CHAPITRE 9

Diagonalisation

Die Mathematiker sind eine Art Franzosen : redet man zu ihnen, so übersetzen sie es in ihre Sprache, und dann ist es alsobald ganz etwas anderes. ^a

GOETHE

Écrivain allemand (1749-1832)

a. Les mathématiciens sont comme les Français : quoi que vous leur disiez, ils le traduisent dans leur propre langue et le transforment en quelque chose de totalement différent.

1

Définitions

DÉFINITION

endomorphisme diagonalisable

 $Soit \, \phi \in \mathcal{L}(E)$.

On dit que φ est diagonalisable s'il existe une base de E qui soit composée de vecteurs propres de φ .

Exemples.

- Dans \mathbb{R}^2 . Posons $u=(1,-1),\ v=(0,2)$ et $\varphi:\mathbb{R}^2\to\mathbb{R}^2$ définie par $\varphi(x,y)=(-x,3x+2y)$. On vérifie que $\varphi(u)=-u$ et $\varphi(v)=2v$. Résumons :
 - $\rightarrow u$ et v sont deux vecteurs propres de φ .
 - $\rightarrow u$ et v sont deux vecteurs non colinéaires. Ils forment une famille libre de \mathbb{R}^2 . (u, v) est donc une base de \mathbb{R}^2 .

L'endomorphisme φ est un endomorphisme diagonalisable de \mathbb{R}^2 .

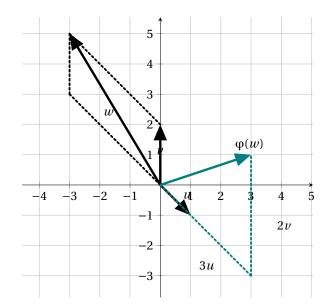
• L'endomorphisme $\psi: P \in \mathbb{R}_n[x] \mapsto (x-1)P'(x) \in \mathbb{R}_n[x]$ est diagonalisable. En effet, si on pose $P_i(x) = (x-1)^i$ pour tout $i \in [[0;n]]$, on calcule $\psi(P_i) = iP_i$. De plus, la famille (P_i) est libre (de degré échelonné) et contient autant de vecteurs que la dimension de $\mathbb{R}_n[x]$. On a donc une base de vecteurs propres. L'endomorphisme ψ est un endomorphisme diagonalisable de $\mathbb{R}_n[x]$.

Exercice 1

- ♦ Soient φ , $s \in \mathcal{L}(E)$ avec E de dimension finie.
- Les questions sont indépendantes.
- 1. Justifier que si φ est diagonalisable et bijectif, φ^{-1} est aussi diagonalisable.
- 2. Que dire de φ si ce dernier est diagonalisable et n'admet qu'une seule valeur propre?
- 3. Que dire de φ si ce dernier est diagonalisable et rg $(\varphi^2) = 0$?
- **4.** $\leftrightarrow \diamond \diamond$ Si φ est diagonalisable et *s* bijective. Justifier que $s \circ \varphi \circ s^{-1}$ est aussi un endomorphisme diagonalisable.

#DA1

p. 20



Interprétation géométrique

Posons de plus w = (-3,5). On a w = -3u + v. Comme φ est linéaire.

$$\varphi(w) = -3\varphi(u) + \varphi(v)$$

= 3u + v = (3, 1).

Ce court calcul illustre un fait important. Les calculs dans une base de vecteurs propres sont beaucoup plus faciles puisque les restrictions de ϕ aux sousespaces propres sont des homothéties.

$$\varphi|_{\mathcal{E}_{\lambda}(\varphi)}: u \mapsto \lambda u.$$

DÉFINITION

matrice diagonalisable

 $Soit A \in \mathcal{M}_n(\mathbb{R}).$

On dit que A est diagonalisable s'il existe une matrice inversible P et une matrice diagonale $D \in \mathcal{M}_n(\mathbb{R})$ telles que

$$A = P \cdot D \cdot P^{-1}.$$

Autrement dit, une matrice est diagonalisable si et seulement si elle est semblable à une matrice diagonale. Dans ce cas, P est la matrice de passage de la base canonique de $\mathcal{M}_{3,1}(\mathbb{R})$ à une base de vecteurs propres de A.

Remarque. Si la matrice A est diagonalisable, alors les colonnes de P forment une base de $\mathcal{M}_{n,1}(\mathbb{R})$ constituée de vecteurs propres de A. De plus, le spectre de A s'identifie au spectre de D qui correspond donc aux coefficients diagonaux de D.

Preuve. En effet, si on note $P = \begin{bmatrix} C_1 & C_2 & \dots & C_n \end{bmatrix}$, $D = diag(d_1, d_2, \dots, d_n)$ et E_i est la matrice colonne constituée de zéro sauf I un I en position (i, 1). On a donc $PE_i = C_i$, $DE_i = d_i E_i$ et

$$AC_i = (PDP^{-1})PE_i = PDE_i = P(d_iE_i) = d_iPE_i = d_iC_i$$
 et $C_i \neq 0_{n,1}$.

La matrice colonne C_i est vecteur propre de A pour la valeur propre A. Comme P est inversible, la famille des colonnes de P est une base de $\mathcal{M}_{n,1}(\mathbb{R})$. D'où le résultat.

Exemples.

• Reprenons l'exemple page $\ref{eq:avec A} = \begin{bmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{bmatrix}$. On a montré que

$$Sp(A) = \{1,2,-4\} \quad avec \quad E_1(A) = Vect \left(\left[\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right] \right), \quad E_2 = Vect \left[\begin{array}{c} 4 \\ 3 \\ -2 \end{array} \right] \quad et \quad E_{-4} = Vect \left[\begin{array}{c} 2 \\ -3 \\ 2 \end{array} \right].$$

On pose

$$P = \left[\begin{array}{ccc} 1 & 4 & 2 \\ 1 & 3 & -3 \\ 1 & -2 & 2 \end{array} \right].$$

On vérifie numériquement :

```
D = np.array(([1, 0, 0], [0, 2,
 0], [0, 0, -4]))
#attention à l'orde des
      valeurs propres
 = np.array(([1, 4, 2], [1, 3, -3], [1, -2, 2]))
P_inv = np.linalg.inv(P)
print(P @ D @ P_inv)
```

```
>>> print(P @ D @ P_inv)
[[-2.22044605e-16 2.00000000e+00 -1.00000000e+00]
 [ 3.00000000e+00 -2.00000000e+00 0.00000000e+00]
[-2.00000000e+00 2.00000000e+00 1.00000000e+00]
                                              1.00000000e+00]]
```

On retrouve bien $A = PDP^{-1}$ (attention aux arrondis près).

• La matrice $T = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ n'est pas diagonalisable.

Preuve. Raisonnons par l'absurde en la supposant diagonalisable. Elle est donc semblable à une matrice diagonale dont les coefficients diagonaux sont les valeurs propres de T. Or, T est triangulaire avec seulement 1 sur la diagonale. 1 est la seule valeur propre et T serait semblable à la matrice identité. Absurde, la seule matrice semblable à l'identité est l'identité.

Exercice 2

- 1. Si A est diagonalisable alors A² est diagonalisable.
- **2.** Si A² est diagonalisable alors A est diagonalisable.
- 3. Si A est inversible, A est diagonalisable si et seulement si A^{-1} est diagonalisable.
- 4. La somme de deux matrices diagonalisables est diagonalisable.

DA2

p. 20

p. 20

Exercice 3

+ \leftarrow Montrer que si rg(A²) < rg(A), alors A ne peut-être diagonalisable.

DA3

PROPOSITION lien en dimension finie

Soit E, un espace vectoriel de dimension finie.

Soient $\varphi \in \mathcal{L}(E)$ et $A \in \mathcal{M}_n(\mathbb{R})$, la matrice de φ dans une base \mathcal{B} de E. On a l'équivalence entre les énoncés.

- L'endomorphisme φ est diagonalisable.
- ii) La matrice A est diagonalisable.

Preuve. Raisonnons par double implication.

