CHAPITRE ]. 4

Endomorphismes symétriques

Cercles dans un cercle,
1923, VASSILY KANDINSKY

Lobjectif principal de ce chapitre est I'étude de la réduction des matrices et endomorphismes symétriques par
I'intermédiaire du théoreme spectral.

n Matrices et endomorphismes symétriques

1.1 Les définitions et exemples
DEFINITION (RAPPEL) matrice symétrique
On dit qu'une matrice A € M, (R) est symétrique si'A = A.
Autrement dit, si (a;, )i, je(1;n) Sont les coefficients de la martrice A : V (i, j) € [[1; nll?, aij=aj;.
Exercice 1
. ( 4 % Donner la dimension de %, (R) défini comme le sous-espace vectoriel des matrices |T_g|
\. & symeétriques de .4, (R). p:

L &
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Rappels. A partir de la décomposition
M+™ M-™M

+ )
2 2

VYMe #,[R), M=

on démontre que les sous-espaces vectoriels des matrices symétriques et antisymétriques sont supplémentaires dans
My (R).



DEFINITION endomorphisme symétrique

Soient, E un espace vectoriel muni d'un produit scalaire (-, -) et ¢ € £ (E).
On dit que @ est un endomorphisme symétrique si

Yu, veE, (), v) = (u, p(v)).

Exemples.
e On définit
2 - R2
‘p‘{ (6,y) — (2x-6y,—6x—7y).

Pour u = (x,y) € R?, v =(x,y') € R? et avec le produit scalaire canonique sur R
(pw),v) = 2x—6y)x"+ (-6x-7y)y' = x(2x' - 6)y') + y (-6x" = 7)) = (w, p(v)).
Lendomorphisme ¢ est symétrique.

* Soient E, un espace euclidien de dimension n = 2 et ug € E\ {Og}. Pour tout réel a € R*, on définit 'endomorphisme
@q: E—Epar
Qq(u) = u+alu, ug) ug.

Justifions que ¢, est symétrique. Soient u, v € E

(pa(w),v) = {u+alu,up)ug,v) = (u, v) + alu, up)(uo, v)
=(u, v) +{u, alug, v) up) ={u,v+alup,v) Up)
= (U, 9a(v)).

¢ On pourra consulter I'exercice[25} p.[13} pour un exemple d’endomorphisme symétrique en dimension infinie.

4+ Soient (E, (-,-)) un espace euclidien et f, g deux endomorphismes symétriques de E.

Exercice 2
{ 1. Justifier que si f et g commutent alors f o g est symétrique.
— 2. On souhaite prouver la réciproque. On suppose donc f o g symétrique. p.[I7

NI

N 4 a) Simplifier pour tous u, v€E, (u, fog(v) — go f(1)).

—— b) En déduire que f et g commutent.
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1.2 Premiéres propriétés
LEMME caractérisation via une famille génératrice

Soient 2B = (ey, ..., e,) une famille génératrice deE et ¢ € £ (E). Les deux énoncés suivants sont équivalents.

i) Lendomorphisme @ est symétrique.

i) VG pelLnl? (@) e)=(e,¢(ej)).

Preuve. Raisonnons par double implication.

Sil’endomorphisme ¢ est symétrique :
Yu, veE, (), vy = (U, p(v)).

On obtient directement le résultat avec u = e; et v = e;.

Réciproquement, supposons I'énoncé ii) vrai.
Soient u, v € E. Par définition d'une famille génératrice de E, il existe des réels A1, Ap, ..., An, M1, M2, ..., Un tels que

n n
u=2)\ie,~ et U=ijej.
i=1 j=1
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Par linéarité de ¢ :

n
oW =) \iple;)

i=1

Puis, par bilinéarité du produit scalaire

(pw),v)= <Z_ZIA,LP ei), i >

n
et @)=} ujple;).
j=1

Wi [\/]:

n n n
Z l“]< >= Z Z Al <ei,kp(ej)> condition ii)
j=1 i=1j=1
n
= <Z Aiei, Z Uj(Pj(ej)> =(u, 1))
i=1 j=1

Ce qui prouve I'énoncé i)

THEOREME

lien avec les matrices

Soitpe Z(E) ou (E ( )) est un espace euclidien. Les trois énoncés suivants sont équivalents.
i) 1
ii)

Lendomorphisme @ est un endomorphisme symétrique de E

Il existe une base orthonormée % deE telle que la matrice Matg () soit une matrice symétrique.
iii)

Pour toutes les bases orthonormées 98 deE, la matrice Matg (@) est une matrice symétrique.

