
Nombres complexes

Ce chapitre introduit la notion de nombres complexes et donne l’interprétation géométrique.

1 Nombres complexes

1.1 Forme algébrique

DÉFINITION Forme algébrique

Tout nombre complexe z peut s’écrire sous la forme z = a + ib où a et b sont deux nombres réels. Cette expression
s’appelle la forme algébrique de z. Les nombres a et b sont uniques et sont appelés respectivement partie réelle et
partie imaginaire, on note

ℜe(z) = a et ℑm(z) = b.

Vocabulaire. Lorsque la partie réelle est nulle, on dit que le nombre est un imaginaire pur.

Remarque. D’après l’unicité de la forme algébrique, un nombre complexe est nul si et seulement si sa partie réelle et
sa partie imaginaire sont nulles.

PROPOSITION Règles de calcul sur les parties réelles et imaginaires

Soient z et z ′ deux nombres complexes et α un nombre réel, on a

(addition) (multiplication par un réel)

ℜe(z + z ′) = ℜe(z)+ℜe(z ′)
ℑm(z + z ′) = ℑm(z)+ℑm(z ′)

} ℜe(αz) = αℜe(z)
ℑm(αz) = αℑm(z)

}
ℜe(zz ′) = ℜe(z)ℜe(z ′)−ℑm(z)ℑm(z ′)
ℑm(zz ′) = ℜe(z)ℑm(z ′)+ℑm(z)ℜe(z ′)

}
(produit).

Remarque. On a la propriété d’intégrité : comme dans le cas réel, un produit de nombres complexes est nul si et
seulement si l’un de ses facteurs est nul. Autrement dit,

zz ′ = 0 ⇐⇒ (
z = 0 ou z ′ = 0

)
.

DÉFINITION Nombre conjugué

Soit z = a + ib un complexe sous forme algébrique, on définit le conjugué de z, noté z, par la formule

z = a − ib.
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Pour z1 et z2 deux nombres complexes (z2 6= 0 dans le dernier cas), on prouve

z1 = z1, z1 + z2 = z1 + z2, z1z2 = z1 · z2 et

(
z1

z2

)
= z1

z2
.

On gardera toujours à l’esprit les formules : ℜe(z) = z + z

2
et ℑm(z) = z − z

2i
.

Comment calculer la forme algébrique d’un quotient de complexes?

On multiplie et on divise par l’expression conjuguée du dénominateur. Par exemple

7− i

4+3i
= (7− i)(4−3i)

(4+3i)(4−3i)
= 28−21i−4i−3

42 +32 = 25−25i

25
= 1− i.
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Exercice 1 F Réduire les nombres complexes suivants sous la forme algébrique :

i4 +2i3 +5i2 +2i+6

i
, (1+2i)2, (1+ i)3,

8−6i

7+ i
, i−77,

(
2i

1+ i

)4

et

(
1+ i

1− i

)777!

.

Par définition, 777! = 1×2×3×·· ·×776×777.

Représentation graphique des nombres complexes

Dans la suite, on se place dans un repère orthonormé (O,~ı ,~).
À tout point du plan M d’abscisse x et d’ordonnée y , on associe le nombre complexe z = x + iy .
z est dit l’affixe du point M. Et inversement, à tout nombre complexe z, on peut associer un point du plan.
Pour z = 2+ i :

−2 −1 1 2 3

−1

1

2

0

z

z̄

−z̄

−z

Re(z) = 2

I m(z)

De plus,

* Le point d’affixe −z est le symétrique de M par la sy-
métrie centrale de centre l’origine;

* Le point d’affixe z̄ est le symétrique de M par la sy-
métrie axiale suivant l’axe des abscisses ;

* Le point d’affixe −z̄ est le symétrique de M par la sy-
métrie axiale suivant l’axe des ordonnées.

1.2 Formes trigonométrique et exponentielle

La représentation graphique précédente justifie une nouvelle caractérisation d’un nombre complexe par la dis-
tance à l’origine et l’angle formé avec l’axe (Ox). Ce qui justifie les définitions suivantes.

DÉFINITION Module et argument

Pour tout nombre complexe z, on pose :

* Le module de z, noté |z|, comme la distance entre le point M d’affixe z et l’origine,

|z| =
√
ℜe(z)2 +ℑm(z)2 (Théorème de Pythagore).

* L’argument de z 6= 0, noté arg(z), toute mesure (définie modulo 2π) de l’angle entre l’axe (Ox) et la droite (OM).
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• On ne peut pas parler de l’argument de 0.
• Dans la suite, a = b [2π] si, et seulement si, il existe un entier k pour lequel a = b + 2kπ. On n’oubliera pas qu’un
argument est toujours défini modulo 2π.

Exemple. On a z ∈R∗ si et seulement si arg(z) = 0[π], et z est un imaginaire pur si et seulement si arg(z) = π

2
[π].

−3 −2 −1 1 2 3 4

−2

−1

1

2

0

z = 2+ i|z| =p
5

θ

Remarques. • Comme le module d’un nombre réel est égal à sa valeur absolue, il n’y a pas de contradiction à utiliser
la même notation.
• Pour z ∈C, on a aussi |ℜe(z)| É |z| et |ℑm(z)| É |z|.
• Retenons que si A et B sont deux points du plan d’affixe respective zA et zB alors :

La distance AB est égale à |zB − zA|.

Exercice 2

F Représentation graphique.

1. Représenter l’ensemble des points M du plan d’affixe z ∈C tels que :

a) Re(z) Ê 1 et ℑm(z) Ê 1 ;

b) |z| É 9 ;

c) |z −1+ i| < 1 ;

d) ℑm(z2) = 0.

e) ℑm(z2) = 2.

f ) ℜe
(
(z −1)2)= 0.

2. F Soient z ∈C et α ∈C. On suppose que α n’est pas réel. Justifier l’équivalence :

|z −α| = |z −α| ⇐⇒ z ∈R.

Comment interpréter géométriquement cette équivalence ?

PROPOSITION Règles de calcul pour le module

Pour tous nombres complexes z, z1, z2, on a :

* |z| Ê 0 avec égalité si et seulement si z = 0 ;

* |z| = |z| et zz = |z|2 ;

* |z1z2| = |z1| · |z2|. En particulier, pour tout entier naturel n, |zn | = |z|n ;

* Pour z2 6= 0,
∣∣∣ z1

z2

∣∣∣= |z1|
|z2|

.

Preuve. • Un module représente une distance, un module est donc toujours positif. De plus, pour z ∈C fixé,

|z| = 0 ⇐⇒ ℜe(z)2 +ℑm(z)2 = 0 ⇐⇒ ℜe(z) = 0 et ℑm(z) = 0 ⇐⇒ z = 0.

• Soit z = a + ib un complexe sous forme algébrique. On a z̄ = a − ib

|z| =
√

a2 + (−b2) =
√

a2 +b2 = |z|.
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De plus, zz = (a + ib)(a − ib) = a2 − (ib)2 = a2 +b2 = |z|2.

• Soient z1, z2 ∈C. En utilisant le résultat précédent : |z1z2|2 = (z1z2)(z1z2) = z1z1z2z2 = |z1|2 · |z2|2.
Comme les modules sont positifs |z1z2| = |z1| · |z2|. Par récurrence, on prouve que pour tout entier naturel n, |zn | = |z|n .
• La preuve pour le quotient est similaire au produit. ■

Exercice 3

G Identité du parallélogramme.

Soient z1, z2 ∈C, justifier l’égalité : |z1 + z2|2 +|z1 − z2|2 = 2|z1|2 +2|z2|2.