Supposons l'endomorphisme φ diagonalisable. Il existe donc une base $\mathscr{C} = (e_i)_{i \in [[1;n]]}$ de vecteurs propres. Chaque $i \in [n]$ [[1; n]], il existe $\lambda_i \in \mathbb{R}$ tel que

$$\varphi(e_i) = \lambda_i e_i$$
.

La matrice $\mathrm{Mat}_{\mathscr{C}}(\phi)$ est alors diagonale

D'après la formule de changement de base

$$A = Mat_{\mathscr{B}}(\varphi) = P_{\mathscr{B}\mathscr{C}} Mat_{\mathscr{C}}(\varphi) P_{\mathscr{B}\mathscr{C}}^{-1}.$$

La matrice A est donc diagonalisable.

$$A = PDP^{-1}$$
.

Il existe une base $\mathscr C$ de E telle que $P=P_{\mathscr B\mathscr C}$ et dans ce cas $D=\operatorname{Mat}_{\mathscr C}(\phi)$. On constate alors que $\mathscr C$ est une base de vecteurs propres de φ qui est donc un endomorphisme diagonalisable.

2

PROPOSITION

Caractérisations

2.1 Version « endomorphisme »

Soit $\varphi \in \mathcal{L}(E)$. On a l'équivalence entre les énoncés suivants.

- i) L'espace vectoriel E est somme directe des sous-espaces propres de φ .
- ii) L'endomorphisme φ est diagonalisable.

Preuve. Raisonnons par double implication.

⇒ Supposons i). C'est-à-dire

$${\rm E} = \bigoplus_{\lambda \in {\rm Sp}(\varphi)} {\rm E}_{\lambda}(\varphi).$$

Chaque vecteur de $E_{\lambda}(\phi)$ non nul est un vecteur propre associé à la valeur propre λ . Fixons, pour tout $\lambda \in Sp(\phi)$, \mathscr{B}_{λ} , une base de $E_{\lambda}(\phi)$. Cette base est donc constituée de vecteur propre de ϕ . Si \mathscr{B} est la famille obtenue par concaténation des bases \mathcal{B}_{λ} de $E_{\lambda}(\phi)$ pour $\lambda \in Sp(\phi)$, alors \mathcal{B} est une base de E constituée de vecteurs propres de ϕ (voir théorème page $\ref{eq:partition}$). L'endomorphisme ϕ est donc diagonalisable.

Supposons ii) et soit \mathcal{B} une base de vecteurs propres de φ . Notons \mathcal{B}_{λ} la famille obtenue en regroupant tous les vecteurs propres de \mathscr{B} associées à la valeur propre λ . Comme $E_{\lambda}(\phi)$ est un sous-espace vectoriel, il est stable par combinaisons linéaires et

$$Vect(\mathscr{B}_{\lambda}) \subset E_{\lambda}(\omega)$$
.

Par somme

$$\sum_{\lambda \in Sp(\phi)} Vect \big(\mathscr{B}_{\lambda} \big) \subset \sum_{\lambda \in Sp(\phi)} E_{\lambda}(\phi) \subset E.$$

Comme \mathscr{B} (concaténation des familles \mathscr{B}_{λ}) est une base de E, on a aussi

$$\sum_{\lambda \in \operatorname{Sp}(\phi)} \operatorname{Vect} \big(\mathscr{B}_{\lambda} \big) = \operatorname{Vect} (\mathscr{B}) = \operatorname{E}.$$

Nécessairement

$$\sum_{\lambda \in \operatorname{Sp}(\varphi)} \operatorname{E}_{\lambda}(\varphi) = \operatorname{E}.$$

On conclut en rappelant que la somme des sous-espaces propres est toujours directe.

Soit $n \in \mathbb{N} \setminus \{0; 1\}$. Posons pour tout polynôme $P \in \mathbb{R}_n[x]$, le polynôme $\phi(P)$ défini par

$$\varphi(P)(x) = P(1)S(x) - P(x)$$
 où $S(x) = \sum_{k=0}^{n} x^{k}$.

p. 21

caractérisation avec les s.e.p

On vérifie que φ est un endomorphisme de $\mathbb{R}_n[x]$. Montrer que :

$$\mathbb{R}_n[x] = \operatorname{Ker}(\varphi + \operatorname{id}_{\mathbb{R}_n[x]}) \oplus \operatorname{vect}(S).$$

En en déduire que φ est diagonalisable.

DA4

COROLLAIRE

caractérisation avec les dimensions

Soit $\phi \in \mathcal{L}(E)$ avec E de dimension finie. On a l'équivalence entre les énoncés suivants.

- $\sum_{\lambda \in Sp(\phi)} \dim (E_{\lambda}(\phi)) = \dim(E).$
- L'endomorphisme φ est diagonalisable. ii)

Preuve. C'est une conséquence directe du théorème précédent et du théorème page ?? qui affirme l'équivalence entre :

- i) $\dim \left(\sum_{i=1}^{p} F_i\right) = \sum_{i=1}^{p} \dim (F_i).$ ii) La somme $\sum_{i=1}^{p} F_i$ est directe.

Où $F_1, ..., F_p$ sont des sous-espaces vectoriels de dimension finie de E.

Remarque. Comme $\dim(E_{\lambda}(\phi)) \ge 1$, on retrouve le fait qu'un endomorphisme de dimension finie a au plus $\dim(E)$ valeurs propres.

Exemple. Posons l'endomorphisme $\varphi : \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})$ défini par $\varphi(M) = {}^tM$. On remarque que $E_1(\varphi)$ et $E_{-1}(\varphi)$ correspondent respectivement aux sous-espaces vectoriels des matrices symétriques et antisymétriques. Or, un exercice classique donne

$$\dim\big(\mathrm{E}_1(\phi)\big) = \frac{n(n+1)}{2} \quad \text{ et } \quad \dim\big(\mathrm{E}_{-1}(\phi)\big) = \frac{n(n-1)}{2}.$$

En particulier

$$\dim(E_1(\varphi)) + \dim(E_{-1}(\varphi)) = n^2 = \dim(\mathcal{M}_n(\mathbb{R})).$$

Nécessairement, φ n'a pas d'autre valeur propre et est diagonalisable.

COROLLAIRE cas particulier

Soit $\varphi \in \mathcal{L}(E)$ avec E de dimension finie.

Siφ possède dim(E) valeurs propres distinctes,

φ est diagonalisable et les sous-espaces propres sont tous de dimension 1.

Preuve. Supposons que φ possède $n = \dim(E)$ valeurs propres $\lambda_1, \lambda_2, \dots, \lambda_n$ deux à deux distinctes. Par définition d'une valeur

$$\forall i \in [[1; n]], \quad \dim(E_{\lambda_i}(\varphi)) \ge 1.$$

 $\sum_{i=1}^{n} \dim \left(\mathbb{E}_{\lambda_i}(\varphi) \right) \geqslant \sum_{i=1}^{n} 1 = n = \dim(\mathbb{E}).$ Par somme:

 $\bigoplus_{i=1}^{n} E_{\lambda}(\phi) \subset E \quad \text{puis} \quad \sum_{i=1}^{n} \dim \left(E_{\lambda_{i}}(\phi) \right) = \dim \left(\bigoplus_{i=1}^{n} E_{\lambda_{i}}(\phi) \right) \leq \dim(E).$ Or, on a aussi

 $\sum_{\lambda \in \operatorname{Sp}(\varphi)} \dim \left(E_{\lambda}(\varphi) \right) = \dim(E)$ Par encadrement

et d'après la caractérisation précédente, φ est diagonalisable.

Attention. La réciproque est fausse. Par exemple, pour E de dimension $n \ge 2$, l'endomorphisme id_E est diagonalisable avec seulement une valeur propre (1).

♦ Seemple

Soit $n \in \mathbb{N} \setminus \{0; 1\}$. Posons pour tout polynôme $P \in \mathbb{R}_n[x]$, le polynôme $\varphi(P)$ défini par

Exercice 5

$\varphi(P)(x) = \frac{1}{n}x(1-x)P'(x) + xP(x).$

p. 21

- **1.** Vérifier que φ est un endomorphisme de $\mathbb{R}_n[x]$.
- 2. Pour tout $k \in [[0; n]]$, on pose $P_k(x) = x^k (1 x)^{n k}$. Calculer $\varphi(P_k)$.
- 3. Justifier que φ est diagonalisable.