Preuve. Rappelons que pour une base orthonormée %

=(e1,e2,...

ep), onapour tout i € [[1, n]|
n

@lej) = Z <e,~,q)(ej)> e;.

i=1
Par définition de la matrice d'une application linéaire, il vient

(e, @(e1)) (e1,@(e2)) (e1,¢(en))
(e2,9(e1)) (e2,p(e2)) (e2,9(en))
Matg () = . . .
(en,@(eD)) (en ¢(e2)) (en, @ (en))
Par définition de la transposée
(e1,@(en)) (e2,¢(e1) (en, @ (e1)
(e1,0(e2)) (e2,9(e2)) (en ¢ (e2))
"Matgg () = . .
(e, @(en)) (e2,@len)) --- (en@len))
Le lemme précédent justifie alors directement les équivalences i) <ii) et i) <iii)
A Attention. Il ne faut pas oublier que 28 doit étre une base orthonormée!

Exemple. Si on reprend I'exemple de ¢ défini sur R? par @(x,y) = (2x -6y, —6x — 7y), la matrice de ¢ dans la base
canonique est bien symétrique

Remarque. Donnons une seconde justification de I'implication ii) = iii)

Soit 98, une base orthonormeée telle que la matrice Matgz (¢) soit symétrique. Soit €, une seconde base orthonormée
de E. Montrons que Mat« () est symétrique. Par la formule de changement de base, il vient

Mate (@) = Pga%o_l Matg (P)Pg¢



1

et la matrice de passage P est orthogonale (c’est-a-dire Pg¢ ' = 'Pgge). Ensuite,

Mat () = '(Pg ' Matg (9)Pge)
= P Matg (@) (Pae ")
=Pge ' Matg()Pge = Mate ().

La matrice Mat () est bien symétrique.

Exercice 3 +4
~ a 1. Justifier que I'ensemble .#(E) des endomorphismes symétriques de E est un sous-
'\ S espace vectoriel de £ (E). p-[Ig
L - 2. SiE est de dimension finie, pouvez-vous préciser sa dimension?

#AS3

n Réduction

2.1 Diagonalisation des endomorphismes symétriques

Premiéres propriétés

PROPOSITION espace stable
Soient ¢ un endomorphisme symétrique d'un espace euclidien (E, (-,-)) et F un sous-espace vectoriel deE.

Si F est stable par ¢,

alors F* est également stable par .

Preuve. Rappelons que
Ft={veE|VueF, (uv)=0}

Soit v € F+, montrons que ) e FtL.
Soit u € F. Lendomorphisme ¢ étant symétrique

(), u) =<(v,u)) =0

car v e FL et () € F. Ainsi, pour tout u € F, ¢(v) est orthogonal a u, c’est-a-dire ¢(v) € FL.
En conclusion, F- est stable par .

|
PROPOSITION vecteurs propres orthogonaux
Soit ¢ un endomorphisme symétrique d’'un espace euclidien (E, (-,-)).
Si u et v sont deux vecteurs propres de @ associés a des valeurs propres distinctes,
alors les vecteurs u et v sont orthogonaux.
Preuve. Soient u, v deux vecteurs propres de ¢ associés respectivement aux valeurs propres A et p (distinctes).
Mu, v) = (A, v) = {p(w), V)
=(u, () = (u, uv) = Wu, v).
Or A # W, nécessairement (u, v) = 0. Les vecteurs u et v sont orthogonaux. -

Remarque. On ala généralisation suivante. Si ey, ..., e, sont des vecteurs propres de ¢ associés a des valeurs propres
deux a deux distinctes, alors la famille ey, ..., e,) est orthogonale.
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On en déduit directement le résultat suivant.

