A est stochastique et r -périodique.
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Partie I : Étude d’un exemple

13. Soit α un nombre réel. Pour tout entier n Ê 0, on pose

γn = 1

n +1

[
1+α+α2 + . . .+αn

]
.

a) Simplifier l’expression de γn , en distinguant deux cas : α 6= 1 et α= 1.
b) Étudier en fonction de α, la convergence de la suite

(
γn

)
et, en cas de convergence, préciser sa limite.

14. On prend p = 2 et

A =


1

3

2

3
1

2

1

2

 .

Soit w l’endomorphisme de R2 canoniquement associé à A.
a) Déterminer les valeurs propres de w et une base ( f1, f2) de vecteurs propres de w .
b) Nous verrons que si l’on considère P la matrice de la famille ( f1, f2) dans la base canonique alors

A = P

[
1 0
0 − 1

6

]
P−1.

En déduire une expression de Ak , pour tout entier k Ê 0 à l’aide de P et P−1.
15. Déterminer deux matrices U et V appartenant à M2(R), telles que, pour tout k ∈N :

Ak = U+
(
−1

6

)k
V

On pourra se contenter d’exprimer U et V à l’aide de P et P−1.
16. Pour tout n ∈N, exprimer Cn en fonction de n,U et V et déterminer la limite C de la suite de matrice (Cn )n∈N.
17. Prouver que l’endomorphisme v de R2 canoniquement associé à C est un projecteur dont on précisera le noyau et l’image.

Partie II : Etude de Cn lorsque A est r -périodique

On désigne par r un entier strictement positif.
Soit (αk ) une suite r -périodique de nombres réels, c’est-à-dire telle que, pour tout entier k ∈N, αk+r = αk . On pose :

γ= 1

r
(α0 +α1 + . . .+αr−1) .

Pour tout n ∈N, on pose : γn = 1

n +1
(α0 +α1 +·· ·+αn ) (?)

18. Prouver que pour tout k ∈N,

γ= 1

r

(
αk +αk+1 +·· ·+αk+r−1

)
.

19. Montrer que la suite de terme général βn = (n +1)γn − (n +1)γ est r -périodique. En déduire que
(
βn

)
est bornée.

20. Établir que
(
γn

)
converge et préciser sa limite.

• Soit A une matrice r -périodique appartenant à Mp (R).

21. Montrer que, pour tout couple (i , j ) d’entiers compris entre 1 et p, la suite de réels de terme général αk = [Ak ]i , j est r -périodique.
En déduire que la suite de matrices (Cn )n converge vers :

C = 1

r

(
Ip +A+ . . .+Ar−1

)
.

22. Soient
(
e1,e2, . . . ,ep

)
la base canonique de Rp ,u et v les endomorphismes de Rp canoniquement associés aux matrices A et C.

a) Prouver que ur = idRp .
b) Montrer que v ◦u = u ◦ v et que u ◦ v = v .

23. On note E1(u) et E1(v) les sous-espaces propres respectivement de u et v associés à la valeur propre 1. Établir les égalités

E1(u) = E1(v) et Im(v) = E1(u).

24. Montrer que v est un projecteur. Il projette donc sur G = Im(v) parallèlement à F = Ker(v).
25. Établir enfin que Ker(v) = Im(u − idRp ).

On pourra d’abord prouver que Im(u − idRp ) ⊂ Ker(v).
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• Soit (αk ) une suite de nombres réels r -périodique à partir d’un certain rang positif m, c’est-à-dire telle que pour tout k Ê m,αk+r =
αk . On définit

(
γn

)
par la relation (?).

26. Prouver que γn admet une limite que l’on précisera.

Pour cela, on pourra considérer la suite α′k = αk+m , observer que
(
α′k

)
est r -périodique, et prouver que, γ′n étant associée à

(
α′k

)
par la

relation (?), γ′n −γn tend vers 0 lorsque n tend vers +∞.
27. Soit A une matrice de Mp (R) r -périodique à partir d’un certain rang positif m, c’est-à-dire telle que pour tout k Ê m, Ak+r = Ak .

Prouver que la suite (Cn ) admet une limite que l’on précisera.

Partie III : Étude de matrices stochastiques

On note :
* Sp l’ensemble des matrices stochastiques de Mp (R) ;
* Dp l’ensemble des matrices déterministes, c’est-à-dire stochastiques et dont tous les coefficients sont tous égaux à 0 ou 1;
* ∆p l’ensemble des matrices déterministes et inversibles ;
* Enfin, on introduit U la matrice colonne ne contenant que des « 1 » :

U =


1
1
...
1

 ∈Mn,1(R).

• Matrices stochastiques
28. Vérifier que la condition ii) est équivalente au fait que U soit vecteur propre pour la valeur propre 1.
29. Prouver que, pour tout couple (λ,µ) de nombres réels tels que λÊ 0,µÊ 0 et λ+µ= 1, et pour tout couple (M,N) d’éléments de Sp ,

la matrice λM+µN appartient encore à Sp .
30. Prouver que le produit MN de deux éléments M et N de Sp appartient à Sp .
31. Soit A un élément de Sp . Prouver que, pour tout entier n ∈N, Cn appartient à Sp .

Que peut-on en déduire pour la limite C de (Cn ), lorsqu’elle existe ?