DA5

2.2 Version « matricielle »

Commençons par une remarque. On introduit l'endomorphisme

$$\phi_{\mathbf{A}} : \left\{ \begin{array}{ccc} \mathcal{M}_{n,1}(\mathbb{R}) & \to & \mathcal{M}_{n,1}(\mathbb{R}) \\ \mathbf{X} & \mapsto & \mathbf{A}\mathbf{X}. \end{array} \right.$$

Ainsi, pour $V \in \mathcal{M}_{n,1}(\mathbb{R})$, $\phi_A(V) = AV$ et on a l'équivalence : V est vecteur propre de A si et seulement si V est vecteur propre de φ_A. Plus généralement,

$$ker(A) = ker(\phi_A)$$
.

Justifions maintenant que la matrice A est diagonalisable si et seulement si φ_A est un endomorphisme diagonalisable. **Preuve.** Raisonnons par double implication.

- Supposons la matrice A diagonalisable. Soient P inversible et D diagonale telles que $A = P^{-1}DP$. Nous avons vu que les colonnes de P forment une base de $\mathcal{M}_{n,1}(\mathbb{R})$ composée de vecteurs propres de A. C'est aussi une base de $\mathcal{M}_{n,1}(\mathbb{R})$ composée de vecteurs propres de $\phi_{\mbox{\scriptsize A}}$ qui est donc diagonalisable.
- Réciproquement, si ϕ_A est un endomorphisme diagonalisable, ϕ_A (et donc A) admet une base de vecteurs propres. Notons $(C_i)_{i \in [[1,n]]}$, une telle base. Pour tout indice i, il existe $\lambda_i \in \mathbb{R}$ tel que $AC_i = \lambda_i C_i$. Si on pose $P = [C_1, C_2, \dots, C_n]$

$$\begin{aligned} \mathbf{AP} &= \mathbf{A}[C_1, C_2, \dots, C_n] \\ &= [\mathbf{AC}_1, \mathbf{AC}_2, \dots, \mathbf{AC}_n] \\ &= [\lambda_1 C_1, \lambda_2 C_2, \dots, \lambda_n C_n] = \mathbf{PD} \quad \text{avec} \quad \mathbf{D} = \mathrm{diag}(\lambda_1, \dots, \lambda_n). \end{aligned}$$

Comme la famille $(C_i)_{i \in [1:n]}$ est une base, P est inversible et A = PDP⁻¹. La matrice A est diagonalisable.

Regroupons et traduisons les résultats précédents dans le cadre matriciel.

THÉORÈME caractérisations

Soit $A \in \mathcal{M}_n(\mathbb{R})$. Les énoncés suivants sont équivalents.

- La matrice A est diagonalisable.
- Il existe une base de $\mathcal{M}_{n,1}(\mathbb{R})$ formée de vecteurs propres de A.
- $\mathcal{M}_{n,1}(\mathbb{R})$ est somme directe des sous-espaces propres de A. iii)
- $\sum_{\lambda \in \operatorname{Sp}(A)} \dim \left(\operatorname{E}_{\lambda}(A) \right) = n.$ iv)

Preuve. C'est une conséquence directe des résultats précédents appliqué à l'endomorphisme ϕ_A car nous avons vu que la matrice A est diagonalisable si et seulement si ϕ_A est un endomorphisme diagonalisable.

Exemple. La matrice Attila

Soit $n \in \mathbb{N} \setminus \{0,1\}$ et J la matrice de taille (n,n) constituée uniquement de 1. Il est clair que J est de rang 1, la formule du rang donne

$$\dim (\mathsf{E}_0(\mathsf{J})) = \dim (\ker \mathsf{J}) = n - \mathsf{rg}(\mathsf{J}) = n - 1.$$

Si $(E_1, ..., E_n)$ désigne la base canonique de $\mathcal{M}_{n,1}(\mathbb{R})$, on vérifie que les vecteurs

$$W_i = E_1 - E_i$$
 avec $j \in [[2; n]]$

donnent une base du noyau de J. De plus, si on pose

$$V = \sum_{j=1}^{n} E_j$$
 alors $JV = nV$ et $V \neq 0_{n,1}$.

Il vient dim $(E_1(J)) \ge 1$ et même égalité.

Vérifions séparément chacun des énoncés :

- **iv**) $\dim E_0(J) + \dim E_n(J) = (n-1) + 1 = n$.
- **iii**) On sait déjà que $E_0(J)$ et $E_{n-1}(J)$ sont en somme directe et

$$\dim (E_0(J) \oplus E_{n-1}(J)) = \dim (E_0(J)) + \dim (E_{n-1}(J)) = n = \dim \mathcal{M}_{n,1}(\mathbb{R}).$$

D'où

$$E_0(J) \oplus E_{n-1}(J) = \mathcal{M}_{n,1}(\mathbb{R}).$$

- ii) On montre que la famille $(V, W_2, W_3, ..., W_n)$ est libre. Comme elle contient autant de vecteurs que $\mathcal{M}_{n,1}(\mathbb{R})$, c'est une base de $\mathcal{M}_{n,1}(\mathbb{R})$ constituée de vecteurs propres de J.
- i) Si on pose

$$P = [V \ W_2 \ ... \ W_n]$$
 et $D = diag([n, 0, ..., 0])$.

On vérifie que P est inversible et AP = PD, puis $A = PDP^{-1}$.

PROPOSITION *n* valeurs propres

 $Soit A \in \mathcal{M}_n(\mathbb{R}).$

Si A admet n valeurs propres distinctes,

alors A est diagonalisable et les sous-espaces propres sont tous de dimension 1.

Python. La commande eigvals permet le calcul de valeurs propres. Par exemple :

```
>>> # script executed
[ 0. 1. -2.]
```

Selon ce calcul, 0, 1 et -2 sont toutes les valeurs propres de A. La matrice A est diagonalisable.

3 Compléments

3.1 Cas particuliers

Cas des matrices de taille 2

Rappelons que pour $A \in \mathcal{M}_2(\mathbb{R})$ et $\lambda \in \mathbb{R}$.

$$\lambda \in Sp(A) \iff det(A - \lambda I_2) = 0.$$

Exercice 6

Soit $A \in \mathcal{M}_2(\mathbb{R})$ diagonalisable. Notons λ_1 et λ_2 , les deux valeurs propres éventuellement confondues de la matrice A.

1. Montrer que $\lambda_1 + \lambda_2 = tr(A)$ et $\lambda_1 \lambda_2 = det(A)$.

p. 21

p. 22

2. En minimisant le nombre de calculs, montrer que la matrice $A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ n'est pas diagonalisable dans \mathbb{R} .

DA6

Exercice 7

♦ Soit $A = \begin{bmatrix} a & c \\ c & d \end{bmatrix} \in \mathcal{M}_2(\mathbb{R})$. Démontrer que A est diagonalisable.

DA7

Cas des matrices triangulaires

Limitons l'étude à des exemples.

Les questions 1 et 2 sont indépendantes.

Exercice 8

$$T_1 = \left[\begin{array}{cccc} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{array} \right], \quad T_2 = \left[\begin{array}{cccc} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{array} \right] \quad \text{et} \quad T_3 = \left[\begin{array}{cccc} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{array} \right].$$

et
$$T_3 = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
.

p. 22

2. α À quelle condition sur $\alpha \in \mathbb{R}$, la matrice $M_{\alpha} = \begin{bmatrix} \alpha^2 & 1 \\ 0 & \alpha \end{bmatrix}$ est diagonalisable?

#DA8

Cas des matrices symétriques réelles

Anticipons sur un théorème dont on donnera un énoncé plus complet au second semestre.

THÉORÈME

cas symétrique, première version

Toute matrice symétrique réelle est diagonalisable.

Résultat admis.

Les questions sont indépendantes.

