Nombres complexes

Ce chapitre introduit la notion de nombres complexes et donne l'interprétation géométrique.

— Nombres complexes

1.1 Forme algébrique

DEFINITION Forme algébrique

Tout nombre complexe z peut s'écrire sous la forme z = a+ib oui a et b sont deux nombres réels. Cette expression
Sappelle la forme algébrique de z. Les nombres a et b sont uniques et sont appelés respectivement partie réelle et
partie imaginaire, on note

Re(z)=a et Sm(z)=h.

Vocabulaire. Lorsque la partie réelle est nulle, on dit que le nombre est un imaginaire pur.

Remarque. D’apres l'unicité de la forme algébrique, un nombre complexe est nul si et seulement si sa partie réelle et
sa partie imaginaire sont nulles.

PROPOSITION Régles de calcul sur les parties réelles et imaginaires

Soient z et z' deux nombres complexes et o un nombre réel, on a

(addition) (multiplication par un réel)
Re(z+2) = Re(z)+Re(z) Re(az) = aRe(z)
Sm(z+2z) = Smz)+Sm(Z) Sm(az) = aSm(z)
Re(zz)) = Re(2)Re(Z)—-Sm(z)Im(z) (roduit)
Sm(zz)) = Re(2)Im(z)+Im(z)Re(z) proautt).

Remarque. On a la propriété d’intégrité : comme dans le cas réel, un produit de nombres complexes est nul si et
seulement sil'un de ses facteurs est nul. Autrement dit,

zZ=0 < (z=0 ou Z'=0).

DEFINITION Nombre conjugué

Soit z = a+ib un complexe sous forme algébrique, on définit le conjugué de z, noté z, par la formule

z=a-1ib.
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Pour z; et zp deux nombres complexes (z # 0 dans le dernier cas), on prouve

= [ _ <21 <21
z21 =21, Z1t22=21+ 2, 2122 =21-29 et — ==
22 22
z+z z-z
On gardera toujours a l'esprit les formules : Re(z) = — et Sm(z)= TR
i

Comment calculer la forme algébrique d’'un quotient de complexes?

On multiplie et on divise par I'expression conjuguée du dénominateur. Par exemple
7-i (7-1)(4-3i) 28-21i—-4i—-3 25-25i .
= = = = —1.
4+3i (4+3i)(4-3i) 42 +32 25
Exercice 1 4 Réduire les nombres complexes suivants sous la forme algébrique :

e i*+2i3 +5i2 +2i+6

1 i

»

. .\ 4 W\ 777!
8 —6i 2i 1+i

a+20% a+d3 — i =] et |—| .
7+i 1+i 1-i

- Par définition, 777! =1x2x3 x --- x 776 x 777.

Représentation graphique des nombres complexes

Dans la suite, on se place dans un repére orthonormé (O, 7, 7).
A tout point du plan M d’abscisse x et d’ordonnée y, on associe le nombre complexe z = x +1iy.
z est dit 'affixe du point M. Et inversement, a tout nombre complexe z, on peut associer un point du plan.

Pourz=2+i:

A
27 Re(z)=2
De plus,
«—p»
PRl — Le point d’affixe —z est le symétrique de M par la sy-
| _ métrie centrale de centre |'origine;
¢ -z z i Fm(z) ) ] o
| : — Le point d’affixe z est le symétrique de M par la sy-
5 ) . J ? i métrie axiale suivant 'axe des abscisses;
I zZ | — Le point d’affixe —Z est le symétrique de M par la sy-
l- ——— e e e = —@ métrie axiale suivant I’axe des ordonnées.
1.2 Formes trigonométrique et exponentielle

La représentation graphique précédente justifie une nouvelle caractérisation d'un nombre complexe par la dis-
tance al’'origine et I'angle formé avec I'axe (Ox). Ce qui justifie les définitions suivantes.

DEFINITION

Pour tout nombre complexe z, on pose :

Module et argument

— Lemodule de z, noté |z|, comme la distance entre le point M d'affixe z et l'origine,

|z] = VRe(2)? + Im(z)? (Théoreme de Pythagore).

— Largument de z # 0, noté arg(z), toute mesure (définie modulo 2n) de I'angle entre l'axe (Ox) et la droite (OM).
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* On ne peut pas parler de I'argument de 0.
e Dans la suite, a = b[2n] si, et seulement si, il existe un entier k pour lequel a = b+ 2kn. On n’'oubliera pas qu'un
argument est toujours défini modulo 2.

L
Exemple. On a z € R* si et seulement si arg(z) = 0[], et z est un imaginaire pur si et seulement si arg(z) = 3 [m].

i 4

Remarques. ¢ Comme le module d'un nombre réel est égal a sa valeur absolue, il n’y a pas de contradiction a utiliser
la méme notation.

e Pour z€ C, on aaussi|Re(z)| <|z| et |Sm(z)| <|z|.

e Retenons que si A et B sont deux points du plan d’affixe respective z et zg alors :

La distance AB est égale a | zg — za|.

4 Représentation graphique.
1. Représenter I'ensemble des points M du plan d’affixe z € C tels que :
Exercice 2 a) Re(z)=1 et Sm(z)=1; d) Sm(zz) =0.
C b) lzl<9; e Sm(zh) =2
— 0 lz-1+il<1; f)  Re(z-1?)=0.
&
S 2. 4 Soient z € C et a € C. On suppose que o n’est pas réel. Justifier 'équivalence :
lz—al=|z-a] < zeR.
Comment interpréter géométriquement cette équivalence ?
PROPOSITION Regles de calcul pour le module

Pour tous nombres complexes z, 21, zp, ona:

— |z| = 0 avec égalité si et seulement siz=0;

— |zl=lzl etzz =|zl*;

— |z122| = |21l |22|. En particulier, pour tout entier naturel n, |z"| = |z|" ;
_lal

21
— Pourz; #0, |———.
2! |z|

Preuve. « Un module représente une distance, un module est donc toujours positif. De plus, pour z € C fixé,
|zl =0 < Re(2)®+3Im(2)? =0 < Re(z) =0et Im(z) =0 <> z=0.

* Soit z = a+1ib un complexe sous forme algébrique. Ona z = a—ib

Izl = \/ a? + (-b?) =V a? + b? =z|.



De plus, 2z = (a+ib)(a—ib) = a® - (ib)? = a® + b* = |z|2.