! Attention.
• Il n’existe pas de relation d’ordre sur les nombres complexes. Pour comparer des complexes, on peut comparer leurs
modules.
• En général, |z1 + z2| 6= |z1|+ |z2|. Par exemple |1+ i| =p

2 6= |1|+ |i|. Toutefois, on a une inégalité.

THÉORÈME Inégalité triangulaire

Pour tous nombres complexes z1 et z2 : |z1 + z2| É |z1|+ |z2|.

Preuve. Soient z1 et z2 deux nombres complexes.

|z1 + z2|2 = (z1 + z2)(z1 + z2) = (z1 + z2)(z1 + z2)

= z1z1 + z2z2 + z1z2 + z2z1 = |z1|2 +|z2|2 +2ℜe
(
z1z2

)
.

Or on a vu que pour tout complexe Z, on a ℜe (Z) É |Z| . Pour Z = z1z2, il vient

|z1 + z2|2 É |z1|2 +|z2|2 +2|z1z2| = |z1|2 +|z2|2 +2|z1| · |z2| =
(|z1|+ |z2|

)2.

Comme les modules sont positifs, on a bien prouvé l’inégalité. ■

Interprétation géométrique

M3 (z1 + z2)

M2 (z2)

M1 (z1)

O

Si M1, M2 et M3 sont trois points du plan d’affixe res-
pective z1, z2 et z1 + z2, alors

OM3 É OM1 +OM2.

La distance entre M3 et l’origine est inférieure à la
somme des distances de M1 et M2 à l’origine.
Autrement dit, la somme des longueurs côtés adja-
cents d’un parallélogramme est inférieure à la lon-
gueur des diagonales.

Exercice 4 F Applications de l’inégalité triangulaire.

1. Soit z ∈C tel que |z −4| É 3 et |z −2i| É 7. Montrer que
∣∣z − (2+ i)

∣∣É 5.
Faire un dessin pour illustrer cette inégalité.

2. Soit z ∈C tel que |z −1/2| É 1/2. Montrer que |z(1− z)−1/2| É 1/2.

3. Justifier que pour tous nombres complexes z1, z2,
∣∣|z1|− |z2|

∣∣É |z1 + z2|.
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PROPOSITION Forme trigonométrique

Tout nombre complexe z s’écrit sous la forme

z = r cos(θ)+ ir sin(θ) avec r Ê 0 et θ ∈R.

Preuve. Si z = 0, on peut choisir r = 0 et tout réel θ.
Dans la suite, z est un nombre complexe non nul. Notons z = a + ib la forme algébrique. On écrit :

z = a + ib =
√

a2 +b2

(
a√

a2 +b2
+ i

b√
a2 +b2

)
.

De plus,
a√

a2 +b2
∈ [−1;1], ce nombre est donc compris entre cos(π) = −1 et cos(0) = 1. D’après le théorème des valeurs inter-

médiaires (la fonction cosinus est continue), il existe un réel θ ∈ [0;π] tel que :

cos(θ) = a√
a2 +b2

.

Le théorème de Pythagore impose : sin(θ)2 = 1−cos(θ)2 = b2

a2 +b2
.

Quitte à remplacer θ par −θ, on peut prendre θ du même signe que b. Ainsi, on a bien

cos(θ) = a√
a2 +b2

et sin(θ) = b√
a2 +b2

.

On conclut : z =
√

a2 +b2
(

cos(θ)+ ir sin(θ)
)
.

■
Remarque. Pour z non nul, r est unique et s’identifie au module, θ ne l’est pas, il s’identifie (modulo 2π) à l’argument.
Pour que θ soit défini de manière unique, on peut imposer en plus θ ∈ [0;2π[, on parle alors d’argument principal.

Rappels de quelques valeurs importantes :

θ 0 π/6 π/4 π/3 π/2 π

cos(θ) 1
p

3/2
p

2/2 1/2 0 −1

sin(θ) 0 1/2
p

2/2
p

3/2 1 0

PROPOSITION Règles de calcul pour l’argument

Pour tous nombres complexes z, z1, z2 non nuls :

* Pour tout λ ∈R+∗ , arg(λz) = arg(z) [2π] ;

* arg(z) =−arg(z) [2π] ;

* arg(z1z2) = arg(z1)+arg(z2) [2π], en particulier, pour tout n ∈Z, arg(zn) = n arg(z) [2π] ;

* arg(z1/z2) = arg(z1)−arg(z2) [2π].

Idée de la preuve. • Soient z ∈ C∗ et M le point d’affixe z. Pour λ ∈ R+∗ , le point d’affixe λz se situe sur la même demi-droite que
O et M. On a donc le même argument (modulo 2π).
• Le second point découle directement du fait que M′ d’affixe z̄ s’obtient par symétrie axiale d’axe (Ox) à partir de M d’affixe z.
• D’après le premier point, on peut supposer z1 et z2 de module 1. Ainsi, il existe θ1, θ2 tels que

z1 = cos(θ1)+ isin(θ1) et z2 = cos(θ2)+ isin(θ2)
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⇒ z1z2 = cos(θ1)sin(θ2)− sin(θ1)cos(θ2)+ i
(

cos(θ1)cos(θ2)+ sin(θ1)sin(θ2)
)

= cos(θ1 +θ2)+ isin(θ1 +θ2).

D’où, arg(z1z2) = θ1 +θ2 = arg(z1)+arg(z2) [2π].

Le cas particulier s’obtient par récurrence sur n ∈N. De plus, pour n entier négatif, on écrit

0 = arg(zn · z−n ) = arg(zn )+arg(z−n ) = arg(zn )−n arg(z),

puisque −n ∈N. D’où le résultat.
• Le dernier point est une conséquence du second et du troisième points. ■

DÉFINITION Exponentielle complexe et forme exponentielle

Pour tout nombre réel θ, on pose e iθ = cos(θ)+ isin(θ).
Ainsi, tout nombre complexe z s’écrit sous la forme (dite exponentielle)

z = r e iθ avec r Ê 0 et θ ∈R.

Exemples. • Une des relations les plus connues en mathématiques est : e iπ+1 = 0.

• Soit θ ∈R,
e iθ = 1 ⇐⇒ ∃k ∈Z, θ= 2kπ.

Exercice 5

F Chercher l’erreur : −1 = eiπ = e
1
2 ·2iπ = (

e2iπ)1/2 = 11/2 =p
1 = 1.

PROPOSITION Règles de calcul pour les complexes de module 1

• Soit z ∈C. On a l’équivalence entre les énoncés :

i ) z est de module 1 ; i i ) Il existe un réel θ tel que z = e iθ.

• Pour tous réels θ,θ′, e iθ = e−iθ, e iθe iθ′ = e i(θ+θ′) et
e iθ

e iθ′ = e i(θ−θ′).

Preuve. • Soit z ∈C. On écrit z sous forme exponentielle z = r eiθ avec θ ∈R et r ∈R+. D’après le théorème de Pythagore :

|eiθ| =
√

cos2(θ)+ sin2(θ) =p
1 = 1.

Ainsi,
|z| = ∣∣r eiθ∣∣= |r | · |eiθ| = r.

Finalement, z est de module 1 si et seulement si r = 1, si et seulement si z = eiθ.
• En utilisant le fait que la fonction sinus est impaire et la fonction cosinus paire, on a aussi pour θ ∈R,

eiθ = cos(θ)+ isin(θ) = cos(θ)− isin(θ) = cos(−θ)+ isin(−θ) = e−iθ.