1. Montrer que l'endomorphisme suivant est diagonalisable.

$$\varphi : \left\{ \begin{array}{ccc} \mathbb{R}^3 & \rightarrow & \mathbb{R}^3 \\ (x,y,z) & \mapsto & (2x+y+z,x+3z,x+3y-z). \end{array} \right.$$
 p. 22

2. Soient $n \in \mathbb{N}^*$ et A une matrice symétrique appartenant à $\mathcal{M}_n(\mathbb{R})$ vérifiant $A^n = I_n$. Calculer A^2 .

DA9

Cas des projecteurs et symétries

• Soit p, un projecteur de E (avec $p \neq 0_{\mathcal{L}(E)}$ et $p \neq id_E$). En reprenant l'étude effectué à la page **??**, on a

$$E = E_0(p) \oplus E_1(p).$$

Les projecteurs sont des endomorphismes diagonalisables. Si B est une base adaptée à la décomposition en sousespaces propres, on a

$$Mat_{\mathscr{B}}(p) = \begin{bmatrix} 1 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & & \vdots & \vdots & & \vdots \\ 0 & \cdots & 1 & 0 & \cdots & 0 \\ 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & & \vdots & \vdots & & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & 0 \end{bmatrix}.$$

$$dim E_{1}(p) \qquad dim E_{0}(p)$$

En particulier, on constate que $Tr(Mat_{\mathscr{B}}(p)) = rg(Mat_{\mathscr{B}}(p)) = rg(p)$.

• Soit s, une symétrie ($s \neq \pm id_E$). Grâce à la décomposition $E = E_{-1}(s) \oplus E_1(s)$, on vérifie que toutes les symétries sont diagonalisables et

$$Mat_{\mathscr{B}}(s) = \underbrace{\begin{bmatrix} 1 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & & \vdots & \vdots & & \vdots \\ 0 & \cdots & 1 & 0 & \cdots & 0 \\ 0 & \cdots & 0 & -1 & \cdots & 0 \\ \vdots & & \vdots & \vdots & & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & -1 \end{bmatrix}}_{\dim E_{-1}(p)}.$$

3.2 Pratique de la diagonalisation

En reprenant les méthodes étudiées page ??, traiter les exercices suivants.

♦ Si possible, diagonaliser les matrices suivantes :

Exercice 10

 $A = \left[\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{array} \right] \quad \text{et} \quad B = \left[\begin{array}{ccc} -4 & 6 & -3 \\ -1 & 3 & -1 \\ 4 & -4 & 3 \end{array} \right].$ p. 22

Diagonaliser la matrice A signifie : donner, si possible, une matrice diagonale D et une matrice inversible P telles que $A = PDP^{-1}$.

DA10

Exercice 11

- Considérons l'application φ défini sur $\mathbb{R}_2[x]$ par $\varphi(P)(x) = x(1-x)P'(x) + 2xP(x)$.
- **1.** Montrer que φ définit un endomorphisme de $\mathbb{R}_2[x]$.
 - 2. Exprimer la matrice de ϕ dans la base canonique. La diagonaliser.
- 3. Conclure en donnant une base de vecteurs propres de φ .

DA11

DA12

Astuce. Dans la recherche des valeurs, il ne faut pas oublier que pour une matrice diagonalisable

$$Tr(A) = \sum_{\lambda \in Sp(A)} \lambda \times dim(E_{\lambda}(A)).$$

p. 23

p. 23

3.3 Quelques applications de la diagonalisation

Exercice 13

♦ Calcul des puissances

Calculer pour tout $p \in \mathbb{N}$, A^p où la matrice A est étudiée à l'exercice 10.

p. 23

p. 23

DA13

♦ Polynôme de matrices et racine carrée d'une matrice

Exercice 14

On pose $A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}.$

- 1. Vérifier que A est diagonalisable et la diagonaliser.
- **2.** En déduire l'inversibilité de A et A^{-1} .
- 3. Expliquer comment calculer Q(A) où Q $\in \mathbb{R}[x]$. Préciser un polynôme annulateur non nul de A.
- **4.** Déterminer une matrice B telle que $B^2 = A$.

DA14

Les applications sont nombreuses. Citons par exemple :

- → La recherche du commutant (voir exercice 39, p.15).
- ─ La résolution des suites récurrentes linéaires d'ordre 2 (voir exercice 40, p.16).
- → La résolution de systèmes différentiels linéaires (voir exercice 41, p.16).

Exercices

≫ Solution p. 24

>> Solution p. 24

Exercice 15.
$$\diamondsuit$$
 Montrer que la matrice $A = \begin{bmatrix} 6 & 10 & 11 \\ 2 & 6 & 5 \\ -4 & -8 & -8 \end{bmatrix}$ n'est pas diagonalisable.

DA15

Exercice 16. \blacklozenge Parmi les matrices élémentaires $E_{i,j}$ de $\mathcal{M}_n(\mathbb{R})$, lesquelles sont diagonalisables?

DA16

Exercice 17. \diamondsuit Soit φ défini par : $\forall P \in \mathbb{R}_2[x]$, $\varphi(P)(x) = (2x+1)P(x) - (x^2-1)P'(x)$.

Vérifier que φ est un endomorphisme de $\mathbb{R}_2[x]$. Est-il diagonalisable?

DA17

>> Solution p. 24

Exercice 18. \diamondsuit Montrer que les matrices suivantes sont semblables

DA18

$$A = \left[\begin{array}{ccc} 1 & 4 & 6 \\ 0 & 2 & 5 \\ 0 & 0 & 3 \end{array} \right] \quad \text{et} \quad B = \left[\begin{array}{ccc} 3 & 0 & 0 \\ 4 & 2 & 0 \\ 5 & 6 & 1 \end{array} \right].$$

≫ Solution p. 24

Exercice 19. \blacklozenge Soit φ un endomorphisme de E de dimension finie.

DA19

Montrer que φ est un projecteur si et seulement si φ est diagonalisable et $Sp(\varphi) \subset \{0; 1\}$.

>> Solution p. 24

Exercice 20. ** Diagonalisation avec un paramètre

DA20

DA21

Pour tout réel a, on pose

$$\mathbf{M}_a = \left[\begin{array}{ccc} a+2 & -(2a+1) & a \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right].$$

On vérifie par le calcul que $Q(x) = x^3 - (a+2)x^2 + (2a+1)x - a$ est annulateur de M_a .

- **1.** Justifier que pour a = 1, M_a ne peut être diagonalisable.
- 2. Déterminer les réels a pour lesquels M_a est diagonalisable.

>> Solution p. 25

Exercice 21. \Rightarrow Pour tout *n* entier non nul, on considère la matrice

$$\mathbf{A}_n = \left[\begin{array}{ccc} 1 & 1/n & 1/n \\ -1/n & (n+2)/n & 1/n \\ 1/n & -1/n & 1 \end{array} \right].$$

- 1. Montrer sans calculs superflus que 1 et 1 + 1/n sont les valeurs propres de A_n .
- **2.** La matrice A_n est-elle diagonalisable? inversible?
- **3.** Pour tout $n \in \mathbb{N}^*$, on note B_n la matrice produit : $B_n = A_1 A_2 ... A_n$. La matrice B_n est-elle diagonalisable? inversible? Si oui, déterminer B_n^{-1} .

Exercice 22. \blacklozenge Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer que A est diagonalisable si et seulement si $\sum_{\lambda \in SD(A)} \operatorname{rg}(A - \lambda I_n) = (\operatorname{card}(\operatorname{Sp}(A)) - 1) n$. # DA22

Exercice 23. \blacklozenge On considère l'application φ , qui à tout polynôme P de $\mathbb{R}_n[x]$ associe $\varphi(P) = \sum_{k=0}^n P^{(k)}$, où $P^{(k)}$ désigne la dérivée # DA23 k-ième de P avec la convention $P^{(0)} = P$.

- **1.** Montrer que φ est un endomorphisme de $\mathbb{R}_n[x]$.
- 2. St-ce que φ est diagonalisable?