• Matrices déterministes
32. Montrer qu’une matrice M est déterministe si et seulement si tous ses coefficients sont égaux à 0 ou 1 et si chaque ligne de M

contient exactement un coefficient égal à 1.
33. En déduire que Dp est un ensemble fini et préciser le nombre de ses éléments.
34. Montrer que le produit MN de deux éléments M et N de Dp appartient à Dp .
35. Soit A une matrice déterministe. Prouver qu’il existe un entier r Ê 1 et un entier m Ê 0 tels que Am+r = Am . En déduire que, dans ces

conditions, A est r -périodique à partir de ce rang m et que, si de plus A est inversible, A est r -périodique.
36. Soit A une matrice déterministe inversible. Prouver que A−1 l’est aussi.

• Étude de la suite (Cn ) associée à une matrice A déterministe
37. En utilisant les résultats de la partie II, établir le résultat suivant :

Soit A une matrice déterministe inversible, alors (Cn ) converge vers une matrice stochastique C telle que C2 = C.
38. Étendre ce résultat au cas où A est déterministe non inversible.

• Matrices stochastiques inversibles
Soient X et Y des éléments de Sp tels que XY = Ip . On se propose de montrer que X et Y sont déterministes inversibles.

39. On pose X =
(
αi , j

)
,Y =

(
βi , j

)
et, pour tout j compris entre 1 et p,

µ j = max
{
β1, j ,β2, j , . . . ,βp, j

}
.

a) Prouver que µ j = 1. Pour cela, on pourra calculer le coefficient [XY] j j .

b) Montrer que
p∑

i=1

p∑
j=1
βi , j =

p∑
j=1
µ j . En déduire que tous les coefficients de Y sont égaux à 0 ou 1.

c) Prouver que Y et X appartiennent à ∆p .
40. Généralisation. Soient U et V deux matrices de Sp telles que le produit UV appartienne à ∆p . Prouver que U et V appartiennent à

∆p . On pourra utiliser le résultat de la question 36.

– FIN –
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ECG 2

DS 1 A - solution

Problème A

1. Notons que si P ∈R[x], Φ(P) ∈R[x].
Soient λ,µ ∈R et P,Q ∈R[x] :

Φ(λP+µQ)(x) = (λP+µQ)(x)+ (λP+µQ)(x +1)

= λP(x)+µQ(x)+λP(x +1)+µQ(x +1)

= λ(P(x)+P(x +1))+µ(Q(x)+Q(x +1))

Φ(λP+µQ)(x) = λΦ(P)(x)+µΦ(Q)(x).

Ces deux propriétés font de Φ un endomorphisme.

2.a) Par définition du noyau :

∀t ∈R, P(t )+P(t +1) = 0.

On en déduit que

P(m)P(m +1) =−P(m)2 É 0.

De plus, P est polynomiale donc continue sur [m;m+1]. Le
théorème des valeurs intermédiaires s’applique et P s’an-
nule au moins une fois sur [m;m + 1]. Cela étant valable
pour tout m ∈ Z, P admet une infinité de racines, c’est le
polynôme nul.

2.b) On a

kerΦ= {
0R[x]

}
On sait alors que Φ est injective.

3.a) C’est une conséquence directe du fait que Rp [x] est
stable par Φ

∀P ∈Rp [x], Φ(P) ∈Rp [x].

3.b) L’injectivité de Φ induit l’injectivité de Φp . Or Φp est
un endomorphisme de dimension finie, c’est donc un
isomorphisme de Rp [x]. Justifions que Φ est un isomor-
phisme, on a déjà l’injectivité, il reste à prouver la surjecti-
vité.
Soit Q ∈R[x]. Il existe p ∈N tel que Q ∈Rp [x]. OrΦp est un
isomorphisme, en particulier, il est surjectif et

∃P ∈Rp [x], Φp (P) = Q.

Ensuite, par définition de la restriction

∃P ∈R[x], Φ(P) = Q.

La surjectivité est établie, ce qui conclut.

4.a) Soit i ∈ [[0; p]].

ϕ
(
xi

)
= xi + (1+x)i (Formule du binôme)

= 2xi +
i−1∑
j=0

(
i

j

)
x j

︸ ︷︷ ︸
∈Ri−1[x]

On en déduit que la matrice de Φp est triangulaire supé-
rieure avec uniquement des "2" sur la diagonale.

4.b) On sait que

Sp
(
Φp

)= Sp
(
MatBp

(
Φp

))= {2}

car le spectre se lit sur la diagonale pour une matrice tri-
angulaire.
Précisons maintenant le spectre de Φ.
Soit p ∈N. Si λ ∈ Sp

(
Φp

)
, il existe P ∈Rp [x]\

{
0R[x]

}
tel que

Φp (P) = λP. D’où Φ(P) = λP et λ ∈ Sp(ϕ). On a donc les in-
clusions :

∀p ∈N, Sp
(
Φp

)⊂ Sp(ϕ)

puis
⋃

p∈N
Sp

(
Φp

)⊂ Sp(Φ) (?)

Réciproquement, si λ ∈ Sp(Φ), il existe P ∈R[x] \ {0} tel que
Φ(P) = λP. si p = degP, on a aussi

P ∈Rp [x] \ {0} Φp (P) = λP.

D’où λ ∈ Sp
(
Φp

)
. Cela prouve l’inclusion inverse dans (?)

et donc l’égalité

Sp(ϕ) = ⋃
p∈N

Sp
(
Φp

)= {2}.

5. La relation (?)n s’écrit

Φ(P) = xn

n!

Comme Φ est un isomorphisme,

P =Φ−1
(

xn

n!

)
.

Il y a bien une unique solution à (?)n . Soit d le degré de En .
On peut donc écrire En = ad xd +Q(x) où Q(x) ∈ Rd−1[x].
En revenant à la condition (?)n , on a alors

ad

(
xd + (x +1)d

)
︸ ︷︷ ︸

de degré d

+Q(x)+Q(x +1)︸ ︷︷ ︸
∈Rd−1[x]

= xn

n!
.