COROLLAIRE sous-espaces propres orthogonaux

Soit ¢ un endomorphisme symétrique d'un espace euclidien (E, (-,-)).
Alors les sous-espaces propres de @ sont deux a deux orthogonaux.

Exemple. On considere .#,,(R) muni du produit scalaire (A, B) = Tr(‘AB). On vérifie que ¢ : M € /4, (R) — M € 4, (R)
est un endomorphisme symétrique. Lendomorphisme ¢ possede deux valeurs propres : —1 et 1 ou E; (¢), E_;(¢p)
désigne respectivement I’ensemble des matrices symétriques et antisymétriques. Ces sous-espaces sont donc ortho-
gonaux.

Le théoréeme spectral

THEOREME spectral
Soit ¢ un endomorphisme d’un espace euclidien (E, oD} )
Si @ est un endomorphisme symétrique,

alors | — Lendomorphisme @ est diagonalisable.

— Il existe une base orthonormée de E formée de vecteurs propres de @.

A Attention. Il ne faut pas oublier le second point du théoréme : l1a base des vecteurs propres peut étre choisie

orthonormée.

Preuve. On admet que tout endomorphisme symétrique d'un espace euclidien admet une valeur propre réelle (voir exercice 22,
p- 22 sur le quotient de Rayleigh pour une preuve).

On raisonne par récurrence forte sur la propriété :

2(k): | Toutendomorphisme symétrique d'un espace euclidien de dimension k
est diagonalisable dans une base orthonormée.

— Initialisation. 22(1) est claire puisque la linéarité impose dans ce cas que tout endomorphisme est de la forme Aidg.

— Hérédité. Soit k € N*. Supposons (1), 2(2),..., 2 (k) vraies et démontrons & (k + 1). Soit ¢ un endomorphisme symétrique
d’un espace euclidien de dimension k + 1. D’apreés la remarque préliminaire, il existe une valeur propre A a ¢. Notons E) (¢), le
sous-espace propre associé a la valeur propre A.
- SiE=E,(y), alors ¢ = Aidg et ¢ est directement diagonalisable dans une b.o.n de E.
- SiEj (¢) #E. Alors E, (¢p) est stable par ¢ et d’apres la premiere proposition de cette section, Ey (cp)J- # {Og} est aussi stable
par ¢. On peut donc considérer 'endomorphisme ¢ obtenu par la restriction de ¢ a Ey (¢)L. Comme ¢ est symétrique,
I'est aussi pour I'espace euclidien E), (gp)l muni du produit scalaire restreint.

Vu,veEy (@t (U, (1)) = (u, ) = {@(w), vy ={p(w), v).

Or E) () est de dimension comprise entre 1 et k. D’aprés I hypothese de récurrence, ¢ est diagonalisable dans une b.o.n
de E) (@)L Soit 28 une telle base. Noter que les vecteurs de 2 constituent aussi des vecteurs propres de ¢. Soit aussi By,
une base de E, (). Les vecteurs de 98, sont des vecteurs propres de ¢ (associés a la valeurs propres A). Comme

E\(¢) TE)\((P)J' =E,

on peut concaténer les familles %), et 98 respectivement en une base 98 orthonormée de E. On obtient ainsi une b.o.n de
E constituée de vecteurs propres de ¢. Lendomorphisme ¢ est diagonalisable dans une b.o.n.
Si2(1), 2(2),...,2(k) sont vraies, 2 (k + 1) 'est aussi.

— Conclusion. Pour tout k € N*, 22(k) est vraie. -




Remarque. Laréciproque est vraie mais elle est beaucoup moins utile.