¢ Soient z1, z2 € C. En utilisant le résultat précédent : Izlz2|2 =(2122)(z122) = 21212222 = |21 2. Izzlz.
Comme les modules sont positifs |z1 z2| = |z1| - | z2|. Par récurrence, on prouve que pour tout entier naturel n, |z"| = |z|".
e La preuve pour le quotient est similaire au produit.

|
Exercice 3
. ( < Identité du parallélogramme.
.7 Soient z1, zp € C, justifier I'égalité : |z] + zzl2 +|z1 - zzl2 =2|z1 2 +2|z2|2.

l &

A Attention.

e Tl n’existe pas de relation d’ordre sur les nombres complexes. Pour comparer des complexes, on peut comparer leurs
modules.
e Engénéral, |z; + 22| # |z1| + | z2]. Par exemple |1 +i| = V2 # 11| +i|. Toutefois, on a une inégalité.

THEOREME Inégalité triangulaire

Pour tous nombres complexes z) etzp :  |z1 + 22| < |z1| +|22].

Preuve. Soient z; et zp deux nombres complexes.
lz1+22P = (21+22) (@ F22) = (21 +22) (21 + Z2)
= AZ+aB+az+ad =l +ln? +2Re(212).
Or on a vu que pour tout complexe Z, on a Re (Z) < |Z|. Pour Z = z1z, il vient

2 2 2 — 2 2 — 2
|21+ 22|° < |211° + |221° + 2|21 2] = |21 |7 + | 22| + 2] 21| - |2Z2] = (121 ] + | 22[)°.

Comme les modules sont positifs, on a bien prouvé I'inégalité.

Interprétation géométrique

A

M3 (21 + 2) Si M, M» et M3 sont trois points du plan d’affixe res-
Ma(z3) .. pective z1, zp et z1 + z, alors
OM3 < OM; + OMs.
La distance entre M3 et I'origine est inférieure a la
somme des distances de M; et M al'origine.
M; (z1) Autrement dit, la somme des longueurs cotés adja-
> cents d'un parallélogramme est inférieure a la lon-
0 gueur des diagonales.
Exercice 4 4 Applications de l'inégalité triangulaire.
"'_' 1. Soit z€ C tel que |z — 4| < 3 et |z —2i| < 7. Montrer que |z— (2+i)| <5.
"3~ Faire un dessin pour illustrer cette inégalité.
f\J ~ 2. Soit ze Ctel que |z —1/2| < 1/2. Montrer que |z(1 —z) —1/2| < 1/2.

— 3. Justifier que pour tous nombres complexes z1, z2, ||zll - |zzl| <|z1 + 22|.
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PROPOSITION Forme trigonométrique

Tout nombre complexe z s’écrit sous la forme

z=rcos(0)+irsin(0) avec r=0 et O€eR.

Preuve. Si z =0, on peut choisir r = 0 et tout réel 0.
Dans la suite, z est un nombre complexe non nul. Notons z = a +ib la forme algébrique. On écrit :

a b
z=a+ib=Va?+b?

+i .
Va2+p2  Va?+ b2

a
De plus, \/% € [-1;1], ce nombre est donc compris entre cos(m) = —1 et cos(0) = 1. D’apres le théoréme des valeurs inter-
ac+b

médiaires (la fonction cosinus est continue), il existe un réel 0 € [0; ] tel que :

a
cos(0) = ———.
Va2 +p?
bZ
Le théoreme de Pythagore impose : sin(0)? = 1 —cos(0)? = .
a2 + b2

Quitte a remplacer 0 par —0, on peut prendre 6 du méme signe que b. Ainsi, on a bien

a b
cos(0) = ————= et sin(0) = ———.
Va+1? Va2 + b2
On conclut : z=Va®+b? (cos(0) +irsin(@)).

Remarque. Pour z non nul, r estunique et s’'identifie au module, 6 ne I'est pas, il s'identifie (modulo 27) a’argument.
Pour que 0 soit défini de maniére unique, on peut imposer en plus 0 € [0;27[, on parle alors d’argument principal.

0 0 /6 /4 /3 /2 b

Rappels de quelques valeurs importantes : cos® | 1| v3/2 | v2/2 | 1/2 0o | -1

sin@ | 0| 1/2 | v2/12 | V32| 1 0

PROPOSITION Regles de calcul pour 'argument

Pour tous nombres complexes z, z1, Zp non nuls :
—  Pour tout A € RY, arg(Az) = arg(z) [27] ;
— arg(z) = —arg(z) [2n];
— arg(z12p) = arg(z) + arg(zp) [27], en particulier; pour tout n € Z, arg(z") = narg(z) [2m] ;

— arg(z1/zp) = arg(z;) —arg(zp) [27].

Idée de la preuve. « Soient z € C* et M le point d’affixe z. Pour A € R}, le point d’affixe Az se situe sur la méme demi-droite que
O et M. On a donc le méme argument (modulo 2).
* Le second point découle directement du fait que M’ d’affixe Z s’obtient par symétrie axiale d’axe (Ox) & partir de M d’affixe z.
e D’apres le premier point, on peut supposer z; et z» de module 1. Ainsi, il existe 01, 6 tels que

z1 =cos(07) +isin(07) et z2 =cos(B2) +isin(B2)



= z1zz = cos(01)sin(02) —sin(0;) cos(02) +i(cos(01) cos(02) +sin(01) sin(62))

= cos(0; +02) +isin(07 +0>).

D’oly, arg(z1 zp) = 01 + 02 = arg(z1) +arg(zp) [2m].

Le cas particulier s’obtient par récurrence sur n € N. De plus, pour 7 entier négatif, on écrit
0=arg(z"-z7") = arg(z") + arg(z™") = arg(z"") - narg(z),

puisque —n € N. D’ot1 le résultat.
* Le dernier point est une conséquence du second et du troisieme points.

|
DEFINITION Exponentielle complexe et forme exponentielle
Pour tout nombre réel ©, on pose e = cos(6) +isin().
Ainsi, tout nombre complexe z s'écrit sous la forme (dite exponentielle)
z=re® avec r=0 er OeR.
Exemples.  Une des relations les plus connues en mathématiques est :
* SoitOeR, _
%=1 < Jkez 0=2kn.
Exercice 5
19 , in _ Yoin _ ( 2im1/2 _ {172
~'Lb/ 4 Chercher lerreur: —1=¢™ =22 = (22 =112 = /121
PROPOSITION Regles de calcul pour les complexes de module 1

e Soit z€ C. On a l'équivalence entre les énoncés :

i) z est de module 1; ii) Il existe un réel © tel que z = e'®.
—_— . in ind . ’ eie 5 ’
* Pour tous réels9,6’, R — = 299,
e

Preuve. ¢ Soit z € C. On écrit z sous forme exponentielle z = re® avec@eRet r e RY. D’apres le théoreme de Pythagore :

1€ = \/cos2(0) +sin?(0) = VI =1.