En identifiant les degrés d = degEn = n.

6. On a

∀x ∈R, En+1(x)+En+1(x +1) = xn+1

(n +1)!
.
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En dérivant, on obtient par somme et composition

E′
n+1(x)+En+1(x +1) = n +1

(n +1)!
xn = xn

n!
.

Ainsi En+1 vérifie (∗)n . Par unicité de la solution

E′
n+1 = En .

7.a) Comme E′
n = En−1, on a en particulier

E′
n (0) = En−1(0).

Puis E′′
n = E′

n−1 = En−2, d’où

E′′
n (0) = En−2(0).

Par récurrence pour tout n ∈N,k ∈N,k É n

E(k)
n (0) = En−k (0).

7.b) D’après la formule de Taylor sur les polynômes avec
degEn = n.

En (x) =
n∑

k=0
E(k)

n (0)
xk

k !
=

n∑
k=0

En−k (0)
xk

k !
.

8. On a En (1)+En (0) = 0n

n! = 0 (pour n ∈N∗) et E0(0) = 1
2 (car

E0 est constant). D’où

|2En (0)| = |En (1)−En (0)|

=
∣∣∣∣∣ n∑
k=0

En−k (0)
1k

k !
−En (0)

∣∣∣∣∣
=

∣∣∣∣∣ n∑
k=1

En−k (0)

k !

∣∣∣∣∣
2 |En (0)| É

n∑
k=1

∣∣En−k (0)
∣∣

k !
.

Justifions par récurrence forte que pour tout n ∈N

|En (0)| É e−1

2
É 1.

* Initialisation. E0(0) = 1/2, P (0) est vraie.

* Hérédité. Soit n ∈ N∗. Supposons P (0), P (1), . . . ,
P (n −1) vraies. D’après l’inégalité précédente

|En (0)| É 1

2

n∑
k=1

1

k !
É 1

2

+∞∑
k=1

1

k !
É e−1

2
É 1.

car e ' 2,7. É 3. Ainsi P (n) est vraie.

* Conclusion. Pour tout n ∈N, P (n) est vraie.

9. Posons Pn (x) = (−1)n En (1−x). On a alors

Pn (x)+Pn (x +1) = (−1)n (En (1−x)+En (−x))

et en reprenant (?)n en changent de variable x ←−x

Pn (x)+Pn (x +1) = (−1)n
(

(−x)n

n!

)
= xn

n!
.

On en déduit que Pn vérifie (?)n . Par unicité de la solution

Pn = En .

10. On a en évaluant en 0

En (0) = (−1)n En (1)

or En (0)+En (1) = 0n

n! = 0 (carn = 0). D’où

En (0) = (−1)n+1En (0).

En particulier si n est pair (non nul)

En (0) =−En (0) puis En (0) = 0 = En (1)

* En évaluant en 1/2, on a aussi

En

(
1

2

)
= (−1)n En

(
1

2

)
.

Pour n impair,

En

(
1

2

)
=−En

(
1

2

)
puis En

(
1

2

)
= 0.

11. On a vu que

E0 = 1

2
(polynôme constant)

• Déterminons E1 sachant que ce dernier s’annule en 1/2.
Par le théorème fondamental :

E1(x) = E1(x)−E1

(
1

2

)
=

∫ x

1/2
E′

1(t )dt =
∫ x

1/2
E0(1)dt (q. 6)

E1(x) =
∫ x

1/2

1

2
dt = 1

2

(
x − 1

2

)
.

• Ensuite, on détermine E2 sachant que ce polynôme s’an-
nule en 0 :

E2(x) = E2(x)−E2(0)

=
∫ x

0
E′

2(t )dt =
∫ x

0
E1(t )dt

= 1

2

∫ x

0

(
t − 1

2

)
dt = 1

4

(
x2 −x

)
12. On peut donc calculer de proche en proche En avec la

relation de récurrence :

E0 = 1/2

En+1(x) =
{∫ x

1/2 En (t )dt si n est pair∫ x
0 En (t )dt si n est impair.

Problème B
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13.a) Soit x ∈R.

sin(2x) = sin(x +x) = 2sin(x)cos(x).

13.b) Intégrons par parties sachant que les fonctions consi-
dérées sont de classe C 1.

u1 =
∫ π/2

0
x sin(x)cos(x)dx

=
∫ π/2

0

x

2
sin(2x)dx

=
[

x

2

(
−cos(2x)

2

)] π
2

0
−

∫ π
2

0

1

2

(
−cos(2x)

2

)
dx

=−π
8

cos(π)+ 1

4

∫ π
2

0
cos(2x)dx

= π

8
+ 1

8

[
sin(2x)

] π
2
0

u1 = π

8
.

14. Par quotient de fonctions continues sur R∗, fn est conti-
nue sur R∗. Puis pour t 6= 0

fn (t ) = 1− (1− t )n

t
∼ nt

t
= n

D’où fn (t ) −→
t→0

n = fn (0).

C’est la continuité de fn en 0. Ce qui conclut sur la conti-
nuité sur R.

15. On a par la formule du binôme

In =
∫ 1

0

1− (1− t )n

t
dt

=
∫ 1

0

1− n∑
k=0

(n
k

)
(−t )k

t
dt

=
∫ 1

0

n∑
k=1

(
n

k

)
(−t )k−1 dt

=
n∑

k=1

(
n

k

)
(−1)k−1

∫ 1

0
t k−1 dt (linéarité intégrale)

In =
n∑

k=1

(
n

k

)
(−1)k−1 1

k
.