Exemples. Vérifions le théoréme sur les deux premiers exemples du chapitre (page p[2).
*La matrice de ¢ dans la base canonique est

2 -6

AzMatcan((P):[ 6 -7

Soit A € R. Déterminons les valeurs propres par un calcul de déterminant.

det (A - Al3) =det 2—_6)\ _7_?)\]
=2-N(=7-A)-36
=A% 4+5A=50

det(A—Al3) = (A+10)(A —5).

Il'y a deux valeurs propres —10 et 5. Précisons les espaces propres. Soit X = [ e Mo (R)

AX=5X < {2x—6y=5x — {3x+6y=0

—-6x—7y=>5y 6x+12y=0

— x+2y=0 < x=

J ]
.
AIHSI ES((p) = Vect(u ) ou uy = (_2, ].).

De méme, on trouve
E_10(g) =Vect(up) ol up=(1,2).

1l est clair que u; et up sont orthogonaux, E5(¢) et E_1¢(¢) le sont aussi.
e Reprenons I'exemple de ¢, du début de chapitre. On constate que
Pa (Uo) = ug + alug, tp) ug = (1 + allull?) uo.

— Comme ug # Og, Uy est vecteur propre pour la valeur propre A =1+ a |l uy 12 #0 (car a = 0).
— De plus, pour tout u € Vect (uO)L, ona

=0

@©a(u) = u+alu, up) up = u.

Le réel 1 est donc une seconde valeur propre pour ¢,. Précisons que Vect (1) n'est pas réduit a {Og} car dimE > 2. De
plus,
dimVect(ug) =1 et diInVect(uo)l =n-1.

D’ou dimE; (p,) + dimEy (¢pg4) = n.

Nécessairement, il y a égalité des dimensions et méme E) (¢,) ® E; (¢4) = E. Lendomorphisme ¢, est diagonalisable
dans une b.o.n de E. Pour trouver un telle base, on peut ajouter le vecteur normée uy/| ug| a une b.o.n de E; ((pa).

++ Les questions sont indépendantes.
Exercice 4 Soit ¢ un endomorphisme symétrique d’'un espace euclidien (E, (-,-)).
s 1. Que dire de ¢ sipour tout u € E, (u,(u)) =0?
‘,f 2. Justifier que Sp(¢) < R™ si et seulement si ¢ vérifie R

& YueE, (u,p)=0 (o)

# AS4



<> Soit A € 4, (R) symétrique. Justifier que I'application linéaire

Exercice 5
MR — MR
& D {
26 M —~ AM p.[@
1; - est aussi diagonalisable.
On pourra introduire le produit scalaire canonique sur 4, (R).

En mathématiques, les noms sont arbitraires. Libre a chacun d'appeler un

opérateur auto-adjoint un éléphant” et une décomposition spectrale une

"trompe". On peut alors démontrer un théoreme suivant lequel "tout éléphant
a une trompe". Mais on nwa pas le droit de laisser croire que ce résultat a Jass
quelque chose a voir avec de gros animaux gris. e

GERALD SUSSMAN

spécialiste en intelligence artificielle (1947).

2.2 Diagonalisation des matrices symétriques réelles
Théoreme spectral dans le cas matriciel
THEOREME spectral, version matricielle
Si A est une matrice symétrique réelle,
alors | — La matriceA est diagonalisable.
— Il existe une matrice orthogonale P et une matrice diagonale réelle D telles que
D =P AP ="PAP.

Preuve. Soit ¢ 'endomorphisme de R” canoniquement associé a2 A. Comme la base canonique est une b.o.n pour le produit
scalaire canonique, ¢ est un endomorphisme symétrique en dimension finie. D’apres ce qui précede ¢ est diagonalisable dans
une b.o.n. (notée €). Précisons que la matrice de passage, notée P, entre la base canonique et la base € est orthogonale (puisque
les deux bases sont orthonormées). La formule de changement de base donne alors

A =Matcan () = PMatcg((p)P_1 =PMaty (¢) ’p.
D’otl1 le résultat avec D = Mat () qui est bien diagonale. -

Remarques.