≫ Solution p. 26

Exercice 24. ightharpoonup Posons $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \in \mathcal{M}_2(\mathbb{R})$ et l'endomorphisme ϕ de $\mathcal{M}_2(\mathbb{R})$ défini par $\phi(M) = AM$.

DA24

- 1. a) Déterminer la matrice de φ dans la base canonique.
 - b) Trouver un polynôme annulateur de φ .
 - c) L'endomorphisme φ est-il diagonalisable?
- **2.** On définit maintenant les endomorphismes ψ et s de $\mathcal{M}_2(\mathbb{R})$ défini par $\psi(M) = MA$ et $s(M) = {}^tM$.
 - a) Vérifier que $\psi = s \circ \phi \circ s^{-1}$.
 - b) En déduire un polynôme annulateur de ψ . Est-ce que l'endomorphisme ψ est diagonalisable?

≫ Solution p. 26

Exercice 25. 💠 🐿

D'après EDHEC 2014 # DA24

Soient $n \in \mathbb{N} \setminus \{0; 1\}$ et A une matrice non nulle donnée de $\mathcal{M}_n(\mathbb{R})$. On considère l'application f qui à toute matrice M de $\mathcal{M}_n(\mathbb{R})$ associe :

$$f(M) = Tr(A) M - Tr(M) A.$$

- **1.** Montrer que f est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$.
- **2.** a) Pour toute matrice M de $\mathcal{M}_n(\mathbb{R})$, exprimer $(f \circ f)(M)$ à l'aide de Tr(A) et f(M).
 - b) En déduire un polynôme annulateur de f. Que peut-on en déduire sur les valeurs propres de f?
- 3. a) \bigcirc Montrer que 0 est valeur propre de f.
 - **b)** Montrer que, si Tr(A) = 0, alors f n'est pas diagonalisable.
- 4. On suppose dans cette question que la trace de A est non nulle.
 - a) A Préciser la dimension de Ker(Tr).
 - b) En déduire que f est diagonalisable.

≫ Solution p. 27

Exercice 26. ** Diagonalisation des matrices de rang 1

DA26

- 1. \P Soit $n \in \mathbb{N} \setminus \{0; 1\}$. Montrer que $M \in \mathcal{M}_n(\mathbb{R})$ est de rang 1 si et seulement si il existe deux matrices colonnes non nulles U, V telles que $M = U^t V$.
- 2. Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice de rang 1. On note U et V deux matrices colonnes non nulles de $\mathcal{M}_{n,1}(\mathbb{R})$ telles que $A = U^t V$ et on note a = Tr(A).
 - a) 4 Montrer que 0 est valeur propre de A et déterminer la dimension du sous-espace propre associé.
 - **b)** Vérifier que ${}^{t}VU = a$, puis que $A^{2} = aA$.
 - c) \P Justifier que si a = 0 alors A n'est pas diagonalisable dans $\mathcal{M}_n(\mathbb{R})$.
 - d) On suppose dans la suite $a \neq 0$. Calculer AU. Déduire des questions précédentes que A est diagonalisable.
 - e) Énoncer une condition nécessaire et suffisante pour qu'une matrice de $\mathcal{M}_n(\mathbb{R})$ de rang 1 soit diagonalisable.

≫ Solution p. 27

Exercice 27. ♦♦ Soit φ un endomorphisme de E admettant un polynôme annulateur P.

DA27

- 1. On suppose qu'il existe $\alpha \in \mathbb{R}^*$ tel que $P(x) = x(x \alpha)$. Vérifier que les sous-espaces propres $E_0(\phi)$ et $E_{\alpha}(\phi)$ sont supplémentaires dans E. En déduire que ϕ est diagonalisable.
- $\textbf{2.} \ \ On \ suppose \ maintenant \ que \ P \ est \ de \ degr\'e \ 2 \ avec \ deux \ valeurs \ propres \ distinctes. \ Montrer \ que \ \phi \ est \ diagonalisable.$

 \gg Solution p. 28

Exercice 28. ***

D'après Oraux HEC 2014 # DA28

Soit φ l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique $\mathscr{B} = (e_1, e_2, e_3)$ est

$$A = \left[\begin{array}{rrr} 2 & 0 & 0 \\ 1 & 3 & -2 \\ 1 & 1 & 0 \end{array} \right].$$

- 1. Montrer que φ $id_{\mathbb{R}^3}$ est un projecteur.
- **2.** En déduire les valeurs propres de φ?
- **3.** Combien existe-t-il de droites vectorielles de \mathbb{R}^3 stables par φ ?
- **4.** Combien existe-t-il de plans vectoriels de \mathbb{R}^3 stables par φ ?

Exercice 29. $\spadesuit \spadesuit$ Soient $n \in \mathbb{N} \setminus \{0; 1\}$, a et b deux réels tels que $ab \neq 0$. On note M(a, b) la matrice de $\mathcal{M}_{n+1}(\mathbb{R})$ donnée par : # DA29

$$\mathbf{M}(a,b) = \left[\begin{array}{ccccc} 0 & a & a & \cdots & a \\ b & 0 & 0 & \cdots & 0 \\ b & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ b & 0 & 0 & \cdots & 0 \end{array} \right].$$

- 1. a) Calculer $M(a, b)^2$.
 - **b)** Montrer que $M(a, b)^2$ est diagonalisable et trouver ses deux valeurs propres.
- 2. Soient $c, d \in \mathbb{R}^*$ et $M(c, d) = \begin{bmatrix} 0 & c & c & \cdots & c \\ d & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ d & 0 & 0 & \cdots & 0 \end{bmatrix}$.
 - a) \triangleleft Montrer que si M(c,d) est semblable à M(a,b) alors ab=cd.
 - **b**) Établir la réciproque en considérant une matrice $P_{\varepsilon} = \text{diag}(\varepsilon, 1, ..., 1) \in \mathcal{M}_{n+1}(\mathbb{R})$.
- 3. a) Est-ce que la matrice M(a, b) est semblable à sa transposée?
 - b) \triangleleft À l'aide de la trace, montrer que si la matrice M(a,b) est diagonalisable alors ab > 0.
 - c) \mathcal{Q} On suppose que ab > 0, vérifier que M(a,b) est semblable à une matrice du type $M(\alpha,\alpha)$. En déduire que M(a,b) est diagonalisable.

≫ Solution p. 29

Exercice 30. 🔷 🖎 Mélange algèbre et probabilité

DA30

1. Pour $(a, b) \in \mathbb{R}^2$, dans quel(s) cas la matrice

$$\mathbf{M}_{a,b} = \begin{bmatrix} a & 1 \\ 0 & b \end{bmatrix}$$

est-elle diagonalisable?

- 2. Soient X et Y deux variables aléatoires définies sur le même univers, indépendantes et de même loi binomiale $\mathcal{B}(n, 1/2)$.
 - a) Rappeler la loi de X + Y et en déduire la valeur de $\sum_{k=0}^{n} {n \choose k}^2$.
 - **b**) Calculer la probabilité pour que la matrice $M_{X,Y}$ soit diagonalisable.

» Solution p. 29

Exercice 31. ♦ Exemple avec deux valeurs propres

DA31

Soient E un espace vectoriel et ϕ un endomorphisme de E diagonalisable avec exactement deux valeurs propres λ et μ . Notons E_{λ} et E_{μ} les sous-espaces propres associés respectivement aux valeurs propres λ et μ .

- 1. Justifier que E_{λ} et E_{μ} sont supplémentaires dans E. On peut donc considérer le projecteur p (respectivement q) sur E_{λ} parallèlement à E_{μ} (respectivement sur E_{μ} parallèlement à E_{λ}).
- **2.** Préciser p + q, $p \circ q$ et $q \circ p$.
- **3.** Vérifier que $u = \lambda p + \mu q$ et plus généralement, pour tout $n \in \mathbb{N}^*$, $u^n = \lambda^n p + \mu^n q$.