16.a) On effectue le changement affine u = 1− t∫ 1

0
(1− t )k−1 dt =

∫ 0

1
uk−1(−du) =

∫ 1

0
uk−1 du = 1

k
.

16.b) Pour t ∈ ]0;1], on a aussi la somme géométrique

n∑
k=1

(1− t )k−1 =
n−1∑
k=0

(1− t )k = 1− (1− t )n

1− (1− t )

= 1− (1+ t )n

t
.

Le résultat s’en déduit par intégration.

17. Procéder par intégration par parties.

18.

un =
∫ π

2

0

n∑
p=0

(
n

p

)
× sin(2px)

2n dx

= 1

2n

n∑
p=1

(
n

p

)∫ π/2

0
x sin(2px)dx ( somme à p = 1)

= 1

2n

n∑
p=1

(
n

p

)
π(−1)p+1

4p

= π

2n+2

n∑
p=1

(−1)p−1

p
· (−1)2

un = π

2n+2
In .

19.a) Soient x ∈ [0;1[, t ∈ [0; x]{
x − t Ê 0
1− t Ê 0

donc ϕx (t ) = x − t

1− t
Ê 0.

De plus,

x −ϕx (t ) = x + t −x

1− t
= x(1− t )+ t −x

1− t

= t (1−x)

1− t
Ê 0 (par quotient).

Ainsi ϕx (t ) É x.

Ce qui conclut.

19.b) Soient x ∈ [0;1[, t ∈ [0; x],

x −1

(1− t )2
+ a

1− t
= x −1+a(1− t )

(1− t )2

= x −at −1+a

(1− t )2

On constate que a = 1 convient.

20.a) Par composition entre une fonction affine et le loga-
rithme, h est C ∞ sur son ensemble de définition. De plus
pour tout k ∈N∗

f (k)(x) = (−1)k+1h(k)(1−x)

Or on montre par récurrence que

∀t ∈R+x , ln(k)(t ) = (−1)k+1(k −1)!

t k

D’où h(k)(x) = (k −1)!

(1−x)k
.

En particulier, on a h(k)(0) = (k −1)!.

20.b) Pour n fixé, h est de classe C n+1 et la formule de Taylor
avec reste intégral s’applique (h(0) = 0)

h(x) =
n∑

k=0

h(k)(0)

k !
xk +

∫ x

0

h(n+1)(t )

(n − t )!
(x − t )n dt

=
n∑

k=1

(k −1)!

k !
xk +

∫ x

0

n!

n!

(x − t )n

(1− t )n+1
dt

h(x) =
n∑

k=1

xk

k
+

∫ x

0

ϕx (t )n

1− t
dt .
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21. On reprend les inégalités de la question 19.a), la fonction
s 7→ sn est croissante sur R+

0 Éϕx (t )n É xn puis 0 É ϕx (t )n

1− t
É xn

1− t
.

Par croissance de l’intégrale (avec les bornes dans le bon
sens)

0 =
∫ x

0
0dt É

∫ x

0

ϕx (t )n

1− t
dt É

∫ x

0

xn

1− t
dt =−xn ln(1−x).

22. Soit x fixé dans [0;1[. On a

−xn ln(1−x) −→
n→+∞ 0

Par encadrement
Rn (x) −→

n→∞0.

On en déduit avec la relation de la question 20

n∑
k=1

xk

k
−→

n→∞h(x).

C’est la définition de la convergence de la série avec

+∞∑
k=1

xk

k
=− ln(1−x).

23.a) Soit x ∈ [0;1[. On pose I0 = 0

(1−x)
n∑

k=1
Ik xk =

n∑
k=1

Ik xk −
n∑

k=1
Ik xk+1

=
n∑

k=1
Ik xk −

n+1∑
k=1

Ik−1xk

=
n∑

k=1

(
Ik − Ik−1

)
xk − In xn+1

=
n∑

k=1

1

k
xk − In xn+1

(1−x)
n∑

k=1
Ik xk = h(x)−Rn (x)− In xn+1

avec l’égalité de la question 20.

23.b) Soit x ∈ [0;1[ fixé. On a Rn (x) −→
n→∞0

0 É In xn+1 É
(

n∑
k=1

1

)
xn+1 É nxn+1.

Par les croissances comparées nxn+1 −→
n→∞0 et par enca-

drement In xn+1 −→
n→∞0. Par passage à la limite dans l’éga-

lité de la question 23.a)

(1−x)
n∑

k=1
Ik xk −→

n→∞h(x).

Le résultat s’en déduit en divisant 1−x.

24. D’après ce qui précède avec x = 1/2 ∈ [0;1[

+∞∑
k=1

Ik

2k
= − ln(1−1/2)

1−1/2
= 2ln(2)

En reprenant la question 18, on a la convergence de la série
avec +∞∑

k=1
uk = π

4

+∞∑
k=1

Ik

2k
= π ln(2)

2
.

Problème C

25. Le programme affiche sur un graphe les valeurs

rg(A−λI3) pour λ ∈ [[−5;5]].

On détecte une valeur propre dès que rang n’est pas 3.
Comme la matrice est de taille (3,3), il y a au plus 3 valeurs
propres. Au final, on lit

Sp(M3) = {−1;0;2}.

26. Un calcul donne

E2 (M3) = Vect

 1
2
1

 , E0 (M3) = Vect

 1
0
−1



et E−1(M3) = Vect

 1
−1
1

 .