Ainsi,
)=

O =1r]-le

|zl =|re

Finalement, z est de module 1 si et seulement si r = 1, si et seulement si z = 9.
¢ En utilisant le fait que la fonction sinus est impaire et la fonction cosinus paire, on a aussi pour 0 € R,

E =cos(0) +isin(0) = cos(B) —isin(0) = cos(—0) +isin(-0) = e 10,
- Soient 0,0’ €R,ona:

el9 et (cos(0) +isin(0))(cos(®) +isin(®"))

cos(0) cos(®') —sin(0) sin(0") +i(cos(0) sin(0") + sin(0) cos(0")).

PPN . ’
En utilisant les formules trigonométriques, €969 = cos(®+6) +isin(@+0') = @)
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iy s . . 1
- En particulier pour 6 fixé et 8/ = —8, on trouve el®e ™19 = ¢i0-0) = 0 = 1 _Cela implique e = —g- Finalement, pour tous réels
e

0,0’ fixés, on a
o i i0-6")
o =eVe™ =¢ .
[ ]
Exercice 6 4 Donner la forme exponentielle des nombres suivants :
g @-20% [1+iv3)"?
' U -3, 1/(1-1, 2v3-2i, i* = ( a ) )
J r (vV3+i) 1-i
PROPOSITION Formules d’Euler
Pour tout réel 0, ) ) . )
(e) ele + e—lﬂ ) (e) ele _ e—lO
cos(@) = ——— et sin(@) = ————
2 2i
Preuve. Pour rappel, si z € C, alors
z+z z-z
Re(z) =—— et Qm(z) = ——.
2 2i
Lo i0 e® +eT9 et + o710
En particulier, pour 6 € R, cos(0) =Re (e ) = 7 = 3

ol _ ol 0 _ ,—i0

sin(@):%m(eie)= T o

De méme,
]

La notation complexe permet de retrouver rapidement les formules trigonométriques sur cos(a + b) et sin(a+ b). Pour
la premiere, on écrit :
cos(a+b) +isin(a+b) = el@th) = plagih

= (cos(a) +isin(a))(cos(b) +isin(b))

cos(a+b)+isin(a+b) = cos(a)cos(b)—sin(a)sin(b) +i(------ ).
eR
Par unicité de la partie réelle, ‘ cos(a + b) = cos(a) cos(b) —sin(a) sin(b). ‘ &

‘ sin(a + b) = sin(a) cos(b) + cos(a) sin(b). ‘ &

De méme, par unicité de la partie imaginaire,

Ces relations étant vraies pour tout b € R, on en déduit directement

&

cos(a—b) = cos(a) cos(b) +sin(a)sin(b) et sin(a— b) =sin(a)cos(b) —cos(a)sin(b). ‘

Les formules d’Euler et 'arc-moitié.

q . . : 0/
Lorsqu’on dispose, dans une somme ou un produit, d’'une expression du type e + ¢, on peut essayer de

factoriser par €©®+9)/2 et d'utiliser les formules d’Euler. Précisons par I'exemple.

Méthode




Méthode

* Exemple 1. Calculons le module de 1 + ¢ o1 0 € R.

Ona 1+¢l9=¢02 (e’ie/z + eie/z) =2cos(0/2)e2.

eie/z‘ =2|cos(0/2)|.

)1+eie = 2c0s(0/2)|-

On en déduit le module :

e Exemple 2. Soient p, q deux réels. On a

ei<p+q)/z(ei(p—q)/z + e—i(p—q)/Z) _ ZCos(p - ‘/) a2

P+q))‘

eP+ed =

p_q)(cos(p+q)+isin(

2cos(

Par unicité de la partie imaginaire et réelle, on trouve :

P=)qin(229), costp +costq) =200 25 cos [ 22).

sin(p) +sin(g) =2 cos (

Exemples. Les questions 1, 2 et 3 sont indépendantes.

1. Soient 6, ¢ deux réels. Calculer le module de A0 _ G20,
Exercice 7 i
p 2. 4 Soient 1, k € N*. On pose w = e2™F/7 Justifier que (1 + )" € R.
'_’ eiG/Z_e—iG/Z
9 3. 4 Soit 0 un réel distinct de m modulo 2. On pose Z = ————.
£10/2 | ,—i0/2

2 a) Vérifier que Z =itan(6/2).
1-tan(0/2)?

b) En calculant (1 +Z2)/(1 —Z?2), prouver que cos(§) = —— .
) ( M hp d © 1+tan(0/2)2

PROPOSITION Formule de Moivre
Pour tout réel ©, pour tout entier relatifn, ona:
cos(n6) +isin(nB) = (cos(6) +isin(6))".
Preuve. 11 suffit de remarquer que pour un entier 7, (eie) " 0, -
L
Exercice 8
' . < 3
4 7 4 Justifier que pour tout réel 0, cos(30) =4 cos(0)” —3cos(0).

n Applications a la résolution des équations polynomiales

2.1 Résolution des équations polynomiales de degré 2

Racines carrées dans le cas complexe

Soit Z un nombre complexe, on appelle racine carrée de Z toute solution complexe z de

=7

A Attention. Précisons tout de suite que contrairement au cas réel, on n’emploie pas la notation /- pour un
nombre complexe. En effet, si z est racine, —z est aussi racine. Il n'y a donc pas unicité. On ne peut donc pas parler
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de laracine carrée d'un nombre complexe (non nul). Dans le cas réel, on rappelle que I'on choisit la racine comme la
solution positive. Mais un nombre complexe n’a pas de signe.

Il est aisé d’avoir la racine carrée d'un nombre complexe si on connait sa forme exponentielle.
Soit Z = Rexp(i®), sous forme exponentielle (R € R*, © € R). On vérifie que pour Z # 0, il y a exactement deux racines
carrées données par

z1 = VRexp(i®/2) et 2z =—VRexp(i®/2) = VRexp(i®/2 +im).

Exemples. * Donnons les deux racines carrées de 2i. On a 2i = 2¢!™/2. Les racines sont :
V2e™t =141 et —v2e™i=-1-i

« De méme, les racines carrées de 1 +i = v/2e™'* sont sous forme exponentielle :

21/4elT[/8 et _21/4eml4 — 21/43197(/8.

Toutefois, cette facon de procéder ne donne pas une bonne méthode pratique. En effet, a part pour des nombres
complexes particuliers, il est difficile d’obtenir une expression simple de la forme exponentielle a cause de 'argument.

Calcul des racines carrées d’'un complexe sous forme algébrique.