- Soient θ, θ′ ∈R, on a :

eiθeiθ′ = (
cos(θ)+ isin(θ)

)(
cos(θ′)+ isin(θ′)

)
= cos(θ)cos(θ′)− sin(θ)sin(θ′)+ i

(
cos(θ)sin(θ′)+ sin(θ)cos(θ′)

)
.

En utilisant les formules trigonométriques, eiθeiθ′ = cos(θ+θ′)+ isin(θ+θ′) = ei(θ+θ′).
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- En particulier pour θ fixé et θ′ =−θ, on trouve eiθe−iθ = ei(θ−θ) = e0 = 1. Cela implique e−iθ = 1

eiθ
. Finalement, pour tous réels

θ,θ′ fixés, on a
eiθ

eiθ′ = eiθe−iθ′ = ei(θ−θ′).

■

Exercice 6 F Donner la forme exponentielle des nombres suivants :

−3, 1/(1− i), 2
p

3−2i, i42 (2−2i)2(p
3+ i

)8
,

(
1+ i

p
3

1− i

)12

.

PROPOSITION Formules d’Euler

Pour tout réel θ,

cos(θ) = e iθ+e−iθ

2
et sin(θ) = e iθ−e−iθ

2i
.

Preuve. Pour rappel, si z ∈C, alors

ℜe(z) = z + z

2
et ℑm(z) = z − z

2i
.

En particulier, pour θ ∈R, cos(θ) =ℜe
(
eiθ

)
= eiθ+eiθ

2
= eiθ+e−iθ

2
.

De même, sin(θ) =ℑm
(
eiθ

)
= eiθ−eiθ

2i
= eiθ−e−iθ

2i
.

■

La notation complexe permet de retrouver rapidement les formules trigonométriques sur cos(a±b) et sin(a±b). Pour
la première, on écrit :

cos(a +b)+ isin(a +b) = e i(a+b) = e iae ib

= (
cos(a)+ isin(a)

)(
cos(b)+ isin(b)

)
cos(a +b)+ isin(a +b) = cos(a)cos(b)− sin(a)sin(b)+ i( · · · · · ·︸ ︷︷ ︸

∈R
).

Par unicité de la partie réelle, cos(a +b) = cos(a)cos(b)− sin(a)sin(b). ♣

De même, par unicité de la partie imaginaire, sin(a +b) = sin(a)cos(b)+cos(a)sin(b). ♣

Ces relations étant vraies pour tout b ∈R, on en déduit directement

cos(a −b) = cos(a)cos(b)+ sin(a)sin(b) et sin(a −b) = sin(a)cos(b)−cos(a)sin(b). ♣

Les formules d’Euler et l’arc-moitié.

Lorsqu’on dispose, dans une somme ou un produit, d’une expression du type e iθ ± e iθ′ , on peut essayer de
factoriser par e i(θ+θ′)/2 et d’utiliser les formules d’Euler. Précisons par l’exemple.M

ét
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• Exemple 1. Calculons le module de 1+e iθ où θ ∈R.

On a 1+e iθ = e iθ/2
(
e−iθ/2 +e iθ/2

)
= 2cos(θ/2)e iθ/2.

On en déduit le module :
∣∣∣1+e iθ

∣∣∣= |2cos(θ/2)| ·
∣∣∣e iθ/2

∣∣∣= 2|cos(θ/2)|.

• Exemple 2. Soient p, q deux réels. On a

e ip +e iq = e i(p+q)/2
(
e i(p−q)/2 +e−i(p−q)/2

)
= 2cos

( p −q

2

)
e i(p+q)/2

= 2cos
( p −q

2

)(
cos

( p +q

2

)+ isin
( p +q

2

))
.

Par unicité de la partie imaginaire et réelle, on trouve :

sin(p)+ sin(q) = 2cos
( p −q

2

)
sin

( p +q

2

)
, cos(p)+cos(q) = 2cos

( p −q

2

)
cos

( p +q

2

)
.
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Exercice 7

Exemples. Les questions 1, 2 et 3 sont indépendantes.

1. Soient θ, ϕ deux réels. Calculer le module de e2iθ−e2iϕ.

2. F Soient n,k ∈N∗. On pose ω= e2iπk/n . Justifier que (1+ω)n ∈R.

3. F Soit θ un réel distinct de π modulo 2π. On pose Z = eiθ/2 −e−iθ/2

eiθ/2 +e−iθ/2
.

a) Vérifier que Z = i tan(θ/2).

b) En calculant (1+Z2)/(1−Z2), prouver que cos(θ) = 1− tan(θ/2)2

1+ tan(θ/2)2
.

PROPOSITION Formule de Moivre

Pour tout réel θ, pour tout entier relatif n, on a :

cos(nθ)+ isin(nθ) = (
cos(θ)+ isin(θ)

)n .

Preuve. Il suffit de remarquer que pour un entier n,
(
eiθ

)n = einθ. ■
Exercice 8

F Justifier que pour tout réel θ, cos(3θ) = 4cos(θ)3 −3cos(θ).

2 Applications à la résolution des équations polynomiales

2.1 Résolution des équations polynomiales de degré 2

Racines carrées dans le cas complexe

Soit Z un nombre complexe, on appelle racine carrée de Z toute solution complexe z de

z2 = Z.

! Attention. Précisons tout de suite que contrairement au cas réel, on n’emploie pas la notation
p· pour un

nombre complexe. En effet, si z est racine, −z est aussi racine. Il n’y a donc pas unicité. On ne peut donc pas parler
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de la racine carrée d’un nombre complexe (non nul). Dans le cas réel, on rappelle que l’on choisit la racine comme la
solution positive. Mais un nombre complexe n’a pas de signe.

Il est aisé d’avoir la racine carrée d’un nombre complexe si on connaît sa forme exponentielle.
Soit Z = Rexp(iΘ), sous forme exponentielle (R ∈R+, Θ ∈R). On vérifie que pour Z 6= 0, il y a exactement deux racines
carrées données par

z1 =
p

Rexp(iΘ/2) et z2 =−
p

Rexp(iΘ/2) =
p

Rexp(iΘ/2+ iπ).

Exemples. • Donnons les deux racines carrées de 2i. On a 2i = 2e iπ/2. Les racines sont :

p
2e iπ/4 = 1+ i et −p2e iπ/4 =−1− i.

• De même, les racines carrées de 1+ i =p
2e iπ/4 sont sous forme exponentielle :

21/4e iπ/8 et −21/4e iπ/4 = 21/4e i9π/8.

Toutefois, cette façon de procéder ne donne pas une bonne méthode pratique. En effet, à part pour des nombres
complexes particuliers, il est difficile d’obtenir une expression simple de la forme exponentielle à cause de l’argument.

Calcul des racines carrées d’un complexe sous forme algébrique.

Soit Z = X+ iY ∈C avec X,Y ∈R. On cherche les solutions complexes z de z2 = Z.
On écrit la forme algébrique z = x + iy . Une astuce consiste à rajouter à l’équation z2 = Z, l’équation sur les
modules |z|2 = |Z|. Ainsi

z2 = Z ⇐⇒
 z2 = Z

|z|2 = |Z|
⇐⇒

 (x + iy)2 = X+ iY

|x + iy |2 = |X+ iY|

⇐⇒
 x2 − y2 +2ix y = X+ iY

|x + iy |2 = |X+ iY|
⇐⇒

Unicité
partie réelle

et imaginaire


x2 − y2 = X

2x y = Y

x2 + y2 =
p

X2 +Y2.