* Les colonnes de la matrice P forment une b.o.n de vecteurs propres de A.

* Laréciproque, qui est bien moins utile, est vraie. S'il existe P orthogonale et D diagonale telles que A = PDP alors la

matrice A est symétrique puisque

‘A='(P'DP) = ("P)'D'P=PD'P=A.
Les questions sont indépendantes.
Exercice 6 0 0 1
C 1. 4 OnconsidérelamatriceA=| 0 1 0 ] .
4 1 0 0 p.@
e Justifier que A est diagonalisable. Calculer A%. En déduire que Sp(A) = {~1;1}.
& 2. 44 Soit M € .4, (R) telle que M + M soit nilpotente.
Montrer que la matrice M est antisymétrique.
# AS6




4+ SoitA = (a;, )i, je[1;n)] Une matrice symétrique réelle, et soient Ay, ..., A, ses valeurs propres

Exercice 7 comptées sans multiplicité (c’est-a-dire que I'on prend en compte les éventuelles répétitions).
. Grace au calcul de Tr (‘AA), démontrer que
VL"" 7 n p '
2 2
I — Z aj "= Z )\i .
- G, elll;n)? i=1
#AS7
PROPOSITION décomposition d’'une matrice symétrique
Soit A une matrice symétrique de M, (R).
Notons | — (Ay,...,Ap) les valeurs propres de A.
— (Xy,...,Xp) uneb.o.n de vecteurs propres de A telle que AX; = \;X; pour touti € [[1; n]].
n
Alors A=) NXX =X Xy 4+ A X X
i=1
Preuve. Posons B = f \iX;'X; de sorte que, pour j € [[1;7]],
i=1
- t - t
BX]' = Z AiX; ' X; Xj = Z )‘ixi( Xin]-
i=1 i=1
Or la famille (X;,X>,...,X;) est orthonormée
1 sii=j
tXin _ { : J
0 sinon.
La somme précédente se simplifie, et on obtient
BX]- = )\ij :AX]-.
Les endomorphismes canoniquement associés a A et B sont donc égaux sur la base (Xj,...,X), ils sont donc égaux et A = B.
Remarque. En particulier, A est combinaison linéaire de n matrices de projecteurs de rang 1.
Exercice 8
¢ ( 4+ Justifier que les matrices X;’X; pour i € [[1;7]] sont des matrices de projection dont on ]
IL 7~ déterminera les éléments caractéristiques (ici, une base du noyau et de I'image). b
# AS8
Exercice 9 4 Onreprend les notations de I'énoncé précédent et on suppose en plus les réels A; positifs.
n
C 1. Montrer que la matrice L=} \/A; X; X, est symétrique a valeurs propres positive et vérifie
g i=1
( P I'égalité L? = A. Prouver que L commute avec A. p-20
) y 2. On admet que c’est la seule matrice symétrique avec des valeurs propres dont le carré vaut
e A et on la note v/A. Montrer que si A est de plus inversible, alors on a (vA)~! = vVA~T,
#AS9



Méthode

Pratique de la réduction des matrices symétriques

Comment obtenir une b.o.n de vecteurs propres d’'une matrice/endomorphisme symétrique ?

— Déterminer les valeurs propres.
(Par un calcul du rang, un polynéme annulateur, le déterminant ...)

— Pour chaque valeur propre, déterminer une base de vecteurs propres.

— A Taide du procédé d’orthonormalisation de Schmidt, déterminer une base orthonormée pour chacun
des sous-espaces propres.

— On obtient une base de vecteurs propres par concaténation des bases orthonormées de chacun des sous-
espaces propres.

Exemple. Partons de la matrice symétrique

21
A=]1 2
1 1

N = =

— Le spectre est donné par Sp(A) = {1;4}. Pour s’en convaincre, on remarque que rg(A —I3) = 2, donc 1 est valeur
propre, I'espace propre associé est de dimension 2. Pour trouver la derniére valeur propre, on considére la trace.