27. On constate que rg(Mn ) = 2. Comme n Ê 3, la matrice Mn
n’est pas inversible,

0 ∈ Sp(Mn ) .

28. Par définition

ImMn = Vect(C1,C2, . . . ,Cn )

où Ci désigne la i -ème colonne de Mn . Comme C1 = C3 =
C4 = ·· · = Cn

ImMn = Vect(C1,C2)

et la famille (C1,C2) est génératrice de l’image. De plus, C2
est linéairement indépendantes de C1, la famille (C1,C2)
est libre.
D’où (C1,C2) = (ε1,ε1) est une base de l’image de Mn .

29. Soit X un vecteur propre de Mn associé à λ 6= 0. Par défi-
nition

MX = λX puis M

(
1

λ
X

)
= X.

D’où X ∈ ImMn .

30. On cherche λ ∈R tel que

Mn (ε1 +αe2) = λ (ε1 +αe2) (•)

or
Mnε1 = Mn (e1 +e2 +e3 + . . .+en )

= Mn e1 +Mn e2 +Mn e3 +·· ·+Mn en

= e2 +ε1 +e2 +·· ·+e2

Mnε1 = (n −1)e2 +ε1.

et Mn (αe2) = αMn e2 = αε1. Ainsi l’égalité (•) est équiva-
lente à

(1+α)ε1 + (n −1)e2 = λε1 +λαe2
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⇐⇒
{

1+α= λ
(n −1) = λα

Car la famille (ε1,e2) est libre. Le système est alors équi-
valent à {

1+α= λ
n −1 = λ(λ−1).

D’où le résultat.

31.a) Le discriminant est :

∆= (−1)2 −4×1× (−t +1) = 4t −3.

Ainsi :

* t Ê 3/4 si et seulement si il y a deux racines réelles
* t = 3/4 si et seulement si il y a une unique racine.
* t < 3/4 si et seulement si il y a aucune racine.

31.b) Précisons que par un compte des dimensions (le noyau
est de dimension n − 2 ), il n’y a pas de plus de 3 valeurs
propres. Il y a déjà 0. Notons de plus que tout vecteur
propre s’écrit sous la forme

λ1ε1 +λ2e2 = λ1(ε1 +
λ2

λ1︸︷︷︸
=α

e2)

Dès lors les valeurs propres sont bien données par les éga-
lités de la question 30.
Il y a donc deux autres valeurs propres si et seulement si
n > 3/4. Ce qui est toujours le cas. Les deux autres valeurs
propres sont alors :

λ1 = 1−p
4n −3

2
et λ2 = 1+p

4n −3

2

32. Inversion la seconde relation :

2λ2 = 1+p
4n −3

⇐⇒ (2λ2 −1) =
p

4n −3 ⇐⇒ (2λ2 −1)2 = 4n −3

⇐⇒ λ2
2 −λ2 +1 = n ⇐⇒ λ2 (λ2 −1)+1 = n.

De plus

λ1 +λ2 = 1 et λ1 = 1−λ2.

Cette dernière relation permet de justifier que λ1,λ2 ∈Z si
et seulement si λ2 ∈Z. En posantλ2 = r , on a l’équivalence
demandée.

33. Il faut repérer les coordonnées entières de

(
r,r (r −1)+1

)
.

On trouve n ∈ {3;7;13}.

34. On sait que Mn est de rang 2, donc l’espace propre pour
la valeur propre 0 est de dimension n−2 On constate (avec
l’aide de l’exemple pour n = 3) que la famille suivante est
une base de E0 (Mn )



1
0
−1
0
...
0


,



1
0
0
−1
0
...
0


, · · · ,



1
0
0
...
0
−1


(on décale vers le bas le "-1"). En effet, elle est libre, avec
n − 2 vecteurs. Par un compte des dimensions, les autres
sous-espaces propres sont de dimension 1. Pour la valeur
propre r , on sait d’après la question 30 que ε1 + (r − 1)e2
est vecteur propre. Donc

Er (Mn ) = Vect(ε1 + (r −1)e2)

De même avec 1− r , l’autre valeur propre

E1−r (Mn ) = Vect(ε1 − r e2) .

35. Dans notre exemple, pour i ∈ [[1;n]] \ {2}

ai i = 0 et
∑
i 6= j

ai j = 1

Dans ce cas Ii = {x ∈R||x |É 1}.
si i = 2,

a22 = 1 et
∑
j 6=2

ai j = n −1.

Dans ce cas I2 = {x ∈ R, |x −1| É n −1}. Par inégalité trian-
gulaire, on a pour tout x ∈ I2

|x| É |x −1+1| É |x −1|+1 É n

D’après le théorème admis, λ appartient à l’un des inter-
valles Ii , en particulier

|λ| É n.

36.a) En prenant garde au décalage d’indice en python, on a
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def matrice (n):
M=np. zeros ([n,n])
for i in range (n):

M[1,i]=1
M[i ,1]=1

return M

Un petit test :

>>> matrice (4)
array ([[0. , 1., 0., 0.] ,

[1. , 1., 1., 1.] ,
[0. , 1., 0., 0.] ,
[0. , 1., 0., 0.]])