≫ Solution p. 29

Exercice 32. *** Caractérisation de la diagonalisabilité via des projecteurs

DA32

1. Préliminaires

Soient $E_1, ..., E_n$ des sous-espaces vectoriels de E. On suppose que $E_1 \oplus \cdots \oplus E_n = E$. On note p_i le projecteur sur E_i parallèlement à $\oplus : \neq : E_i$.

Montrer que $p_i \circ p_j = 0$ si $i \neq j$ et que $p_1 + \cdots + p_n = \mathrm{id}_{\mathrm{E}}$.

2. Application

Soit E, un espace de dimension finie et ϕ , un endomorphisme de E.

a) On suppose que φ est diagonalisable. Montrer qu'il existe des projecteurs $(p_i)_{i\in I}$ vérifiant $p_i \circ p_j = \delta_{i,j}p_i$ et des réels λ_i tels que

$$\varphi = \sum_{i \in I} \lambda_i p_i.$$

b) Étudier la réciproque.

≫ Solution p. 30

Exercice 33. $\Leftrightarrow \Leftrightarrow$ Soit E un espace vectoriel de dimension finie et un endomorphisme de E. L'objectif de l'exercice est # DA33 de prouver l'équivalence entre les énoncés :

- i) L'endomorphisme φ est diagonalisable.
- ii) L'endomorphisme φ admet un polynôme annulateur scindé à racines simples. Pour rappel, un polynôme P est scindé à racines simples s'il existe r réels $a_1, ..., a_r$ deux à deux distincts tels que $P(x) = \prod_{i=1}^r (x-a_i)$.
- 1. Montrer que i) \Rightarrow ii).
- 2. Prouvons la réciproque. Supposons donc que φ admet un polynôme annulateur scindé à racines simples.
 - a) Soient $f, g \in \mathcal{L}(E)$. Justifier que l'application suivante est bien posée, linéaire et injective

$$\Phi: \left\{ \begin{array}{ccc} H & \to & \operatorname{Ker} f \\ u & \mapsto & g(u) \end{array} \right. \text{ avec H un supplémentaire de Ker} g \text{ dans Ker} f \circ g.$$

En déduire que dim $\operatorname{Ker}(f \circ g) \leq \dim (\operatorname{Ker}(f)) + \dim (\operatorname{Ker}(g))$.

b) Montrer plus généralement que pour $f_1, f_2, ..., f_r \in \mathcal{L}(E)$,

$$\dim (\operatorname{Ker}(f_1 \circ \cdots \circ f_r)) \leq \sum_{j=1}^r \dim (\operatorname{Ker}(f_j)).$$

- c) En déduire la réciproque ii) \Rightarrow i).
- 3. Application

En déduire que si ϕ est diagonalisable et F est un sous-espace stable par ϕ , alors la restriction de ϕ à F est un endomorphisme diagonalisable.

≫ Solution p. 30

Exercice 34. $\spadesuit \Rightarrow$ Soient $a \in \mathbb{R}^*$, $b \in \mathbb{R}$ et φ l'endomorphisme de $E = \mathbb{R}_n[x]$ défini par :

DA34

$$\varphi(P): x \in \mathbb{R} \mapsto P(ax+b).$$

- 1. Donner la matrice de ϕ dans la base canonique de E. En déduire le spectre de ϕ .
- **2.** Justifier que si $a \notin \{-1, 1\}$, l'endomorphisme φ est diagonalisable.
- 3. \triangleleft Est-ce que φ est diagonalisable si a=1?
- **4.** a) \triangleleft Après avoir justifié que tout polynôme peut s'écrire comme somme d'un polynôme pair et d'un polynôme impair, justifier que φ est diagonalisable pour a=-1 et b=0.
 - **b)** Généraliser à a = -1 et $b \neq 0$.

≫ Solution p. 31

Exercice 35. $\spadesuit \clubsuit$ Soient f et g deux endomorphismes de E qui commutent. On suppose qu'il existe $p \in \mathbb{N}^*$ tel que $g^p = 0$ $\mathscr{L}(E)$. # DA35 Soit $\lambda \in \operatorname{Sp}(f)$ et x un vecteur propre associé.

- **1.** Montrer que $E_{\lambda}(f)$ est un espace stable par g.
- **2.** Justifier l'existence de $k \in \mathbb{N}$ tel que $g^k(x) \neq 0_E$ et $g^{k+1}(x) = 0_E$.
- 3. Vérifier que $g^k(x)$ est un vecteur propre de f+g et préciser la valeur propre associée.
- **4.** En déduire que $\operatorname{Sp}(f) \subset \operatorname{Sp}(f+g)$.

≫ Solution p. 32

Exercice 36. $\blacklozenge \blacklozenge$ Soit ϕ l'application définie sur $\mathbb{R}_2[x]$ qui à tout polynôme $P \in \mathbb{R}_2[x]$, associe le polynôme $\phi(P)$ obtenu comme # DA36 le reste de la division euclidienne de P par $(x-1)^2$.

- **1.** Vérifier que φ est bien un endomorphisme de $\mathbb{R}_2[x]$.
- **2.** Donner M, la matrice de φ dans la base canonique de $\mathbb{R}_2[x]$.
- 3. \triangleleft Calculer M². Qu'en déduire sur φ ?
- 4. Est-ce que ϕ est diagonalisable ? Si oui, précisez les sous-espaces propres.

Problème 37. ★★★ Exemple de convergence de matrices de Hessenberg

DA43

On dit qu'une suite de matrices $(M_p)_{p \in \mathbb{N}}$ converge vers une matrice L si pour tout couple d'indice (i,j), la suite des coefficients $([M_p]_{i,j})_{p \in \mathbb{N}}$ converge vers le coefficient $L_{i,j}$. On note $M_p \underset{p \to +\infty}{\longrightarrow} L$

On admet le résultat suivant : Si P, Q sont deux matrices fixées et $M_p \xrightarrow[p \to +\infty]{} L$ alors $PM_pQ \xrightarrow[p \to +\infty]{} PLQ$.

Soit a un réel strictement positif. On note H(a) et J(a) les deux matrices de $\mathcal{M}_3(\mathbb{R})$ définies par

$$H(a) = \left[\begin{array}{ccc} a & a & 0 \\ 1 & a & 0 \\ 0 & 0 & a + \sqrt{a} \end{array} \right] \quad \text{et} \quad J(a) = \left[\begin{array}{ccc} a & a & a \\ -1 & a & a \\ 0 & 0 & a \end{array} \right].$$

- 1. a) Trouver les valeurs propres de la matrice H(a) et montrer qu'elle est diagonalisable.
 - b) Soit $r \in \mathbb{R}_+^*$. Démontrer que la suite de matrices $\left(\frac{1}{r^p} (H(a))^p\right)_{p \in \mathbb{N}}$ est convergente si, et seulement si, le réel r est supérieur ou égal à $a + \sqrt{a}$.
 - c) Soit $Q(a) = \lim_{p \to +\infty} \frac{1}{(a + \sqrt{a})^p} (H(a))^p$.

 Justifier que l'endomorphisme φ_a , canoniquement associé à Q(a), est un projecteur, dont on précisera le rang, l'image et le noyau.
- 2. Soit $r \in \mathbb{R}_+^*$. Démontrer que la suite de matrices $\left(\frac{1}{r^p}(J(a))^p\right)_{p \in \mathbb{N}}$ est convergente si, et seulement si, le réel r est strictement supérieur à $\sqrt{a(1+a)}$.

≫ Solution p. ??

Exercice 38. *** S

1

d'après ESCP 2012 # DA45

Soit $n \in \mathbb{N}^*$, et posons $E = \mathbb{R}[x]$. Pour tout $P \in \mathbb{R}_n[x]$ et tout $x \in \mathbb{R}$, on pose :

$$u(P)(x) = e^x \int_x^{+\infty} P(t)e^{-t} dt.$$

Enfin, on pose $e_k : x \mapsto x^k$ pour tout $k \in \mathbb{N}$.