Soit Z=X+1iY € C avec X,Y € R. On cherche les solutions complexes z de 2 =7.
On écrit la forme algébrique z = x +iy. Une astuce consiste a rajouter a 'équation z? = Z, 'équation sur les
modules |z|? = |Z|. Ainsi

2

7 = % (x+iy)? = X+iY
=7 < —
1212 = |Z| Ix+iyl2 = [X+iY|
xz—y2 = X
w2 —y?+2ixy = X+iY
= = 2xy =Y
lx+iy? = [X+iY] e
partie réelle
et imaginaire .)€2+y2 = VX2+Y2

Dés lors, on en déduit x? et y?. Pour en déduire le signe, on utilise la seconde relation. Notons qu’on obtient
pour Z # 0, exactement deux solutions.
e Donnons un exemple, avec Z =1 +1.

V2+1
x2-y = 1 o= —
?=7 2xy = 1 — xy = 0
2+y? = V12+12=42 P2 o= vV2-1
= —

Ainsi x et y sont de méme signe, on trouve les racines carrées sous forme algébrique :

\/\/§+1 ,\/\/5—1 \/\/§+1 .\/\/2—1
z= +1i ou z=- —i b
2 2 2 2
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4 Calculs de racines carrées.

V3+i

Exercice 9 1. a) Donner les formes algébriques des racines carrées de 7

T n
i = b) Exprimer cos (E) etsin (E) al'aide de racines carrées.

2. Donner les formes algébriques des racines carrées des nombres complexes suivants :

.
—4, 16e3 et 3+4i, 3-4i, 24—10i

Le discriminant d’une équation polynomiale de degré 2

On cherche maintenant a résoudre les équations polynomiales de degré 2, c’est-a-dire on cherche les solutions com-
plexes z de I’équation :
az’?+bz+c=0 avec a,b,ceC, a#0.

La méthode de résolution suit la méthode déja vue les années précédentes : on écrit la forme canonique

az’?+bz+c=a .

(z+ %)2 - i(b2 —4ac)

Si on pose A = b? — 4ac, le discriminant, on trouve :

az’?+bz+c=al|lz+—

2a

(52 -3

D’apres I'étude précédente, le discriminant admet au moins une racine carrée. Il existe donc § € C tel que 8% = A :

az’+bz+c=a (z+ 3)2—@)2 :(z+ £—§)(z+ £+§)

2a 2 2a 2 2a 2
En définitive, on retiendra que si 8 est une racine carrée du discriminant A :
) -b-0 -b+06
az“+bz+c=0 < z= ou z= .
2a 2a
Exercice 10 4 Trouver les solutions dans C de I'équation
7~

A/ Z-(1+2)z-1+i=0 et z°—(5i+14)z+2(5i+12)=0.

Exercice 11

. 4 Lecas bicarré.
\ Trouver les solutions dans C de 'équation z* + (3 - 6i)z% —8 - 6i = 0.

|

2.2 Théoréme de D’Alembert-Gauss

On appelle équation polynomiale de degré n € N toute équation de la forme

1

anz"+a,1z2" 7 +---+az+ay=0 avec a,#0.

Les solutions z sont les racines.
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THEOREME Majoration du nombre de racines

Toute équation polynomiale de degré n € N admet au plus n solutions.

n
Idée de la preuve. Considérons!équation polynomiale ) akzk =0 de degré n. Soit 2z une solution.
k=0
La preuve est une conséquence de la formule :

Il vient alors k=0 k=0 k=0 k=1
n k-1 k-1-p n (k=1 k=1-p
= Y arlz—z)| ) 2Pz =(z-20) ) | ) axz’z,
k=1 p=0 k=1\p=0

Dit autrement, il existe n complexes by, by, -+ by—1 tels que :
n k n-1
Z apz" = (z—zo)( bpzp).
k=0 p=0

Par conséquent, on constate que si zg est une solution d'une équation polynomiale de degré n, alors on peut factoriser |'expres-
sion par (z— zp). Si z; est une seconde solution distinctes de zp, alors z; est solution d'une équation polynomiale de degré n—1.

n n-1 n-1
k
0= agz Z(ZI—ZO)(Z bpzlp) = Y bpz”=0.
k=0 — Y p=0 p=0

#0

Par récurrence, on montre qu’il ne peut avoir plus de 7 solutions.

Nous pouvons maintenant conclure sur le théoréme important du chapitre. Ce théoréme justifie a lui seul 'emploi
des nombres complexes.

THEOREME de D’Alembert-Gauss

Toute équation polynomiale complexe de degré n e N* admet au moins une solution.

— Preuve admise —

Remarque. Nous verrons plus tard que les équations polynomiales de degré n admettent, en un certain sens, exacte-
ment n solutions complexes.

2.3 Application : les racines n-iemes de I'unité

DEFINITION Racines n-iémes de 'unité

Pour tout entier n non nul, on appelle racine n-iéme de l'unité toute solution complexe z de l'équation z" = 1.

Exemples. *1 sont les racines 2-iemes de I'unité, i est une racine 4-ieme de I'unité. Le nombre

2 1 V3
j=e3 =cos(2n/3) +isin(2n/3) = —5+ 71

est une racine cubique de 'unité.
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PROPOSITION Expression des racines n-iemes

Soitn e N*.

Il existe exactement n racines n-iemes de ['unité, données par

2ink

wr=en ou kel0;n-1].

Plus généralement, il existe pour tout complexe o non nul, exactement n solutions a l'équation

zZ =Aqa.

Exercice 12

4

Exercice 13

44 Détaillons la preuve de cette proposition.

1. Soit w une solution de z" = 1. On pose w = ret®

sous forme exponentielle.
a) Justifier que r = 1 et 'existence de k € Z tel que 6 = 2nk/n[2m].

b) Démontrer qu’il y a au plus 7 solutions.

c) Vérifier que wy est solution.

2. Soit a = ae'®, sous forme exponentielle.

a) Justifier que p = {/a@e'®’™ est une solution de 2" = .

b) En déduire la preuve du second point.

s

1. Donner les racines quatriémes de —4 (c’est-a-dire les solutions de z* = —4).
On précisera les formes trigonométriques et algébriques.

2. Donner les solutions de (z + 1)* + 4(z — 1)* = 0 sous forme algébrique.
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=}
7 . )
- Laquadrature du cercle Le saviez-vous 4

N)
J
N

8

Peut-on construire un carré de méme aire qu'un disque donné a l'aide d'une regle et d'un compas ?

On montre que c’est équivalent a : en partant d'un segment d’'une unité, peut-on construire un segment de longueur 1 en
utilisant seulement une régle (non graduée) et un compas?

Ce probléme est un des problemes mathématiques les plus anciens, il a résisté trois millénaires!