Dès lors, on en déduit x2 et y2. Pour en déduire le signe, on utilise la seconde relation. Notons qu’on obtient
pour Z 6= 0, exactement deux solutions.
• Donnons un exemple, avec Z = 1+ i.

z2 = Z ⇐⇒


x2 − y2 = 1

2x y = 1

x2 + y2 =
p

12 +12 =p
2

⇐⇒



x2 =
p

2+1

2

x y Ê 0

y2 =
p

2−1

2
.

Ainsi x et y sont de même signe, on trouve les racines carrées sous forme algébrique :

z =
√p

2+1

2
+ i

√p
2−1

2
ou z =−

√p
2+1

2
− i

√p
2−1

2
.

M
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Exercice 9

F Calculs de racines carrées.

1. a) Donner les formes algébriques des racines carrées de

p
3+ i

2
.

b) Exprimer cos
( π

12

)
et sin

( π
12

)
à l’aide de racines carrées.

2. Donner les formes algébriques des racines carrées des nombres complexes suivants :

−4, 16e
4πi

3 et 3+4i, 3−4i, 24−10i.

Le discriminant d’une équation polynomiale de degré 2

On cherche maintenant à résoudre les équations polynomiales de degré 2, c’est-à-dire on cherche les solutions com-
plexes z de l’équation :

az2 +bz + c = 0 avec a,b,c ∈C, a 6= 0.

La méthode de résolution suit la méthode déjà vue les années précédentes : on écrit la forme canonique

az2 +bz + c = a

[(
z + b

2a

)2 − 1

4
(b2 −4ac)

]
.

Si on pose ∆= b2 −4ac, le discriminant, on trouve :

az2 +bz + c = a

[(
z + b

2a

)2 − ∆

4

]
.

D’après l’étude précédente, le discriminant admet au moins une racine carrée. Il existe donc δ ∈C tel que δ2 =∆ :

az2 +bz + c = a

[(
z + b

2a

)2 −
(δ

2

)2
]
=

(
z + b

2a
− δ

2

)(
z + b

2a
+ δ

2

)
.

En définitive, on retiendra que si δ est une racine carrée du discriminant ∆ :

az2 +bz + c = 0 ⇐⇒ z = −b −δ
2a

ou z = −b +δ
2a

.

Exercice 10 F Trouver les solutions dans C de l’équation

z2 − (1+2i)z −1+ i = 0 et z2 − (5i+14)z +2(5i+12) = 0.

Exercice 11

FF Le cas bicarré.

Trouver les solutions dans C de l’équation z4 + (3−6i)z2 −8−6i = 0.

2.2 Théorème de D’Alembert-Gauss

On appelle équation polynomiale de degré n ∈N toute équation de la forme

an zn +an−1zn−1 +·· ·+a1z +a0 = 0 avec an 6= 0.

Les solutions z sont les racines.
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THÉORÈME Majoration du nombre de racines

Toute équation polynomiale de degré n ∈N admet au plus n solutions.

Idée de la preuve. Considérons l’équation polynomiale
n∑

k=0
ak zk = 0 de degré n. Soit z0 une solution.

La preuve est une conséquence de la formule :

∀k ∈N∗, zk − zk
0 = (z − z0)

(
k−1∑
p=0

zp z
k−1−p
0

)
.

Il vient alors

n∑
k=0

ak zk =
n∑

k=0
ak zk −

n∑
k=0

ak zk
0 =

n∑
k=1

ak

(
zk − zk

0

)
=

n∑
k=1

ak (z − z0)

(
k−1∑
p=0

zp z
k−1−p
0

)
= (z − z0)

n∑
k=1

(
k−1∑
p=0

ak zp z
k−1−p
0

)
.

Dit autrement, il existe n complexes b0,b1, · · ·bn−1 tels que :

n∑
k=0

ak zk = (z − z0)
(n−1∑

p=0
bp zp

)
.

Par conséquent, on constate que si z0 est une solution d’une équation polynomiale de degré n, alors on peut factoriser l’expres-
sion par (z − z0). Si z1 est une seconde solution distinctes de z0, alors z1 est solution d’une équation polynomiale de degré n−1.

0 =
n∑

k=0
ak z1

k = (z1 − z0)︸ ︷︷ ︸
6=0

(n−1∑
p=0

bp z1
p
)

⇒
n−1∑
p=0

bp z1
p = 0.

Par récurrence, on montre qu’il ne peut avoir plus de n solutions. ■

Nous pouvons maintenant conclure sur le théorème important du chapitre. Ce théorème justifie à lui seul l’emploi
des nombres complexes.

THÉORÈME de D’Alembert-Gauss

Toute équation polynomiale complexe de degré n ∈N∗ admet au moins une solution.

— Preuve admise —

Remarque. Nous verrons plus tard que les équations polynomiales de degré n admettent, en un certain sens, exacte-
ment n solutions complexes.

2.3 Application : les racines n-ièmes de l’unité

DÉFINITION Racines n-ièmes de l’unité

Pour tout entier n non nul, on appelle racine n-ième de l’unité toute solution complexe z de l’équation zn = 1.

Exemples. ±1 sont les racines 2-ièmes de l’unité, i est une racine 4-ième de l’unité. Le nombre

j = e
2πi

3 = cos(2π/3)+ isin(2π/3) =−1

2
+
p

3

2
i

est une racine cubique de l’unité.
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PROPOSITION Expression des racines n-ièmes

Soit n ∈N∗.
Il existe exactement n racines n-ièmes de l’unité, données par

ωk = e
2iπk

n où k ∈ [[0;n −1]].

Plus généralement, il existe pour tout complexe α non nul, exactement n solutions à l’équation

zn = α.

Exercice 12

FF Détaillons la preuve de cette proposition.

1. Soit ω une solution de zn = 1. On pose ω= r eiθ sous forme exponentielle.

a) Justifier que r = 1 et l’existence de k ∈Z tel que θ= 2πk/n [2π].

b) Démontrer qu’il y a au plus n solutions.

c) Vérifier que ωk est solution.

2. Soit α= aeiρ, sous forme exponentielle.

a) Justifier que β= npaeiρ/n est une solution de zn = α.

b) En déduire la preuve du second point.

Exercice 13 G

1. Donner les racines quatrièmes de −4 (c’est-à-dire les solutions de z4 =−4).
On précisera les formes trigonométriques et algébriques.

2. Donner les solutions de (z +1)4 +4(z −1)4 = 0 sous forme algébrique.
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La quadrature du cercle Le saviez-vous

Peut-on construire un carré de même aire qu’un disque donné à l’aide d’une règle et d’un compas?

On montre que c’est équivalent à : en partant d’un segment d’une unité, peut-on construire un segment de longueur π en
utilisant seulement une règle (non graduée) et un compas?
Ce problème est un des problèmes mathématiques les plus anciens, il a résisté trois millénaires !
La réponse en trois actes :

I. En 1844, Joseph Liouville démontre qu’il existe des nombres qui ne sont solutions d’aucune équation polynomiale dont
les coefficients sont entiers.

Il existe z ∈C tel que ap zp +ap−1zp−1 +·· ·+a2z2 +a1z +a0 6= 0 avec ai ∈Z.

On dit que le nombre est transcendant. 3,
p

2, i ne sont pas transcendants. Ils sont solutions de

z −3 = 0, z2 −2 = 0 et z2 +1 = 0.

Par contre, on démontre que e = exp(1) l’est.

II. On « algébrise » le problème, c’est-à-dire, on réduit le problème de type géométrique à un problème de calcul
algébrique. On prouve que la quadrature du cercle est possible si et seulement si π est une solution d’une équation
polynomiale se ramenant à une succession d’équations polynomiales du second degré à coefficients entiers. Il faut donc
que π ne soit pas transcendant.