1
— Onvérifieque X; = | 1 | estune base de E4 et une base de E; est donnée par les deux vecteurs colonnes
1
-1 -1
Xo = 1 et X3= 0
1

— Comme E4 est de dimension 1, il suffit de renormaliser X; pour obtenir une base orthonormée de E4.

1
IXilI*=3 et Ej=-—X.
V3

Par contre, X; et X3 ne sont pas orthogonaux. On pose donc

o2 o Ly
2= T T T =02
X2l v2
-1
. (X3,X2) 1
Puis V2 =X3—<X3,E2> Eg =X3— 5 X2:— -1
X | 2|
-1
_V» 1
Et Eg—"\,—in——6 -1

— Finalement, une b.o.n de vecteurs propres de A est donnée par la famille

(E1,E2,E3) ! i ! _i ! _i
LE2,E3)=1— = = .
VBl vEl o VB[ 2

Exercice 10 4 Diagonaliser dans une b.o.n chacune des matrices symétriques suivantes :

e 2 0 2 2 2 -2
Y A=l 0 0 0| e B=| 2 5 -4 p-E0
*‘ 2 0 2 2 -4 5

#AS10



4 On considere la matrice carrée d’ordre 3 : d'apres EMLyon 2007 E
Exercice 11 . 0 1 1
> A=Z| 1 01 ] .
‘ \”p 1 1 0 P20
J g 1. Montrer, sans calcul, que A est diagonalisable.
- 2. Déterminer une matrice diagonale D et une matrice inversible et symétrique P, de pre-
miereligne[ 1 1 1 ]etdedeuxiémeligne[ 1 -1 0 | tellesqueA=PDPL.
#AS11
n Formes quadratiques associées a une matrice
Définition et exemples
DEFINITION forme quadratique d'une matrice symétrique
Soit A € M, (R), symétrique. La forme quadratique associée a A est l'application définie sur R" par
q(h) = 'HAH
ot H est la matrice des coordonnées de h dans la base canonique de R".
. 2 . . e
Exemple. Sion pose A= [ 3 1 | la forme quadratique associée est définie pour tout i = (hy, hy) € R? par
2 3 hy
= h h
g = 2][3—1“}12]
2h; +3hy
= h h
[ R ] [ 3hy — hy
2 h12+ 3hyhy
=y (2hy +3hy) + hy By — hp) =2 * + 6y hy — hp® = .
12h 2) +hy (3hy — hy) 1 1he = hy +3hohi+  —1hy?
Remarque. En généralisant le calcul précédent, on constate que pour A = (a; J-) @, pelnny? €t h=(h)ieq;n)
q(h) = Z a,‘jh,‘hj.
i,jell1;nl]
Par symétrie de A, on peut réécrire cette expression
& 2
qh) = Z ajih;“+2 Z a,-jh,-hj.
i=1 i<j
En particulier, si A est diagonale avec A = diag(A1,Ap,...,A,), on a simplement
& 2
q(h) =) Aihi°.
i=1
4 Forme quadratique associée 2 un endomorphisme symétrique
Exercice 12 On se place dans R” muni du produit scalaire canonique. Soient ¢ un endomorphisme symé-
C trique de R" et A la matrice de ¢ dans la base canonique.
\'J,~ Justifier que si g est la forme quadratique associée a A alors p.E0]
f 4 VheR", qh)={(heHh).
#AS12
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Expression de la forme quadratique dans une b.o.n

THEOREME expression dans une b.o.n

Soit q, une forme quadratique associée a une matrice symétrique A. Alors il existe une base orthonormée % deR" telle
que si h a pour coordonnées hy, ..., hy, dans 9, on a

Lo~2
q(h) =) Aih;
i=1

Ol A1,..., A, sont les valeurs propres de A.

Preuve. D’apres le théoréme spectral, il existe une matrice orthogonale P et une matrice diagonale D telles que A = PD’P. Ainsi,
pour tout h € R"

q(h) = "HAH
= 'HPD'PH.
g ="ADA ot H='PH.