- 1. Montrer que u(P) est bien défini, puis calculer $u(e_k)$ pour tout $k \in \mathbb{N}$.
- **2.** Montrer que u est un endomorphisme de $\mathbb{R}[x]$.
- **3.** Soit $n \in \mathbb{N}$. On note $\mathbb{R}_n[x]$ l'ensemble des polynômes réels de degré $\leq n$.
 - a) Montrer que $\mathbb{R}_n[x]$ est stable par u, c'est-à-dire $u(\mathbb{R}_n[x]) \subset \mathbb{R}_n[x]$.
 - **b**) Soit v l'endomorphisme de $\mathbb{R}_n[x]$ induit par u. Montrer que v est bijectif de $\mathbb{R}_n[x]$ sur $\mathbb{R}_n[x]$.
 - c) Calculer la matrice A de ν dans la base canonique de $\mathbb{R}_n[x]$.
 - d) L'endomorphisme v est-il diagonalisable? Justifier.
 - e) Déterminer l'inverse A^{-1} de A.
- **4.** Soit $P \in \mathbb{R}[x]$ tel que : $\forall x \in \mathbb{R}, P(x) \ge 0$. Montrer que :

$$\forall x \in \mathbb{R}, \qquad \sum_{k=0}^{+\infty} \mathbf{P}^{(k)}(x) \ge 0.$$

≫ Solution p. ??

Quelques applications de la diagonalisation

Exercice 39. *** Recherche du commutant

DA37

Soit $A \in \mathcal{M}_n(\mathbb{R})$ admettant n valeurs propres distinctes. On définit le commutant de A par

$$\mathcal{C} = \big\{ \mathbf{M} \in \mathcal{M}_n(\mathbb{R}) \mid \mathbf{A}\mathbf{M} = \mathbf{M}\mathbf{A} \big\}.$$

- **1.** \triangleleft Justifier que la famille $(I_n, A, A^2, ..., A^{n-1})$ est libre.
- **2.** Vérifier que \mathscr{C} est un sous-espace vectoriel de $\mathscr{M}_n(\mathbb{R})$ avec dim $\mathscr{C} \ge n$.
- **3.** Montrer l'existence d'une matrice P de $\mathcal{M}_n(\mathbb{R})$ inversible telle que $P^{-1}AP$ soit diagonale.
- **4.** $\overset{\bullet}{\sim}$ Soit M \in \mathscr{C} . Montrer que tout vecteur propre de A est un vecteur propre de M. En déduire que la matrice $P^{-1}MP$ est diagonale. En déduire que \mathscr{C} est de dimension inférieure ou égale à n.

5. Conclure en montrant que $(I_n, A, ..., A^{n-1})$ est une base de \mathscr{C} .

≫ Solution p. 32

Exercice 40. * Suite récurrente linéaire d'ordre 2

DA38

Soit $a \in \mathbb{R} \setminus \{1\}$. On note E l'espace vectoriel des suites réelles $(u_n)_{n \in \mathbb{N}}$ telles que

$$\forall n \in \mathbb{N}, \qquad u_{n+2} = (1+a)u_{n+1} - au_n.$$

Soit u, une suite de E. On pose $U_n = \begin{bmatrix} u_n \\ u_{n+1} \end{bmatrix}$.

- 1. \triangleleft Déterminer une matrice A telle que $U_{n+1} = AU_n$.
- 2. a) Montrer que la matrice A est diagonalisable. Puis, préciser une matrice inversible et une matrice D diagonale telles que $A = PDP^{-1}$.
 - **b)** En déduire A^n , pour tout $n \in \mathbb{N}$.
- 3. À partir des questions précédentes, donner l'expression de u_n en fonction de n, a, u_0 et u_1 .
- 4. Donner une base de E. Comparer les résultats obtenus avec la méthode classique des suites récurrentes linéaires d'ordre 2.

≫ Solution p. 33

Exercice 41. ** Système différentiel linéaire

DA39

1. Préliminaires

Soient I intervalle de $\mathbb R$ et a, une fonction continue sur I. On considère l'équation différentielle

$$\forall x \in I, \quad y'(x) = a(x)y(x).$$

Soit A, une primitive de a sur I. Montrer qu'il existe $C \in \mathbb{R}$ tel que pour tout $x \in I$, $y(x) = Ce^{A(x)}$.

2. On considère le système différentiel suivant :

$$(\mathcal{S}): \begin{cases} x' = 8x - 18y + 27z \\ y' = -3x + \frac{7}{2}y - 6z \\ z' = -4x + 7y - 11z \end{cases}$$

avec les conditions initiales :

$$x(0) = 1$$
, $y(0) = 0$, $z(0) = 0$.

a) Écrire le système (\mathscr{S}) ci-dessus sous la forme X' = AX, pour une certaine matrice A de taille 3×3 à coefficients réels qu'on déterminera où on a posé :

$$X(t) = \begin{bmatrix} x(t) \\ y(t) \\ z(t) \end{bmatrix} \quad \text{et} \quad X'(t) = \begin{bmatrix} x'(t) \\ y'(t) \\ z'(t) \end{bmatrix}.$$

b) Vérifier que la matrice A est diagonalisable et déterminer une matrice inversible Q et une matrice diagonale D telles que $A = Q^{-1}DQ$.

Pour commencer, on pourra calculer AX_1 , AX_2 où:

$$X_1 = \begin{bmatrix} -\frac{3}{2} \\ 1 \\ 1 \end{bmatrix} \quad \text{et} \quad X_2 = \begin{bmatrix} 0 \\ \frac{3}{2} \\ 1 \end{bmatrix}.$$

On admet dans la suite que pour toute matrice Q à coefficients constants, si $Y = Q \cdot X$ alors $Y' = Q \cdot X'$.

- c) Pour tout $t \in \mathbb{R}$, on pose Y(t) = QX(t). Montrer que X est solution du système (E) si et seulement si les coordonnées u, v et w de Y sont solutions d'un système différentiel diagonal.
- d) Donner l'expression de Y(t) puis les expressions de x, y et z.

≫ Solution p. 33

Sujets de révision

Problème 42. *** Diagonalisation simultanée

D'après Oraux ESCP 2016 # DA40

Soient E un espace vectoriel de dimension finie et f un endomorphisme de E diagonalisable. On note $\{\lambda_1, \dots, \lambda_p\}$ l'ensemble de ses valeurs propres et E_1, \dots, E_p les sous-espaces propres associés. Soit F un sous-espace vectoriel de E stable par f, tel que $F \neq \{0\}$ et $F \neq E$. Soit x un vecteur de F.

1. Montrer qu'il existe un unique *p*-uplet $(x_1, ..., x_p) \in E_1 \times \cdots \times E_p$ tel que $x = x_1 + \cdots + x_p$.

- **2.** On suppose désormais $x \neq 0$. Montrer que, quitte à modifier l'ordre, on peut supposer qu'il existe $r \in [1, p]$ tel que $x_i = 0$ pour i > r et $x_i \neq 0$ pour i < r. On a alors $x = x_1 + \dots + x_r$. On note V_x le sous-espace vectoriel engendré par (x_1, \dots, x_r) .
- **3.** a) Montrer que $(x_1, ..., x_r)$ est une base de V_x .
 - **b)** Montrer que pour tout $j \in \mathbb{N}$, $f^j(x) \in V_x$.
 - c) Déterminer la matrice A de la famille $(x, f(x), ..., f^{r-1}(x))$ dans la base $(x_1, ..., x_r)$ de V_x .
 - d) Notons $C_1, ..., C_r$ les colonnes de A et $\alpha_1, ..., \alpha_r$ des réels tels que $\sum\limits_{j=1}^r \alpha_j C_j = 0$. Montrer que le polynôme $P(x) = \sum\limits_{j=1}^r \alpha_j x^{j-1}$ est le polynôme nul. En déduire que A est inversible.
 - e) Montrer que pour tout $i \in [[1, p]], x_i \in F$, puis que $F = \bigoplus_{i=1}^{p} (F \cap E_i)$.
- **4.** Soit g un endomorphisme de E, diagonalisable et commutant avec f (i.e. tel que $f \circ g = g \circ f$). Montrer qu'il existe une base de E formée de vecteurs propres communs à f et g.