36.b)

def test1 (n):
d=0
M= matrice (n)

for i in range (-n,n+1):
d+=(n-al. matrix_rank (M-i*np.eye(n)

))
if d==n:

return 1
return 0

37.a)

def test2 (n):
for r in range (n):

if r*(r -1) +1==n:
return 1

return 0

37.b) Le test est concluant car on retrouve les valeurs obte-
nues à la question 33. On a bien des valeurs propres en-
tières si et seulement si n s’écrit sous la forme r (r −1)+1.
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ECG 2

DS 1* - solution

1.

import numpy as np

def suite (n,a,b):
for i in range (n):

c=a
# pour sauvegarder la valeur de an
a=(a+b)/2
# calcul de a_(n+1)
b=np.sqrt(c*a)
# calcul de b_(n+1)

return a,b

Si on demande la liste des n premiers termes de la suite pour
faire l’affichage, on peut écrire :

def suite2 (n,a,b):
A=np. zeros (n)
B=np. zeros (n)
A[0]=a
B[0]=b
for i in range (n -1):

A[i +1]=( A[i]+B[i]) /2
B[i+1]= np.sqrt(A[i]*B[i])

return A,B

A,B= suite2 (10 ,1000 ,0.0001)
indice =np. arange (0 ,10 ,1)
plt.plot(indice ,A,’o’)
plt.plot(indice ,B,’*’)
plt. legend ([ ’an ’,’bn ’])
plt.show ()

2. Soit n ∈N

an+1 −bn+1 = 1

2

(
an +bn −2

p
an

√
bn

)
.

= 1

2

(p
an −

√
bn

)2 Ê 0.

Avec le décalage d’indice, on en déduit que pour tout n ∈
N∗ (car n +1 ∈N ), on a

an Ê bn .

• Soit n ∈N∗

an+1 −an = an +bn

2
−an = bn −an

2
É 0

D’où an+1 É an .

et

bn −bn+1 = bn −
√

an bn =
√

bn

(√
bn −p

an

)
É 0.

Finalement bn+1 Ê bn .

3. Notons que pour tout n ∈N∗

a1 Ê an Ê bn Ê b1.

La suite (an )nÊ1 (on commence à 1) est décroissante et mi-
norée, elle converge.
La suite (bn )nÊ1 est croissante et majorée, elle converge.
Justifions la convergence vers une limite commune. Pour
cela, on pose `a , `b ∈R tels que

an −→
n→∞`a et bn −→

n→∞`b .

Les relations :

∀n ∈N, an+1 = an +bn

2

donnent par passage à la limite

`a = `a +`b

2
puis `a = `b .

Ce qui conclut.

4.a) Soit n ∈N∗

an+1
2 −bn+1

2 = 1

4
(an +bn )2 −an bn

= 1

4
(an −bn )2 = 1

4
en

2.

De plus, l’identité remarquable

an+1
2 −bn+1

2 = (an+1 −bn+1) (an+1 +bn+1)

= en+1 ·2an+2

donne finalement

en+1 ·2an+2 = 1

4
en

2 puis en+1 = en
2

8an+2

car an+2 6= 0.

4.b) Comme la suite (an )n∈N∗ est minorée par b1, on a direc-
tement

en+1 É en
2

8b1
.

5.a) On reconnait une suite arithmético-géométrique.
Soit `∈R tel que

`= 2`− ln(8b1) soit `= ln(8b1) .

La suite de terme général vn = un − ` est géométrique car
pour tout n ∈N∗{

`= 2`− ln(8b1) L1

un+1 = 2un − ln(8b1) L2

La différence L2 −L1 donne

vn+1 = un+1 −`= 2(un −`) = 2vn .

Ainsi
∀n ∈N∗, vn = 2n−1v1
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où v1 = u1 −`= ln
(
e2

1/(8b1)
)
.

On conclut

∀n ∈N∗, un = vn +`= 2n−1 · ln
( e2

1

8b1

)
+ ln(8b1).

5.b) Justifions par récurrence que la propriété

P (n) : un − ln(en ) Ê 0

est vraie pour tout n ∈N∗.

* Initialisation. C’est direct car u1 = ln(e1) . P (1) est
vraie.

* Hérédité. Soit n ∈N∗. Supposons P (n) vraie.

un+1 − ln(en+1) Ê 2un + ln(8b1)− (2ln(en )− ln(8b1)) .

Ê 2
(
un − ln(en )

)Ê 0.

Ce qui conclut la récurrence.

Dès lors
ln(en ) É un

Puis
en É eun = ce−γ2n

où on a posé :

c = 8b1 et γ=−1

2
ln

( e2
1

8b1

)
= ln

( e1

(2
p

2)ab

)
.

6. On utilise la relation

en+1 = e2
n

8an+2
É e2

n

8bn

pour obtenir le programme :

def approx (a,b):
a=(a+b)/2
b=np.sqrt(a*b)
erreur =a-b
while erreur >10**( -8):

c=a
# pour sauvegarder la valeur de an
a=(a+b)/2
# calcul de a_(n+1)
b=np.sqrt(c*a)
# calcul de b_(n+1)
erreur = erreur **2/(8* b)

return a

7.a) L’intégrande est continue sur [0;+∞[, on a donc une in-
tégrale généralisée en +∞. De plus,

1√
a2 +u2

√
b2 +u2

∼
u→+∞

1

u2
.

Par le critère d’équivalence des intégrales de fonctions po-
sitives et le critère de Riemann (avec 2 > 1), on a bien la
convergence de I(a,b).

7.b) On effectue le changement de variable affine v = u/a

I(a, a) =
∫ +∞

0

du

a2 +u2
= 1

a
·
∫ +∞

0

du
a

1+ ( u
a

)2

= 1

a

∫ +∞

0

dv

1+ v2
= 1

a

[
arctan(v)

]+∞
0

Finalement, I(a, a) = π

2a
.

8.a) La fonction

ϕv ∈ ]0;+∞[ 7→ 1

2

(
v − ab

v

)
est de classe C 1 avec

∀v ∈ ]0;+∞[, ϕ′(v) = 1

2

(
1+ ab

v2

)
> 0.