La réponse en trois actes :

I. En 1844, Joseph Liouville démontre qu'’il existe des nombres qui ne sont solutions d’aucune équation polynomiale dont
les coefficients sont entiers.

Iexiste zeC telque apz”+ aP 1P v v aiz+ag#£0 avec a;€Z.
On dit que le nombre est transcendant. 3, v/2, i ne sont pas transcendants. Ils sont solutions de
z-3=0, 2°-2=0 et z°+1=0.
Par contre, on démontre que e = exp(1) l'est.

II. On «algébrise » le probléme, c’est-a-dire, on réduit le probléme de type géométrique a un probleme de calcul
algébrique. On prouve que la quadrature du cercle est possible si et seulement si m est une solution d’'une équation
polynomiale se ramenant a une succession d’équations polynomiales du second degré a coefficients entiers. Il faut donc
que T ne soit pas transcendant.

IIL. Ferdinand von Lindemann conclut en 1882. Il démontre que si a, b sont des entiers et z1,zy sont des nombres non
transcendants, alors
ae®l + be?? #£0.

Or, 7 vérifie : M+ 1=0.
Nécessairement, 7 est transcendent. Finalement :
La quadrature du cercle est impossible!

Ce probleme a donné naissance a I’expression « chercher la quadrature du cercle », lorsqu’on tente de résoudre un pro-
bleme insoluble.
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M Exercices

Exercice 14. 4+ Trouver tous les couples (a, b) de nombres complexes tels que :

a+b=4+2i et ab=2+4i.

Exercice 15. ¢ Trouver tous les nombres complexes z tels que z, 1/z et 1 — z soient de méme module.

Exercice 16. Equations. Résoudre dans C :
1. 2z+3Z=5-2i et z%+|z>=18+6i.
2. Z"=Z,ouneN*.

3. (z+D¥-(z-D?"=0.

Indication. Pour le troisiéme point, on utilisera les résultats sur les racines n-iemes de l'unité.

Exercice 17. 4 Soit ze C\ {1}.
1+z

Montrer que 1 € R si et seulement si z est un réel ou un imaginaire pur.

Exercice 18. 44 Linéarisation.

1. Soit 0 € R. Exprimer cos(0)2 sin(8)3 en fonction de sin(6), sin(30) et sin(50).
/2

2. En déduire la valeur de f cos(#)%sin(1) dr.

0

Exercice 19. ¢ Déterminons les solutions complexes z de
245234622 -5z+1=0 (o).
1. Justifier que z est solution de (e) si et seulement si z est solution de

2 1 1
27+ —5-52-5-+6=0 ().
Z V4

2. Résoudre dans C: Z22-z+1=0 et z2—4z+1=0.

1
3. EnposantZ= z+ —, en déduire 'ensemble des solutions de ().
z

4. Comparer la somme et le produit des solutions de (¢) avec les coefficients de I'’équation polynomiale (e).

+
G0
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j‘v e e e
=T Y Indications et solutions
=0
1 Ly
Solution page@ 1.(b) On a un disque fermé (le cercle et son intérieur) de centre
. Ona: l'origine et de rayon 3.

i*+2i3 4512 +2i+6 1-2i-5+2i+6
i B i B
- vz =[arai

* En utilisant le développement de (a + b)® (ou en écrivant
(a+b)® = (a+b)%(a+ b)), ontrouve :

—-2i.

a+i3 = 1343-1-i2+3-12-i+i3

1-3+3i-i=[-2+2i |

¢ En utilisant I'expression conjuguée :

8-6i (8-6i)(7—i) 56-8i—42i—6

74i | (7+07-D 4941
.

e Sachantquei* =1et77=19x4+1,

17721(14]19 :111921

Puis,
2i 2i(1—1)

—_— = *ZI'FL
1+4i (Q1+i)@A-1i)

Or, (1+i)% =2i,

2 \* 2
(E) =a+t=(a+?) =[-4]
¢ Dans un premier temps,
1+i (1+i)? 2i
T-i a-pa+) 2

De plus, 777! = 1x2x3 x4 x---x 777 = 4p ou p € N. Par
conséquent,

1+i777!

_ 777 _ s A\p _ 1P _
- =i =(i =1F =] 1.
(1—1) i* [1]

Solution[2] page[3}

1.(a) On a un quart de plan (avec le bord).
A

v

\/

1.(c) On a un disque ouvert (I'intérieur du cercle sans le bord)
de centre A(1,-1) etderayon 1.
En effet, si on note z I'affixe de M et zp 'affixe de A.
[z—1+il<1 <= |z—zal<]1.
Dit autrement, la distance AM est strictement inférieure a 1.

1.(d) Soit z = x +iy sous forme algébrique.

2= (x+iy)2 =(x? —yz) +i(2xy).
—— N —
erR eR

Ainsi, ERe(zZ) =x%- y2 et %m(zz) =2xy.

Par conséquent, la condition ‘\‘sm(zz) =0 équivauta xy =0.
C’est-a-dire, x = 0 ou y = 0. Graphiquement, ce sontles deux
axes principaux du plan complexe.

1.(e) D’apres ce qui précede :
Sm(zz) =2 < xy=1

Comme x ne peut étre nul, c’est équivalent a y = 1/x. Gra-
phiquement, on a une hyperbole :
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10

1.(f) En reprenant le calcul de la question 1.d, si z = x +iy est
sous forme algébrique

Re((z-1)?) = x-1)% -2
Ainsi la condition devient :
(x—l)2=y2 — y=x-louy=-(x-1.

Graphiquement, on a deux droites.

2.» Soit ze C.
Exprimons a et z sous forme algébrique : « = a+ib et z =
x+1iy de sorte que :

lz—a) = (x—a@)*+ (y+b)?,
et, |z—(x|:(x—a)2+(y—b)2.
Comme les modules sont des réels positifs :
lz-a&l=|z—af = |z-a’=|z—-a® <

(y-b)?=(y+b)? < 0=(y+b)?*—(y-b)?
< 2y-2b=0.

Comme a n’est pas réel, b # 0. Finalement,

lz-al=]z—a] <= y=0

= z est un réel.

* Graphiquement, si A et M sont les deux points du plan
d’affixe o et z. Notons A/, le symétrique de A par rapport a
l'axe (Ox). A’ a pour affixe . L'égalité des modules (|z—a| =
|z — al) traduit 1'égalité des distances A’'M = AM. Dit autre-
ment, M est sur la médiatrice du segment [AA’]. Or, cette
derniére est justement |’axe des réels.