III. Ferdinand von Lindemann conclut en 1882. Il démontre que si a, b sont des entiers et z1, z2 sont des nombres non
transcendants, alors

aez1 +bez2 6= 0.

Or, π vérifie : eiπ+1 = 0.

Nécessairement, π est transcendent. Finalement :

La quadrature du cercle est impossible !

Ce problème a donné naissance à l’expression « chercher la quadrature du cercle », lorsqu’on tente de résoudre un pro-
blème insoluble.
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Exercices

Exercice 14. F Trouver tous les couples (a,b) de nombres complexes tels que :

a +b = 4+2i et ab = 2+4i.

Exercice 15. F Trouver tous les nombres complexes z tels que z, 1/z et 1− z soient de même module.

Exercice 16. Équations. Résoudre dans C :

1. 2z +3z = 5−2i et z2 +|z|2 = 18+6i. F

2. zn = z, où n ∈N∗. FF

3. (z + i)2n − (z − i)2n = 0. FFF

Indication. Pour le troisième point, on utilisera les résultats sur les racines n-ièmes de l’unité.

Exercice 17. F Soit z ∈C\ {1}.

Montrer que
1+ z

1− z
∈R si et seulement si z est un réel ou un imaginaire pur.

Exercice 18. FF Linéarisation.

1. Soit θ ∈R. Exprimer cos(θ)2 sin(θ)3 en fonction de sin(θ), sin(3θ) et sin(5θ).

2. En déduire la valeur de
∫ π/2

0
cos(t )2 sin(t )3 dt .

Exercice 19. F Déterminons les solutions complexes z de

z4 −5z3 +6z2 −5z +1 = 0 (•).

1. Justifier que z est solution de (•) si et seulement si z est solution de

z2 + 1

z2
−5z −5

1

z
+6 = 0 (••).

2. Résoudre dans C : z2 − z +1 = 0 et z2 −4z +1 = 0.

3. En posant Z = z + 1

z
, en déduire l’ensemble des solutions de (•).

4. Comparer la somme et le produit des solutions de (•) avec les coefficients de l’équation polynomiale (•).
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Indications et solutions

Solution 1, page 2.

• On a :

i4 +2i3 +5i2 +2i+6

i
= 1−2i−5+2i+6

i
=−2i.

• (1+2i)2 = −3+4i.

• En utilisant le développement de (a +b)3 (ou en écrivant
(a +b)3 = (a +b)2(a +b)), on trouve :

(1+ i)3 = 13 +3 ·1 · i2 +3 ·12 · i+ i3

= 1−3+3i− i = −2+2i.

• En utilisant l’expression conjuguée :

8−6i

7+ i
= (8−6i)(7− i)

(7+ i)(7− i)
= 56−8i−42i−6

49+1

= 1− i.

• Sachant que i4 = 1 et 77 = 19×4+1,

i77 = i · (i4
)19 = i ·119 = i.

Puis, i−77 = 1/i =−i.

•
2i

1+ i
= 2i(1− i)

(1+ i)(1− i)
= 1+ i.

Or, (1+ i)2 = 2i,(
2i

1+ i

)4

= (1+ i)4 =
(
(1+ i)2

)2 = −4.

• Dans un premier temps,

1+ i

1− i
= (1+ i)2

(1− i)(1+ i)
= 2i

2
= i.

De plus, 777! = 1 × 2 × 3 × 4 × ·· · × 777 = 4p où p ∈ N. Par
conséquent,(

1+ i

1− i

)777!

= i777! = (i4)p = 1p = 1.

Solution 2 page 3.

1.(a) On a un quart de plan (avec le bord).

1

1

1.(b) On a un disque fermé (le cercle et son intérieur) de centre
l’origine et de rayon 3.

3

0

1.(c) On a un disque ouvert (l’intérieur du cercle sans le bord)
de centre A(1,−1) et de rayon 1.
En effet, si on note z l’affixe de M et zA l’affixe de A.

|z −1+ i| < 1 ⇐⇒ |z − zA| < 1.

Dit autrement, la distance AM est strictement inférieure à 1.

1.(d) Soit z = x + iy sous forme algébrique.

z2 = (x + iy)2 = (x2 − y2)︸ ︷︷ ︸
∈R

+i (2x y).︸ ︷︷ ︸
∈R

Ainsi, ℜe(z2) = x2 − y2 et ℑm(z2) = 2x y.

Par conséquent, la condition ℑm(z2) = 0 équivaut à x y = 0.
C’est-à-dire, x = 0 ou y = 0. Graphiquement, ce sont les deux
axes principaux du plan complexe.

−3 −2 −1 1 2 3

−1

1

2

0

1.(e) D’après ce qui précède :

ℑm(z2) = 2 ⇐⇒ x y = 1.

Comme x ne peut être nul, c’est équivalent à y = 1/x. Gra-
phiquement, on a une hyperbole :
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−2 2 4

−5

5

10

0

1.(f ) En reprenant le calcul de la question 1.d, si z = x + iy est
sous forme algébrique

ℜe
(
(z −1)2)= (x −1)2 − y2.

Ainsi la condition devient :

(x −1)2 = y2 ⇐⇒ y = x −1 ou y =−(x −1).

Graphiquement, on a deux droites.

−1 1 3 5
−1

1

2

4

y = x −1

y = 1−x

2.• Soit z ∈C.
Exprimons α et z sous forme algébrique : α = a + ib et z =
x + iy de sorte que :

|z −α|2 = (x −a)2 + (y +b)2,

et, |z −α| = (x −a)2 + (y −b)2.

Comme les modules sont des réels positifs :

|z −α| = |z −α| ⇐⇒ |z −α|2 = |z −α|2 ⇐⇒
(y −b)2 = (y +b)2 ⇐⇒ 0 = (y +b)2 − (y −b)2

⇐⇒ 2y ·2b = 0.

Comme α n’est pas réel, b 6= 0. Finalement,

|z −α| = |z −α| ⇐⇒ y = 0

⇐⇒ z est un réel.

• Graphiquement, si A et M sont les deux points du plan
d’affixe α et z. Notons A′, le symétrique de A par rapport à
l’axe (Ox). A′ a pour affixe α. L’égalité des modules (|z −α| =
|z −α|) traduit l’égalité des distances A′M = AM. Dit autre-
ment, M est sur la médiatrice du segment [AA′]. Or, cette
dernière est justement l’axe des réels.

M, z

A, α

A′, α

Solution 3 page 4.

Soient z1, z2 deux nombres complexes.

|z1 + z2|2 = (z1 + z2)(z1 + z2) = (z1 + z2)(z1 + z2)

= z1z1 + z1z2 + z1z2 + z2z2.

Il vient |z1 + z2|2 = |z1|2 + z1z2 + z1z2 +|z2|2.

De même |z1 − z2|2 = |z1|2 − z1z2 − z1z2 +|z2|2.

La somme donne

|z1 + z2|2 +|z1 − z2|2 = 2|z1|2 +2|z2|2.

Solution 4, page 4.

1. On a pour un tel complexe z :

|z − (2+ i)| = 1

2
|z −4+ z −2i|

É 1

2
|z −4|+ 1

2
|z −2i|

|z − (2+ i)| É 1

2
(3+7) = 5.

9

0

Graphiquement, si M le point d’affixe z se situe à l’intérieur
des disques de centre respectif (4,0), (0,2) et de rayon 3, 7,
alors M se situe dans le disque de centre (2,1) et de rayon 5.