La fonction ϕ est donc strictement monotone et C 1. Le
changement de variable est donc licite.
Précisons de plus que

ϕ(v) −→
v→0+

−∞ et ϕ(v) −→
v→+∞+∞.

8.b) Suivons l’indication :

u2 +a1
2 = 1

4

((
v − ab

v

)2
+ (a +b)2

)

= 1

4

(
v2 + a2b2

v2
−2ab +a2 +b2 +2ab

)

= 1

4

(
v2 + a2b2

v2
+a2 +b2

)

= 1

4v2

(
v4 +a2b2 + v2

(
a2 +b2

))
u +a1

2 = 1

4v2

(
v2 +a2

)(
v2 +b2

)
.

De plus

u2 +b1
2 = 1

4

((
v − ab

v

)2
+4ab

)

= 1

4

(
v2 + a2b2

v2
+2ab

)

= 1

4

(
v + ab

v

)2

u +b1
2 = v2

4

(
1+ ab

v2

)2
.

Par produit, on a donc(
u2 +a1

2)(
u2 +b1

2)
= 1

42

(
v2 +a2

)(
v2 +b2

)(
1+ ab

v2

)2
.

Effectuons maintenant le changement de variable indiqué

ϕ(v) = u,
du

dv
=ϕ′(v) = 1

2

(
1+ ab

v2

)
.

Lorsque v varie de 0+ à +∞, u varie de −∞ à +∞.

I(a1,b1) =
∫ +∞

0

du√(
u2 +a2

1

)(
u2 +b2

1

)
= 1

2

∫ +∞

−∞
du√(

u2 +a2
1

)(
u2 +b2

1

) parité

= 1

2

∫ +∞

0

1
2

(
1+ab/v2)

dv

1
4

√(
v2 +a2

)(
v2 +b2

)(
1+ ab

v2

)2

=
∫ +∞

0

dv√(
v2 +a2

)(
v2 +b2

)
I (a1,b1) = I(a,b).
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9. La fonction fu est décroissante et positive sur [α;+∞[,
donc t1 Ê α impose | f (t1) | É f (α). Ensuite

fu (t1)− fu (t2) = 1√
t 2
1 +u2

− 1√
t 2
2 +u2

=
√

t 2
2 +u2 −

√
t 2
1 +u2√

t 2
1 +u2 ·

√
t 2
2 +u2

fu (t1)− fu (t2) =
(√

t 2
2 +u2 −

√
t 2
1 +u2

)
fu (t1) fu (t2).

Or √
t 2
2 +u2 −

√
t 2
1 +u2

=
(√

t 2
2 +u2 −

√
t 2
1 +u2

)(√
t 2
2 +u2 +

√
t 2
1 +u2

)
√

t 2
2 +u2 +

√
t 2
1 +u2

=
(
t 2
2 +u2)− (

t 2
1 +u2)√

t 2
2 +u2 +

√
t 2
1 +u2

= t 2
2 − t 2

1√
t 2
2 +u2 +

√
t 2
1 +u2

.

On obtient

∣∣ fu (t1)− fu (t2)
∣∣É ∣∣t 2

2 − t 2
1

∣∣
2
√
α2 +u2

fu (t1) fu (t2) É
(
t 2
2 − t 2

1

)
2

fu (α)3.

Pour la dernière inégalité, on commence par écrire

fu (t1) fu (s1)− fu (t2) fu (s2)

= fu (t1)
(

fu (s1)− fu (s2)
)+ fu (s2)

(
fu (t1)− fu (t2)

)
.

Par inégalité triangulaire et en reprenant les majorations
précédentes :∣∣ fu (t1) fu (s1)− fu (t2) fu (s2)

∣∣
É ∣∣ fu (t1)

∣∣ · ∣∣ fu (s1)− fu (s2)
∣∣+ ∣∣ fu (s2)

∣∣ · ∣∣ fu (t1)− fu (t2)
∣∣

É
∣∣ fu (α)

∣∣4

2

(∣∣∣s2
1 − s2

2

∣∣∣+ ∣∣∣t 2
1 − t 2

2

∣∣∣)
10. On a par linéarité des intégrales convergentes

∣∣I(a,b)− I
(
a′,b′)∣∣= ∣∣∣∣∫ +∞

0
fu (a) fu (b)− fu

(
a′) fu

(
b′) du

∣∣∣∣
É

∫ +∞

0

∣∣ fu (a) fu (b)− fu
(
a′) fu

(
b′)∣∣ du

É
∣∣a2 −a′2∣∣+ ∣∣b2 −b′2∣∣

2

∫ +∞

0
fu (α)4 du.

Le résultat s’en déduit en posant

C = 1

2

∫ +∞

0
fu (α)4 du.

(l’intégrale étant bien convergente).

11. En reprenant le résultat de la question 8, on a :

∀n ∈N, I (an ,bn ) = I(a,b).

Par conséquent lim
n→+∞ I (an ,bn ) = I(a,b).

Or on a aussi∣∣I(Ma,b ,Ma,b
)− I (an ,bn )

∣∣É C
(∣∣∣a2

n −M2
a,b

∣∣∣+ ∣∣∣b2
n −M2

b,b

∣∣∣)
On a de plus ∣∣∣a2

n −M2
a,b

∣∣∣+ ∣∣∣b2
n −M2

a,b

∣∣∣ −→
n→∞0.

Donc par encadrement

lim
n→+∞ I (an ,bn ) = I (Ma ,b,Ma ,b) .