Solution|3] page[d}

Soient z7, zp deux nombres complexes.

lz1+ 2212 = (21 +22)(=1 +22) = (21 +22) (Z1 +722)
= 2121 +2122 +2122 + 2222.
. ) — = 2
Il vient |z1 + 22|° =211+ 2122 + 21 22 + | 22]°.
lz1 - 222 = 12112 -~ 2172 — Z1 22 + | 2212

De méme

La somme donne

2 2 2 2
121+ 2P 121 - 22 =202 + 212212 |

Solution[4} page[4}

1. On a pour un tel complexe z :

1
lz—@2+1)] = 5|z—4+z—21|
1 1
< =|lz—4|+=|z-2i|
2 2
1
lz—@2+1)] < §(3+7)=5.

Graphiquement, si M le point d’affixe z se situe a 'intérieur
des disques de centre respectif (4,0), (0,2) et de rayon 3, 7,
alors M se situe dans le disque de centre (2,1) et de rayon 5.

2. Soit z € C. Passons par la forme canonique :

11 )
z(l—z)—z——z—(z——) .
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Par l'inégalité triangulaire :

1 1,
lz1-2)-1/2| = ‘—Z—l(z—§1)|
2
< Jle-30+3
12 1
< Je-of +2
2l T
|z1-2)-1/2] < (l)2+1—1
z Z < > 4—2

3. Pour justifier cette inégalité, on utilise l'inégalité triangu-
laire. Soient z1,z2 € C,

lzil = |(z1—22)+ 22|
< |z1 - 22| + 22|
=> lzil-lz2l < lz1-2].

De plus, z; et zp ont un role symétrique

|z2| = 1z11 < |22 — 211 = |21 — 22|.

En résumé, ‘ |lz1] = |221] < |21 - 22l ‘

Solution5} page[6}

2in 2im\1/2
= (e
1g2 )

est faux. En effet, si z est
n’est pas défini. Il y a deux expli-

Le passage e%'
un nombre complexe, z
cations :
o 712 peut signifier v/z. Or, on ne peut pas parler de la ra-
cine carrée d'un nombre complexe. Pour rappel, si x est un
réel positif, v/x est le réel positif dont le carré vaut x.
* Par définition de la puissance

x% = exp (aln(x)).

Cette définition n’a de sens que pour x un réel strictement
positif. In(z) n’est pas défini lorsque z est complexe.

Solution[6} page[7}

-

N’oublier pas que le module est toujours un nombre positif.

e Comme1—i=v2e "4 ona

r_ 1 :\/_E in/4
1-i /2¢-in/4 2 :

* ATl'aide du cercle trigonométrique :

V3 1 ,
2\/5—21 = 4(7— 51) = 46_17[/6.

eOnai¥=i2.(H10=—1=¢" et

2-2i= 2\/5(\/;_ ?i) —2V2e inl4,

V3 1 .
puis, \/§+i=2(?+ El) =2em/6.

Finalement, par produit et quotient :

_9n2 3 —im/2
42 @-2)7 5 2% ie—isn/e

=e- - =
(\/§+ i)8 28,181/6 32

¢ De méme, on exprime sous forme exponentielle chacun
des facteurs :

1 V3 )
1+iV3=2(=+ —i) = 2¢™3,
2 2
V2 V2 .
et, 1—i=V2(———i) = vV2e /4,
2 2
: in/3
D’ou 1+1\/§= e V2612,
’ 1—-i  2e-in/4
1+1\/§ 12 -
Conclusion : = m
(529" o]

Solution([7} page[8}

1. Soient 6, ¢ € R. D’apres les formules d’Euler,

ezie _ e2iq) ei(9+(p) (ei(G—gp) _ e—i(G—Lp)]

= O isinO - ¢).
Par conséquent,

|eZiB _ eZiq)| - |ei(6+cp) | 22lil - |sin(6—(p)|.

Clest-a-dire :| |e?® — e?®| = 2| sin(® - )|

2.0na .
l+w = 1+4kn
eink/n(efink/n i eink/n)
I D cos(kmi ).
Puis,

Q+w)"* = ei“k(Zcos(kn/n))n

(—l)k[2cos(krr/n))n eR.

3.(a) Par les formules d’Euler :

972 _ ¢71912 Z 5i5in(0/2),

et, 012 4 p~10/2 2cos(0/2).

D’ol Z =itan(0/2).

3.(b) On a
. (eie/z _ 6719/2)2 0 4 =10 _ o
(1072 4 ¢i0/2)2 Y
Puis,
el0 410 _2
1+72 = 14—
elf + =10 42
Z(eie + e‘ie)
elf+e~10 42
La? = 4cos(9)
el +¢=10 1. 2°
4
De méme, 1-7%2=

el 0y 0
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1+72
ZZ

Par quotient, il vient : =cos(0).

On conclut aI'aide de la question 3.(a),

72 = —tan(0/2)?,

1—tan(6/2)?

0)=——.
cos(®) 1+tan(0/2)2

Solution|8} page[8]

Soit 0 € R. Par la formule de Moivre,

cos(30) +isin(30)
= (cos(®) +isin(®))*
= cos(8)° +3cos(0) (isin(G)]2
+3isin(6) cos(0)2 + (isin(6))*
= ¢0s(0) —3cos(0)sin(0)?
+3isin(0) cos(0)? —isin(0)3
= cos(G)3 —3cos(0) sin(@)2
+i(3sin(0) cos(0)? —sin(6)3).

Par unicité de la partie réelle,
c0s(30) = cos(0) — 3 cos(6) sin(0)?.
Puis par la relation de Pythagore,

cos(30) = cos(®)3-3cos(®)(1-cos®)?)

4¢0s(0)® -3 cos(0).
| |

Solution[9} page[10]

V3+i

1.(a) Reprenons la méthode. Posons Z = .

Soit z = x + iy un nombre complexe sous forme algébrique.

P?-y> = V312
#=7 = 2xy = 1/2
xz+y2 = 1
X2 = (2+V3)/4
= xy = 0
y2 = (2-V3)/4.

x et y sont de méme signe. Les racines carrées sont

_V2+v3 V2-V3
z1 = 2 +1 P y
V243 V2-V3
=
1.(b) Posons
_jin/12 _ T isin (X
Zo=e —cos(12)+151n(12].

ZOZ — em/6 _

V3+i
——

On constate que

V3+i ) )
.Comme il y a uniquement

Zo estune racine carrée de

deux racines carrées données par z; et zy,
Zo=2z1 ou Zg=2z.
Or, al’aide du cercle trigonométrique, on sait que
cos(%) >0 et sin(%) > 0.