2. Soit z ∈C. Passons par la forme canonique :

z(1− z)− 1

2
=−1

4
− (

z − 1

2

)2.
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Par l’inégalité triangulaire :

∣∣z(1− z)−1/2
∣∣ =

∣∣∣− 1

4
− (

z − 1

2

)2∣∣
É

∣∣∣(z − 1

2

)2
∣∣∣+ 1

4

É
∣∣∣z − 1

2

∣∣∣2 + 1

4∣∣z(1− z)−1/2
∣∣ É

( 1

2

)2 + 1

4
= 1

2
.

3. Pour justifier cette inégalité, on utilise l’inégalité triangu-
laire. Soient z1, z2 ∈C,

|z1| = ∣∣(z1 − z2)+ z2
∣∣

É |z1 − z2|+ |z2|
⇒ |z1|− |z2| É |z1 − z2|.

De plus, z1 et z2 ont un rôle symétrique

|z2|− |z1| É |z2 − z1| = |z1 − z2|.

En résumé,
∣∣|z1|− |z2|

∣∣É |z1 − z2|.

Solution 5, page 6.

Le passage e
1
2 ·2iπ = (

e2iπ)1/2 est faux. En effet, si z est
un nombre complexe, z1/2 n’est pas défini. Il y a deux expli-
cations :
• z1/2 peut signifier

p
z. Or, on ne peut pas parler de la ra-

cine carrée d’un nombre complexe. Pour rappel, si x est un
réel positif,

p
x est le réel positif dont le carré vaut x.

• Par définition de la puissance

xα = exp
(
α ln(x)

)
.

Cette définition n’a de sens que pour x un réel strictement
positif. ln(z) n’est pas défini lorsque z est complexe.

Solution 6, page 7.

• −3 = 3eiπ.

N’oublier pas que le module est toujours un nombre positif.

• Comme 1− i =p
2e−iπ/4, on a

1

1− i
= 1

p
2e−iπ/4

=
p

2

2
eiπ/4.

• À l’aide du cercle trigonométrique :

2
p

3−2i = 4
(p3

2
− 1

2
i
)= 4e−iπ/6.

• On a i42 = i2 · (i4)10 =−1 = eiπ, et

2−2i = 2
p

2
(p2

2
−
p

2

2
i
)= 2

p
2e−iπ/4.

puis,
p

3+ i = 2
(p3

2
+ 1

2
i
)= 2eiπ/6.

Finalement, par produit et quotient :

i42 (2−2i)2

(
p

3+ i)8
= eiπ · 23e−iπ/2

28ei8π/6
= 1

32
e−i5π/6.

• De même, on exprime sous forme exponentielle chacun
des facteurs :

1+ i
p

3 = 2
( 1

2
+
p

3

2
i
)= 2eiπ/3,

et, 1− i =p
2
(p2

2
−
p

2

2
i
)=p

2e−iπ/4.

D’où,
1+ i

p
3

1− i
= 2eiπ/3

p
2e−iπ/4

=p
2ei7π/12.

Conclusion :

(
1+ i

p
3

1− i

)12

= 64eiπ.

Solution 7, page 8.

1. Soient θ,ϕ ∈R. D’après les formules d’Euler,

e2iθ−e2iϕ = ei(θ+ϕ)(ei(θ−ϕ) −e−i(θ−ϕ))
= ei(θ+ϕ) ·2isin(θ−ϕ).

Par conséquent,∣∣e2iθ−e2iϕ∣∣= ∣∣ei(θ+ϕ)∣∣ ·2|i| · ∣∣sin(θ−ϕ)
∣∣.

C’est-à-dire :
∣∣e2iθ−e2iϕ∣∣= 2

∣∣sin(θ−ϕ)
∣∣.

2. On a
1+ω = 1+e2iπk/n

= eiπk/n
(
e−iπk/n +eiπk/n

)
= eiπk/n ·2cos(kπ/n).

Puis,

(1+ω)n = eiπk
(
2cos(kπ/n)

)n

= (−1)k
(
2cos(kπ/n)

)n ∈R.

3.(a) Par les formules d’Euler :

eiθ/2 −e−iθ/2 = 2isin(θ/2),

et, eiθ/2 +e−iθ/2 = 2cos(θ/2).

D’où Z = i tan(θ/2).

3.(b) On a

Z2 =
(
eiθ/2 −e−iθ/2)2(
eiθ/2 +eiθ/2

)2
= eiθ+e−iθ−2

eiθ+e−iθ+2
.

Puis,

1+Z2 = 1+ eiθ+e−iθ−2

eiθ+e−iθ+2

= 2
(
eiθ+e−iθ)

eiθ+e−iθ+2

1+Z2 = 4cos(θ)

eiθ+e−iθ+2
.

De même, 1−Z2 = 4

eiθ+e−iθ+2
.
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Par quotient, il vient :
1+Z2

1−Z2
= cos(θ).

On conclut à l’aide de la question 3.(a),

Z2 =− tan(θ/2)2,

cos(θ) = 1− tan(θ/2)2

1+ tan(θ/2)2
.

Solution 8, page 8.

Soit θ ∈R. Par la formule de Moivre,

cos(3θ)+ isin(3θ)

= (
cos(θ)+ isin(θ)

)3

= cos(θ)3 +3cos(θ)
(
isin(θ)

)2

+3isin(θ)cos(θ)2 + (
isin(θ)

)3

= cos(θ)3 −3cos(θ)sin(θ)2

+3isin(θ)cos(θ)2 − isin(θ)3

= cos(θ)3 −3cos(θ)sin(θ)2

+i
(
3sin(θ)cos(θ)2 − sin(θ)3)

.

Par unicité de la partie réelle,

cos(3θ) = cos(θ)3 −3cos(θ)sin(θ)2.

Puis par la relation de Pythagore,

cos(3θ) = cos(θ)3 −3cos(θ)
(
1−cos(θ)2)

= 4cos(θ)3 −3cos(θ).

Solution 9, page 10.

1.(a) Reprenons la méthode. Posons Z =
p

3+ i

2
.

Soit z = x + iy un nombre complexe sous forme algébrique.

z2 = Z ⇐⇒


x2 − y2 = p
3/2

2x y = 1/2
x2 + y2 = 1

⇐⇒


x2 = (2+p
3)/4

x y Ê 0
y2 = (2−p

3)/4.

x et y sont de même signe. Les racines carrées sont

z1 =
√

2+p
3

2
+ i

√
2−p

3

2
,

z2 =−
√

2+p
3

2
− i

√
2−p

3

2
.

1.(b) Posons

Z0 = eiπ/12 = cos
( π

12

)+ isin
( π

12

)
.

On constate que Z0
2 = eiπ/6 =

p
3+ i

2
.

Z0 est une racine carrée de

p
3+ i

2
. Comme il y a uniquement

deux racines carrées données par z1 et z2,

Z0 = z1 ou Z0 = z2.

Or, à l’aide du cercle trigonométrique, on sait que

cos
( π

12

)> 0 et sin
( π

12

)> 0.

Nécessairement, Z0 = z1. En identifiant partie réelle et ima-
ginaire, il vient :

cos
( π

12

)=
√

2+p
3

2
,

sin
( π

12

)=
√

2−p
3

2
.

2. • Les racines carrées de −4 sont

2i et −2i.

• Les racines carrées de 16e4πi/3 sont, sous forme exponen-
tielle :

4e2πi/3 et −4e2πi/3 = 4e2πi/3+π.