On conclut arec la question 7.b)

I(a,b) = I
(
Ma,b ,Ma,b

)= π

2Ma,b
.

12.a) Le changement de variable proposé est C 1 et stricte-
ment croissant sur ]0; π2 [ avec

du = b

cos2 t
dt .

De plus

u = b tan t −→
t→0

0 et u = b tan t −→
t→ π

2
− +∞.

Or on montre que

tan2 t = 1−cos2 t

cos2 t
= 1

cos2 t
−1.

puis
cos2 t

b2
= 1

b2 tan2 t +b2
= 1

u2 +b2
.

Comme t ∈ [
0; π2

]
, cos t est positif et on obtient la simplifi-

cation de l’intégrande :

cos t/b√
a2 +b2 tan2 t

= 1√
u2 +b2 ·

√
a2 +u2

.

Le changement de variable donne alors∫ π
2

0

dt√
a2 cos2 t +b sin2 t

=
∫ π

2

0

dt

cos t
√

a2 +b tan2 t

=
∫ π

2

0

cos t/b√
a2 +b2 tan2 t

· b dt

cos2 t

=
∫ +∞

0

1√
u2 +b2 ·

√
a2 +u2

du

=I(a,b).

12.b) Pour calculer numériquement cette intégrale, on peut :
* Utiliser la méthode des rectangle.

* Utiliser le programme de la question 6 puis la relation
de la question 11.

13.a) On est dans le cas d’une progression géométrique de
raison α.
* Si α 6= 1

γn = 1

n +1
· 1−αn+1

1−α
* Si α= 1

γn = n +1

n +1
= 1.
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13.b) Si |α| < 1, on sait que αn+1 −→
n→∞0 et alors

γn −→
n→∞0.

Si α=−1, on a

γn = 1

n +1
· 1− (−1)n+1

2
−→

n→∞0.

* Si α= 1
γn = 1 −→

n→∞1.

* Si α> 1, on a par les croissances comparées

γn −→
n→∞+∞.

* Si α < 1, la suite
(
γn

)
n∈N change de signe ã chaque

rang à partir d’un certain rang sans converger.

14.a) Déterminons le spectre. Soit λ ∈R

det(A−λI2) =
(

1

3
−λ

)(
1

2
−λ

)
− 1

3

= λ2 − 5

6
λ− 1

6
.

On constate que 1 est racine évidente. Par les relation co-
efficients/racines, −1/6 est l’autre racine. Ainsi

Sp(A) =
{

1;−1

6

}
.

On vérifie ensuite que

A

[
1
1

]
=

[
1
1

]
et A

[
4
−3

]
=−1

6

[
4
−3

]
.

On conclut en posant

f1 = (1,1) ∈R2, f2 = (4,−3) ∈R2

de sorte que w
(

f1
) = f1, w

(
f2

) = f2 avec f1, f2 non nuls.
Ces deux vecteurs forment une famille libre de R2 a 2 élé-
ments, c’est une base de R2.

14.b) Par récurrence, on établit

∀k ∈N, Ak = P

[
1 0
0 (−1/6)k

]
P−1.

15. Posons

U = P

[
1 0
0 0

]
P−1 et V = P

[
0 0
0 1

]
P−1

de sorte que

Ak = P

([
1 0
0 0

]
+

(
−1

6

)k [
0 0
0 1

])
P−1

= P

[
1 0
0 0

]
P−1 +

(
−1

6

)k
P

[
0 0
0 1

]
P−1

Ak = U+
(
−1

6

)k
V.

16. Soit n ∈N∗.

Cn = 1

n +1

n∑
k=0

Ak = 1

n +1

n∑
k=0

(
U+

(
−1

6

)k
V

)

= U+
n∑

k=0
(−1/6)k

n +1
V

Cn = U+γn V

où γn est défini à la question 13 avec α=−1/6.
D’après 13.b) γn −→

n→∞0 et

Cn −→
n→∞U.

On pose donc C = U.

17. Comme

C2 =
(
P

[
1 0
0 0

]
P−1

)(
P

[
1 0
0 0

]
P−1

)

= P

[
1 0
0 0

]2

P−1

= P

[
1 0
0 0

]
P−1

C2 = C.

On a donc v ◦ v = v avec v linéaire, c’est un projecteur.
Si on note P = [F1,F2] les colonnes de P, on a

F1 = P

[
1
0

]
, F2 = P

[
0
1

]
et

CF1 = P

[
1 0
0 0

][
1
0

]
= P

[
1
0

]
= F1.

CF2 = P

[
1 0
0 0

][
0
1

]
= 02,1.

Ces relations se traduisent par

v( f1) = f1 et v( f2) = 0R2 .

On en déduit (sachant que le noyau et l’image sont de di-
mension 1)

Ker v = Vect
(

f2
)= Vect((4,−3))

Im v = Vect
(

f1
)= Vect((1,1)).

18. Raisonnons par récurrence sur la propriété

P (k) : γ= 1

r

(
αk +·· ·+αk+r−1

)
* Initialisation. P (0) est vraie par définition de γ.

* Hérédité. Soit k ∈N. Supposons P (k) vraie.

1

r

(
αk+1 +·· ·+αk+1+r−1

)
= 1

r

(
αk+1 +·· ·+αk+r−1 +αk+r

)
= 1

r

(
αk+1 +·· ·+αk+r−1 +αk

)
(r -périodicité)

= 1

r

(
αk +αk+1 +·· ·+αk+r−1

)
= γ.

Dès lors, P (k+1) est vérifiée, ce qui termine la récurrence.
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