Nécessairement, Zy = z1. En identifiant partie réelle et ima-
ginaire, il vient :

T 2+v3
cos(—=)=——,
12 2
b1 2-v3
sin(—=)=———
12 2
2. ¢ Lesracines carrées de —4 sont
2i et -2i.

« Les racines carrées de 16¢4™/3

tielle :

sont, sous forme exponen-

4e2ni/3 _462111/3 :462ni/3+n.

et

Sous forme algébrique :

\—2+2\/§i et 2—2\/51.\

* En reprenant la méthode, les racines carrées de 3 + 4i sont
¢ Soit z € C. Utilisons le résultat précédent :

Z2=3-4i < z*>=3+4i
D’apres ce qui précede, zZ = +(2 +1i). Les racines carrées de

3 —4isont

¢ De méme, on montre que les racines carrées de 24 — 10i
sont
5-i et —-5+i.

Solution page[10]

¢ On a une équation polynomiale de degré 2. Le discrimi-
nant est A = 1. Les solutions s’en déduisent :

‘zlzi et zp=1+i.

* On a une équation polynomiale de degré 2. Le discrimi-
nant est
A =253 +4i) = 52(3 + 4i).

En reprenant le résultat de 1'exercice précédent (ex. EI), une
racine de 3 +4iest2+i.
Uneracine carrée du discriminant est donc :

0=5(2+i)=10+5i.

Les solutions s’en déduisent :

‘ z1=2 et zp=12+45i.

Solution page[10]

Soit z € C. Posons Z = z2 de sorte que:

Il
(=)

z4+(3-6i)z2 —8-6i
— 72+(3-6)Z-8-6i

I
e
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Z est solution d'une équation polynomiale de degré 2. Le
discriminant de cette derniere est

A=5-12i.
En reprenant la méthode de recherche des racines carrées,
0=3-2i

est une racine de A (noter que v'169 = 13). Les solutions de
I'équation polynomiale de degré 2 s’en déduisent :

Z1=-3+4i et Zp=2i.

La recherche de racines carrées (voir exercice[d) de Z; et Zy
donnent quatre solutions :

z1=2i+1, 2zp=-2i+1,
z3=1+i, zp=—-1-1.

Solution page[12]
i0

1.(a) Soit w = re’ une solution sous forme exponentielle (r = 0
et 0 € R). Par les propriétés du module r” = |z"| = 1. Comme
r est un réel positif, seul est possible. Il vient e =1.
On doit imposer 10 = 0 [2n]. Dit autrement, il existe k € Z tel

1.(b) Soient k, k' € Z, notons que si k' = k+ np avec p € Z, on
constate que

B . . .

eZk in/n _ eZle[/n+21pT[ — eZkln/n.

Résumons, si w est une solution alors on peut trouver
k € [[0; - 1]] tel que o = 2™K/7 11y a au plus 7 solutions.

1.(c) Réciproquement, si il existe k € [[0;n —1]] tel que w =
e2mkin alors :

" = eZT[k'l -1

Ce qui prouve le premier point.
2.(a) Pour le second point, on écrit a sous forme exponentielle

ae'®. Comme a est un réel positif, on peut considérer {/a.
Ainsip = {/ael®’'" est une solution a z" = a.

2.(b) Comme « est non-nul, f aussi. On constate alors que z/f
est une racine n-ieme de l'unité. En effet,

Il'ya, au final, exactement 7 solutions données par fwj avec
ke ([0;n—1].

Solution page[12]
1. Soit z = re'® sous forme exponentielle.
=1 = ey —
4
re = 4
dkez, .
{ 40 = m+2kn

Comme r =0, c’est équivalent a

ro= V2
dkez, T 7
6 = —+k-
4 2

Comme un argument est défini modulo 27, on peut se limi-
ter a k € [[0; 3]].
Il'y a bien quatre solutions données par :

21 = V2™t = 14i,
Z2 = \/§e3i“/4 = —1+i,
z3 = \/§e5in/4 = —1-i,
z4 = \/Ee7il'[/4 — 1-1i.

2. Notons que z = 1 n’est pas solution.

Soit ze C avec z # 1.

z+D*+4(z-1)%=0 = (+D)*=-4-1?

(z+1* z+1,4
-t T (z—l) T
z+1

D’apreés ce qui précede estuneracine quatriéme de —4.

Il existe i € [[1;4]] tel que -

z+1
——=z; <= z+1=2z;(z-1)
z—-1
zi+1
— l+z;=2(z;-1) <= z= 3
zi—1

En remplacant par les valeurs, on trouve quatre solutions :

1-2i 1+2i
1-2i, 1+2j, ) .
5 5

On peut tester la cohérence de ce résultat en remarquant que
z est solution si et seulement si z est solution.

Solution

a et b sont solutions de
0=(z—a)(z—b) =

0=z2-(a+bz+ab=z*—(4+20)z+2+4i.

Le discriminant de cette équation polynomiale de degré 2
est: A =4.1lyadeux couples (a, b) solution du probléme :

\ (1+i,3+0), G@+i1+i).

Solution[15]

¢ Soit z un nombre complexe non nul. On suppose que
|zl =1/|z] =|1-z].

En particulier, |z|? = 1, z est de module 1. Il s’écrit sous la

forme z = el® avec B € [0;2n[. Dans ce cas, les formules d’Eu-
ler donnent
-z = 1-¢"
efie/z(eie/z B efie/z)
1-z = e 92246in(0/2).

On en déduit, |1 — z| = 2|sin(0/2)| = 1. Il y a donc deux cas :

1 1
sin(0/2) = 5 et sin(0/2) = ~5
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Comme 0/2 € [0; 7t[, le second cas

1
sin(0/2) =-=-<0
2

est a exclure. Le premier cas équivaut a 8/2 = n/6 ou 8/2 =
51/6. Ainsi, 0 =n/3 ou 0 =5n/3
Si un tel z existe alors

z= em/3 ou z= e15T[/3 — e—m/G.

« Réciproquement, si z = ™3 ~i/3 on a bien

|z|=1/|z] =11 - z|.
En conclusion, il existe deux solutions :

ouz=e¢e

. 1 V3
z B =y 5
2 2
. 1 V3
z e15n/3 ——
2 2

On peut donner une seconde preuve plus géométrique de ce
résultat.

La relation |z| = |1/z]| traduit le fait que z est de module 1.
Ainsi, les conditions deviennent

|z|=1 et |[1-2z|=1.

Si on note M le point d’affixe z :

- La premiere égalité affirme que la distance OM (avec O
I'origine du repere) est égale a 1. Le point M se situe sur le
cercle de centre I'origine et de rayon 1.

- La seconde égalité affirme que la distance entre M et le
point A(1,0) est 1. M se situe sur le cercle de centre A et de
rayon 1.