Sous forme algébrique :

−2+2
p

3i et 2−2
p

3i.

• En reprenant la méthode, les racines carrées de 3+4i sont

2+ i et −2− i.

• Soit z ∈C. Utilisons le résultat précédent :

z2 = 3−4i ⇐⇒ z̄2 = 3+4i.

D’après ce qui précède, z̄ = ±(2+ i). Les racines carrées de
3−4i sont

2− i et −2+ i.

• De même, on montre que les racines carrées de 24− 10i
sont

5− i et −5+ i.

Solution 10, page 10.

• On a une équation polynomiale de degré 2. Le discrimi-
nant est ∆= 1. Les solutions s’en déduisent :

z1 = i et z2 = 1+ i.

• On a une équation polynomiale de degré 2. Le discrimi-
nant est

∆= 25(3+4i) = 52(3+4i).

En reprenant le résultat de l’exercice précédent (ex. 9), une
racine de 3+4i est 2+ i.
Une racine carrée du discriminant est donc :

δ= 5(2+ i) = 10+5i.

Les solutions s’en déduisent :

z1 = 2 et z2 = 12+5i.

Solution 11, page 10.

Soit z ∈C. Posons Z = z2 de sorte que :

z4 + (3−6i)z2 −8−6i = 0

⇐⇒ Z2 + (3−6i)Z−8−6i = 0.
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Z est solution d’une équation polynomiale de degré 2. Le
discriminant de cette dernière est

∆= 5−12i.

En reprenant la méthode de recherche des racines carrées,

δ= 3−2i

est une racine de ∆ (noter que
p

169 = 13). Les solutions de
l’équation polynomiale de degré 2 s’en déduisent :

Z1 =−3+4i et Z2 = 2i.

La recherche de racines carrées (voir exercice 9) de Z1 et Z2
donnent quatre solutions :

z1 = 2i+1, z2 =−2i+1,
z3 = 1+ i, z4 =−1− i.

Solution 12, page 12.

1.(a) Soitω= r eiθ une solution sous forme exponentielle (r Ê 0
et θ ∈R). Par les propriétés du module r n = |zn | = 1. Comme
r est un réel positif, seul r = 1 est possible. Il vient einθ = 1.
On doit imposer nθ= 0[2π]. Dit autrement, il existe k ∈Z tel

que θ= 2πk/n.

1.(b) Soient k,k ′ ∈ Z, notons que si k ′ = k +np avec p ∈ Z, on
constate que

e2k ′iπ/n = e2kiπ/n+2ipπ = e2kiπ/n .

Résumons, si ω est une solution alors on peut trouver
k ∈ [[0;n −1]] tel que ω= e2πik/n . Il y a au plus n solutions.

1.(c) Réciproquement, si il existe k ∈ [[0;n − 1]] tel que ω =
e2πik/n , alors :

ωn = e2πki = 1.

Ce qui prouve le premier point.

2.(a) Pour le second point, on écrit α sous forme exponentielle
aeiρ. Comme a est un réel positif, on peut considérer npa.
Ainsi β= npaeiρ/n est une solution à zn = α.

2.(b) Comme α est non-nul, β aussi. On constate alors que z/β
est une racine n-ième de l’unité. En effet,(

z

β

)n

= zn

βn = α

α
= 1.

Il y a, au final, exactement n solutions données par βωk avec
k ∈ [[0;n −1]].

Solution 13, page 12.

1. Soit z = r eiθ sous forme exponentielle.

z4 =−4 ⇐⇒ r 4e4iθ = 4eiπ ⇐⇒

∃k ∈Z,

{
r 4 = 4
4θ = π+2kπ

.

Comme r Ê 0, c’est équivalent à

∃k ∈Z,

 r = p
2

θ = π

4
+k

π

2
.

Comme un argument est défini modulo 2π, on peut se limi-
ter à k ∈ [[0;3]].
Il y a bien quatre solutions données par :

z1 = p
2eiπ/4 = 1+ i,

z2 = p
2e3iπ/4 = −1+ i,

z3 = p
2e5iπ/4 = −1− i,

z4 = p
2e7iπ/4 = 1− i.

2. Notons que z = 1 n’est pas solution.
Soit z ∈C avec z 6= 1.

(z +1)4 +4(z −1)4 = 0 ⇐⇒ (z +1)4 =−4(z −1)4

⇐⇒ (z +1)4

(z −1)4
=−4 ⇐⇒

( z +1

z −1

)4 =−4.

D’après ce qui précède
z +1

z −1
est une racine quatrième de−4.

Il existe i ∈ [[1;4]] tel que

z +1

z −1
= zi ⇐⇒ z +1 = zi (z −1)

⇐⇒ 1+ zi = z(zi −1) ⇐⇒ z = zi +1

zi −1
.

En remplaçant par les valeurs, on trouve quatre solutions :

1−2i, 1+2i,
1−2i

5
,

1+2i

5
.

On peut tester la cohérence de ce résultat en remarquant que
z est solution si et seulement si z̄ est solution.

Solution 14.

a et b sont solutions de

0 = (z −a)(z −b) ⇐⇒
0 = z2 − (a +b)z +ab = z2 − (4+2i)z +2+4i.

Le discriminant de cette équation polynomiale de degré 2
est : ∆= 4. Il y a deux couples (a,b) solution du problème :

(1+ i,3+ i), (3+ i,1+ i).

Solution 15.

• Soit z un nombre complexe non nul. On suppose que

|z| = 1/|z| = |1− z|.
En particulier, |z|2 = 1, z est de module 1. Il s’écrit sous la
forme z = eiθ avec θ ∈ [0;2π[. Dans ce cas, les formules d’Eu-
ler donnent

1− z = 1−eiθ

= e−iθ/2(
eiθ/2 −e−iθ/2)

1− z = e−iθ/2 2isin(θ/2).

On en déduit, |1− z| = 2|sin(θ/2)| = 1. Il y a donc deux cas :

sin(θ/2) = 1

2
et sin(θ/2) =−1

2
.
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Comme θ/2 ∈ [0;π[, le second cas

sin(θ/2) =−1

2
< 0

est à exclure. Le premier cas équivaut à θ/2 = π/6 ou θ/2 =
5π/6. Ainsi, θ=π/3 ou θ= 5π/3
Si un tel z existe alors

z = eiπ/3 ou z = ei5π/3 = e−iπ/6.

• Réciproquement, si z = eiπ/3 ou z = e−iπ/3, on a bien
|z| = 1/|z| = |1− z|.
En conclusion, il existe deux solutions :

z = eiπ/3 = 1

2
+
p

3

2
i

z = ei5π/3 = 1

2
−
p

3

2
i.

On peut donner une seconde preuve plus géométrique de ce
résultat.
La relation |z| = |1/z| traduit le fait que z est de module 1.
Ainsi, les conditions deviennent

|z| = 1 et |1− z| = 1.

Si on note M le point d’affixe z :
- La première égalité affirme que la distance OM (avec O
l’origine du repère) est égale à 1. Le point M se situe sur le
cercle de centre l’origine et de rayon 1.
- La seconde égalité affirme que la distance entre M et le
point A(1,0) est 1. M se situe sur le cercle de centre A et de
rayon 1.
Seuls deux points vérifient ces deux conditions.

−1 1 2

−1

−0.5

0.5

1

0

π/3

−π/3

On retrouve bien les solutions

z = eiπ/3 = 1

2
+
p

3

2
i

z = e−iπ/3 = 1

2
−
p

3

2
i.

Solution 16.

1.• Soit z = a + ib ∈C sous forme algébrique.