>> Solution p. 34

Problème 43. 🔸 🖎 Réduction du crochet de Lie

D'après EMLyon 2014 ECS # DA41

Soit $n \in \mathbb{N} \setminus \{0; 1\}$. Pour tout i de [[1; n]], on note V_i la matrice colonne de $\mathcal{M}_{n,1}(\mathbb{R})$ dont tous les coefficients sont nuls, sauf celui de la i-ième ligne qui est égal à 1. On admet que la famille $(V_i)_{i \in [[t1;n]]}$ est une base de $\mathcal{M}_{n,1}(\mathbb{R})$. Pour tout (i,j) de $[[1;n]]^2$, on note $E_{i,j} = V_i^{\ t} V_j$. Ainsi, pour tout (i,j) de $[[1;n]]^2$, la matrice $E_{i,j}$ est la matrice carrée de $\mathcal{M}_n(\mathbb{R})$ dont tous les coefficients sont nuls, sauf celui à l'intersection de la i-ième ligne et de la j-ième colonne qui est égal à 1. On admet que la famille $(E_{i,j})_{(i,j)\in[[1;n]]^2}$ est une base de $\mathcal{M}_n(\mathbb{R})$.

Soit A une matrice quelconque de $\mathcal{M}_n(\mathbb{R})$ telle que, pour tout λ de \mathbb{R} , $A \neq \lambda I_n$. On considère l'application Φ_A de $\mathcal{M}_n(\mathbb{R})$ dans $\mathcal{M}_n(\mathbb{R})$ définie par :

$$\forall M \in \mathcal{M}_n(\mathbb{R}), \qquad \Phi_A(M) = AM - MA.$$

- **1.** Montrer que Φ_A est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$.
- **2.** Calculer $\Phi_A(I_n)$. L'endomorphisme Φ_A est-il injectif? surjectif?
- 3. Montrer que A et t A ont les mêmes valeurs propres.
- **4.** Soient $X, Y \in \mathcal{M}_{n,1}(\mathbb{R})$ tels que X (resp. Y) est un vecteur propre de A (resp. de tA). Montrer que X^tY est un vecteur propre de Φ_A .
- 5. Soient $(X_1, X_2, ..., X_n)$ et $(Y_1, Y_2, ..., Y_n)$ deux bases de $\mathcal{M}_{n,1}(\mathbb{R})$. On note \mathscr{F} la famille $\mathscr{F} = \left(X_i^{\,t} Y_j\right)_{(i,j) \in [[1;n]]^2}$. Montrer que, pour tout (i,j) de $[[1;n]]^2$, $V_i^{\,t} V_j$ appartient au sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ engendré par \mathscr{F} , et en déduire que la famille \mathscr{F} est une base de $\mathcal{M}_n(\mathbb{R})$.
- 6. Montrer que l'ensemble des valeurs propres de Φ_A est l'ensemble des différences $\lambda \mu$ lorsque λ et μ décrivent les valeurs propres de A.

 \gg Solution p. 34

Problème 44. ** Matrices compagnons

Soient $n \in \mathbb{N}^*$ et $a_0, \dots, a_{n-1} \in \mathbb{R}$ des nombres réels. Soit P le polynôme défini par l'expression

$$P(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + x^n.$$

On note $\mathcal{M}_n(\mathbb{R})$ l'ensemble des matrices $n \times n$ à coefficients réels. La matrice $C_P \in \mathcal{M}_n(\mathbb{R})$, appelée matrice compagnon de P, est définie par

$$C_{P} = \begin{bmatrix} 0 & 0 & \cdots & 0 & 0 & -a_{0} \\ 1 & 0 & \cdots & 0 & 0 & -a_{1} \\ 0 & 1 & \ddots & \vdots & \vdots & \vdots \\ \vdots & 0 & \ddots & 0 & 0 & -a_{n-3} \\ \vdots & \vdots & 1 & 0 & -a_{n-2} \\ 0 & 0 & \cdots & 0 & 1 & -a_{n-1} \end{bmatrix}.$$

- Exemple
- **1.** a) Déterminer le polynôme R dont la matrice compagnon est $C_R = \begin{bmatrix} 0 & 3 \\ 1 & -2 \end{bmatrix}$.
 - b) Quelles sont les racines de R? Quelles sont les valeurs propres de C_R? Que constatez-vous?

- 2. La matrice C_R est-elle diagonalisable? Justifiez votre réponse.
- Retour au cas général
- **3.** Déterminer le rang de C_P . *Indication. On pourra distinguer deux cas : le cas où a_0 = 0 et le cas où a_0 \neq 0.*
- **4.** Justifier que 0 est valeur propre de C_P si et seulement si $a_0 = P(0) = 0$.
- **5.** Pour tout $\lambda \in \mathbb{R}$, montrer que dim $(\text{Ker}(C_P \lambda I_n)) \le 1$.
- La matrice Mp

Dans la suite, on considère $M_P \in \mathcal{M}_n(\mathbb{R})$ définie par $M_P = a_0 I_n + a_1 C_P + a_2 C_P^2 + \dots + a_{n-1} C_P^{n-1} + C_P^n$.

On note

$$(\mathbf{E}_1, \mathbf{E}_2, \dots, \mathbf{E}_n) = \left(\begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \dots, \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} \right)$$

les n vecteurs de la base canonique de $\mathcal{M}_{n,1}(\mathbb{R})$. L'objectif est de montrer que M_P est la matrice nulle.

6. Retour sur l'exemple

Vérifier que M_R est la matrice nulle, où R est le polynôme trouvé à la première question.

- 7. Retour sur le cas général
 - a) Montrer que pour tout $k \in [[1, n]]$, $E_k = C_P^{k-1}E_1$.
 - b) En déduire qu'il existe un vecteur $X \in \mathcal{M}_{n,1}(\mathbb{R})$ telle que $(X, C_P X, ..., C_P^{n-1} X)$ soit une base de $\mathcal{M}_{n,1}(\mathbb{R})$.
- **8.** Montrer que $M_PE_1 = 0$.
- 9. En déduire que M_P est la matrice nulle.
- Lien entre spectre et racines de P
- 10. Soit $\lambda \in \mathbb{R}$ une valeur propre de C_P et $X \in \mathcal{M}_{n,1}(\mathbb{R})$ un vecteur propre associé. Montrer que λ est racine de P.
- **11.** Soit $\lambda \in \mathbb{R}$ tel que $P(\lambda) = 0$.
 - a) On suppose uniquement dans cette question qu'il existe $X = {}^t [x_1 \cdots x_n] \in \mathcal{M}_{n,1}(\mathbb{R})$ telle que $C_PX = \lambda X$. Expliciter un système linéaire vérifiée par (x_1, \dots, x_n) . Montrer ensuite par récurrence que :

$$\forall\,k\in[[1,n-1]],\quad x_{n-k}=\left(a_{n-k}+\lambda a_{n-k+1}+\cdots+\lambda^{k-1}a_{n-1}+\lambda^k\right)x_n.$$

b) Montrer que λ est valeur propre de C_P et exhiber un vecteur propre associé.

Soit $k \in \mathbb{N}^*$. On considère $\lambda_1, \dots, \lambda_k$ des nombres réels tous distincts et $\alpha_1, \dots, \alpha_k$ des entiers positifs ou nuls, puis on définit le polynôme S par $S(x) = \prod_{i=1}^k (x - \lambda_i)^{\alpha_i}$.

12. Déduire de toute cette étude que la matrice compagnon C_S de S est diagonalisable si et seulement si les entiers α_i valent tous 1.

13. Est-ce que la matrice $A = \begin{bmatrix} 0 & 0 & 6 \\ 1 & 0 & -11 \\ 0 & 1 & 6 \end{bmatrix}$ est diagonalisable?

≫ Solution p. 34

Table des matières

9	Dia	gonalisation	1
	1	Définitions	1
	2	Caractérisations	4
		2.1 Version « endomorphisme »	4
		2.2 Version « matricielle »	6
	3	Compléments	7
		3.1 Cas particuliers	
		3.2 Pratique de la diagonalisation	9
		3.3 Quelques applications de la diagonalisation	10