Seuls deux points vérifient ces deux conditions.

A

/3

—-m/3

On retrouve bien les solutions

. 1 V3
z 3=y 5
2
) 1 V3
z 3o _ T
2 2

Solution[16]

1. Soit z = a +ib € C sous forme algébrique.

2z+3z=2(a+ib)+3(a—ib) =5a—1ib.
Par unicité de la partie réelle et imaginaire,

2z+3z2=5-2i <

5a:5(:)a:1
-b = =2 2

Il'y a une unique solution :
¢ Soit z = a+1ib sous forme algébrique.

22 = a® - b? +2iab, |z|* = a® + b°.
Donc: 2% +12|* = 2a® + 2iab.

Par unicité de la partie réelle et imaginaire,

2
2 2 . 2a = 18
zZ°+1z|“ =18 +6i <— { oab = 6
— a - 3 ou a - -3
b = 1 b = -1 ’

Il'y a deux solutions :

‘Zl =3+i et ZgI—3—i.‘

6

2.+ Soit z = rel® sous forme exponentielle.

"=z = |z|"=z|=]z|

=> r"=r
Comme r est un réel positif, r =0 our =1.
Sir=1,il vient

eine —i0

=e = -

C’est équivalent a |'existence d'un entier k tel que

2km

(n+1)0=2kn = 0= .
n+1

Comme un argument est défini modulo 2n, on peut limiter
k a [[0; n]]. En effet, si k' = k + p(n+1)avecpeZ,

2kn 2(k+pn+1)n 2kmn
= =2pn+ .
n+1 n+1 n+1
2k ; 2k
Puis, enill=gn+1!,

On vient de montrer que si z est solution alors z = 0 ou il
existe k € [[0; n]] tel que z = g2ikn/(n+1)

* Réciproquement, on vérifie que ces complexes sont bien
solutions.

e Ilyan+2solutions:

0, 2k (n+1) avec ke [[0; nl).

On trouve 0 et les racines (n + 1)—iémes de l'unité.

3. in'est pas solution.

z+i
Soit ze C\ {i}. Posons Z = —.
z—i

(Z+1)2" —(z-1)2" =0 = (z+1)" = (z—)2"

(z+1)2"

R R L
(Z_i)Zn
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D’apreés les résultats sur les racines n-iémes de 'unité (page
112), c’est équivalent a k € [[0;2n —1]],

7 = i2knl@n) _ jiknin

On obtient :

z+i . .
— elkn/n Z+i= elknln(z—i)

z—1i
— Z(l— eikn/n) _ —i(l +eikn/n]
1+ eikn/n
= z= —im
eikm/2n) [e—ikn/(Zn) i eikn/(Zn))

— z=-i
elkm/@n) (g—ikn/(2n) _ eikn/(Zn))

_2cos(kn/(2m) 1
= z=-i = :
—2isin(kn/(2n)) tan(kn/(2n))

Concluons, z est solution si et seulement si il existe k €
[[0;2n —1]] tel que

1
z= ————
tan (knt/(2n))

Solution[17
1+z (1+201-2)
Soitz€C. — - =
1-z (1-201-2)
Or, (1-2(1-2=0-21-2 =1-z]%€cR.
Et, 1+2)(1-2)=1-7*=1-72.
14z 1-22
On adonc _
1-z |1-22
Ainsi,
1+2z —_— 5
1—€[R{<:>1—ZZGIR€<:> 1-z°€eR
—Z

— Z2eR < Sm(z?) =0.
Or, sion note z = x +iy la forme algébrique de z,
22 = (x+ip)? = (- yH) +i2xy).
—— N
er erR
En particulier, $m(z?) = 2xy. Par conséquent le quotient est
réel si et seulement si xy = 0, c’est-a dire :

- Soit x = 0, et z est un imaginaire pur.
- Soit y =0, et z est un nombre réel.

Solution[18]

1. On développe al'aide des formules d’Euler,

0 4 om0 5 o0 _ ,—i0 4

2 ) U o

cos(G)2 sin(e)3 = (

1 . . . . . .
_ (6216 124 e—216) (6316 360 43,710 _ e—316)
2543

i

_ 32((6519 o510y _ (30 _ ,=3i0) _,i0 _ eie))_

On trouve :

cos(e)2 sin(9)3 =

1 1 1
—Esm(56) + 1—6$1n(36) + gsm(ﬂ).

2. Par linéarité de I'intégrale,
/2
f cos(n)?sin(n)3dr
0

1 pm/2 1 pn/2
= ——f sin(56)dt + —f sin(31)d¢
16Jo 16Jo

1 rm/2
+—f sin(z)dt.
8Jo

»

T[/2. 1 T2
Or, j(; sin(5¢)dt = g[cos(St)]O 5

n/2 1 /2
f sin(3)dr= - et f sin(#)dt =1.
0 3 0

n/2 ) 2
Finalement, f cos(t)?sin(n3dr = =
0

Solution[19]

1. 0 n'est pas solution. :

0*-5-08+6-02-5-0+1=1#0.

Ensuite, il suffit de diviser I'égalité (o) par z2. Clest possible
puisque 0 n’est pas solution.

2.¢ Le discriminant de la premiére équation est :
A=-3<0.

Il'y a deux solutions complexes conjuguées :

1+iV3 1-iv3
= et zp= .
2 2
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¢ Le discriminant de la seconde équation est :
A=12=22.3>0.

Il'y a deux solutions réelles :

23:2+\/§ et Z4:2—\/§.

3.0na
72 = (z+z_1)2 =z24124272,

Par conséquent :

5 1 1
2"+ —5-5z-5-+6 =
z z
(z2+i+2)—5(z+l)+4 = 72-57+4.
Zz V4

Ainsi, z est solution de (ee) si et seulement si Z est solution
de
72 -57+4=0.

Or, cette équation polynomiale a deux solutions :

Z=1 ou Z=4.
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Le premier cas donne : 4. La somme et le produit des quatre solutions valent respecti-

vement
1

z+-=1 < 2 +1=2z 5 et 1
z

Ces quantités se retrouvent dans I'équation :
Le second cas donne :

Z4 57234622 -5z+1=0 (o).

Z+-=4 < z’+1=4z. 8 L . . P .
z Cest un fait général, si on considere une équation polyno-

R R . . miale de degré p dont le coefficient dominant est 1,
D’apres ce qui précede, on obtient quatre solutions
zP +ap,1z’”—1 +--+ajz+ag=0.
1+iv3 /3
22+ , ,
2 V3. Alors la somme des racines vaut—ap-1 et le produit(—1)P ag.
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