2z +3z = 2(a + ib)+3(a − ib) = 5a − ib.

Par unicité de la partie réelle et imaginaire,

2z +3z = 5−2i ⇐⇒

{
5a = 5
−b = −2

⇐⇒
{

a = 1
b = 2

.

Il y a une unique solution :

z = 1+2i.

• Soit z = a + ib sous forme algébrique.

z2 = a2 −b2 +2iab, |z|2 = a2 +b2.

Donc : z2 +|z|2 = 2a2 +2iab.

Par unicité de la partie réelle et imaginaire,

z2 +|z|2 = 18+6i ⇐⇒
{

2a2 = 18
2ab = 6

⇐⇒
{

a = 3
b = 1

ou

{
a = −3
b = −1

.

Il y a deux solutions :

z1 = 3+ i et z2 =−3− i.

2. • Soit z = r eiθ sous forme exponentielle.

zn = z ⇒ |z|n = |z| = |z|
⇒ r n = r.

Comme r est un réel positif, r = 0 ou r = 1.
Si r = 1, il vient

einθ = e−iθ ⇒ ei(n+1)θ = 1.

C’est équivalent à l’existence d’un entier k tel que

(n +1)θ= 2kπ ⇒ θ= 2kπ

n +1
.

Comme un argument est défini modulo 2π, on peut limiter
k à [[0;n]]. En effet, si k ′ = k +p(n +1) avec p ∈Z,

2k ′π
n +1

= 2(k +p(n +1))π

n +1
= 2pπ+ 2kπ

n +1
.

Puis, e
2k′π
n+1 i = e

2kπ
n+1 i.

On vient de montrer que si z est solution alors z = 0 ou il
existe k ∈ [[0;n]] tel que z = e2ikπ/(n+1).

• Réciproquement, on vérifie que ces complexes sont bien
solutions.

• Il y a n +2 solutions :

0, e2ikπ/(n+1) avec k ∈ [[0;n]].

On trouve 0 et les racines (n +1)−ièmes de l’unité.

3. i n’est pas solution.

Soit z ∈C\ {i}. Posons Z = z + i

z − i
.

(z + i)2n − (z − i)2n = 0 ⇐⇒ (z + i)2n = (z − i)2n

⇐⇒ (z + i)2n

(z − i)2n
= 1 ⇐⇒ Z2n = 1.
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D’après les résultats sur les racines n-ièmes de l’unité (page
12), c’est équivalent à k ∈ [[0;2n −1]],

Z = ei2kπ/(2n) = eikπ/n .

On obtient :

z + i

z − i
= eikπ/n ⇐⇒ z + i = eikπ/n (z − i)

⇐⇒ z
(
1−eikπ/n

)
=−i

(
1+eikπ/n

)
⇐⇒ z =−i

1+eikπ/n

1−eikπ/n

⇐⇒ z =−i
eikπ/(2n)

(
e−ikπ/(2n) +eikπ/(2n)

)
eikπ/(2n)

(
e−ikπ/(2n) −eikπ/(2n)

)
⇐⇒ z =−i

2cos
(
kπ/(2n)

)
−2isin

(
kπ/(2n)

)= 1

tan
(
kπ/(2n)

).

Concluons, z est solution si et seulement si il existe k ∈
[[0;2n −1]] tel que

z = 1

tan
(
kπ/(2n)

).

Solution 17.

Soit z ∈C.
1+ z̄

1− z
= (1+ z̄)(1− z̄)

(1− z)(1− z̄)
.

Or, (1− z)(1− z̄) = (1− z)(1− z) = |1− z|2 ∈R.

Et, (1+ z̄)(1− z̄) = 1− z̄2 = 1− z2.

On a donc
1+ z̄

1− z
= 1− z2

|1− z|2.

Ainsi,
1+ z̄

1− z
∈R ⇐⇒ 1− z2 ∈R ⇐⇒ 1− z2 ∈R

⇐⇒ z2 ∈R ⇐⇒ ℑm(z2) = 0.

Or, si on note z = x + iy la forme algébrique de z,

z2 = (x + iy)2 = (x2 − y2)︸ ︷︷ ︸
∈R

+i (2x y).︸ ︷︷ ︸
∈R

En particulier, ℑm(z2) = 2x y . Par conséquent le quotient est
réel si et seulement si x y = 0, c’est-à dire :
- Soit x = 0, et z est un imaginaire pur.
- Soit y = 0, et z est un nombre réel.

Solution 18.

1. On développe à l’aide des formules d’Euler,

cos(θ)2 sin(θ)3 =
( eiθ+e−iθ

2

)2 ·
( eiθ−e−iθ

2i

)3

= 1

25i3

(
e2iθ+2+e−2iθ

)(
e3iθ−3eiθ+3e−iθ−e−3iθ

)
= i

32

(
(e5iθ−e−5iθ)− (e3iθ−e−3iθ)−2(eiθ−eiθ)

)
.

On trouve :

cos(θ)2 sin(θ)3 =

− 1

16
sin(5θ)+ 1

16
sin(3θ)+ 1

8
sin(θ).

2. Par linéarité de l’intégrale,∫ π/2

0
cos(t )2 sin(t )3 dt

= − 1

16

∫ π/2

0
sin(5t )dt + 1

16

∫ π/2

0
sin(3t )dt

+1

8

∫ π/2

0
sin(t )dt .

Or,
∫ π/2

0
sin(5t )dt = 1

5

[
cos(5t )

]π/2

0
= 1

5
,

∫ π/2

0
sin(3t )dt = 1

3
et

∫ π/2

0
sin(t )dt = 1.

Finalement,
∫ π/2

0
cos(t )2 sin(t )3 dt = 2

15
.

Solution 19.

1. 0 n’est pas solution. :

04 −5 ·03 +6 ·02 −5 ·0+1 = 1 6= 0.

Ensuite, il suffit de diviser l’égalité (•) par z2. C’est possible
puisque 0 n’est pas solution.

2.• Le discriminant de la première équation est :

∆=−3 < 0.

Il y a deux solutions complexes conjuguées :

z1 = 1+ i
p

3

2
et z2 = 1− i

p
3

2
.

• Le discriminant de la seconde équation est :

∆= 12 = 22 ·3 > 0.

Il y a deux solutions réelles :

z3 = 2+p
3 et z4 = 2−p

3.

3. On a
Z2 = (z + z−1)2 = z2 +2+ z−2.

Par conséquent :

z2 + 1

z2
−5z −5

1

z
+6 =

(
z2 + 1

z2
+2

)−5
(
z + 1

z

)+4 = Z2 −5Z+4.

Ainsi, z est solution de (••) si et seulement si Z est solution
de

Z2 −5Z+4 = 0.

Or, cette équation polynomiale a deux solutions :

Z = 1 ou Z = 4.
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Le premier cas donne :

z + 1

z
= 1 ⇐⇒ z2 +1 = z.

Le second cas donne :

z + 1

z
= 4 ⇐⇒ z2 +1 = 4z.

D’après ce qui précède, on obtient quatre solutions

1± i
p

3

2
; 2±p

3.

4. La somme et le produit des quatre solutions valent respecti-
vement

5 et 1.

Ces quantités se retrouvent dans l’équation :

z4 −5z3 +6z2 −5z +1 = 0 (•).

C’est un fait général, si on considère une équation polyno-
miale de degré p dont le coefficient dominant est 1,

zp +ap−1zp−1 +·· ·+a1z +a0 = 0.

Alors la somme des racines vaut−ap−1 et le produit (−1)p a0.
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