Il existe une base 23 telle que ’P soitla matrice de passage de la base canonique a la base 43. Si [ﬁl, ha,..., h},) sont les coordonnées
de H dans cette nouvelle base

’51 AL fil
~ ho o B Ao ho n 9
H= et qy=|[ hi,h hy |- o T N ¥ T
: i=1
h~n )\n h~n
|
Application. ® Lencadrement de Rayleigh
Si on pose a = minSp(A) et p = maxSp(A), montrons que
q(h)
Y heR"™\ {0}, a< —=<P.
2
11 suffit de reprendre I'expression obtenue précédemment
-2 1.2 L2
qgh) =) Aih;" puis, o) hi"<qh)<pd h;".
i=1 i=1 i=1
On conclut en rappelant que pour une base 48 = (e1, e, ..., e;) orthonormée, on a f ﬁiz = f (h, ei)2 = ||h||?.
i=1 i=1
Signe d’une forme quadratique
E . < % A quelles conditions nécessaires et suffisantes sur le spectre de A, a-t-on
xercice 13
4 i) Yuek, q(u)=0?
4 i) Yuek, q(u) <0? p.E0
\_>
& iii) YueE\{0g}, qw)>0?
o iv) VueE\{0g}, q(w<0?

11

#AS13



N Exercices (2

Matrices symétriques
Exercice 14. 4 Soit n = 3. On note A € ./, (R) la matrice dont tous les coefficients valent 1 saufle coefficient en position (n,n) #AS14
qui vaut 0.
1. Justifier que A est diagonalisable.
2. Vérifier que A est semblable a une matrice diagonale de la forme D = diag(0,...,0, a, b) avec a, b e R.
3. En calculant de deux maniéres la trace de A et celle de A%, déterminer a et b.
> Solution p.[20]

Exercice 15. ¢4 @ Soient A et B deux matrice symétriques réelles telles que les formes quadratiques associées ga et gg  #AS15
soient égales. Justifier que A = B.

> Solution p.

Exercice 16. ¢ Rayon spectral, exemple de convergence de suite de matrices #AS16
On munit .#p,1 (R) du produit scalaire canonique défini par (M,N) = !MN et on note |-|| la norme associée. Soit A, une matrice
symétrique de 4, (R). On pose p(A) = max |Al.
Y q p posep AESow)

1. Justifier que pour tout X € .4 1 (R), |AX|l < p(A) IXII.

2. Etablir I'équivalence entre les énoncés :

D p)<1 i) PourtoutXe.#p1(R), [A"X| 0.

> Solution p.[]]

Exercice 17. 44 Soit A € ./, (R) symétrique 2 valeurs propres positives. Trouver une solution de I'équation X6 = A, o1 X € #AS17
M5 (R). A-t-on unicité de la solution?

> Solution p.[2]]

Matrices symétriques positives, définies positives

Exercice 18. 4 % Définitions des symétriques définies positives et équivalences #AS18
On dit qu'une matrice symétrique M de .4, (R) est définie positive si pour tout X € .4, 1 (R) non nul, on a IXMX > 0. Montrer
I'équivalence des quatre énoncés suivants :

i) M est une matrice symétrique définie positive.
ii) Les valeurs propres de M sont strictement positives.
iii) 1l existe P orthogonale, D diagonale a coefficients diagonaux strictement positifs, telles que M = PD*P.
iv) Il existe une matrice R inversible et symétrique telle que M = RZ.

> Solution p.[]]

Exercice 19. ¢ 44 Racine carrée d’'une matrice de %, #AS19
Pour tout n € N*, on note .%, I'ensemble des matrices symétriques de .4, (R) dont les valeurs propres sont strictement positives.
SoitA € & .

1. Montrer qu'il existe R € &, telle que A = R2. On dit que R est une racine carrée de A.

2. Soient R et Ry deux racines carrées de A appartenant a ., .
Montrer que R; et Ry ont les mémes valeurs propres et les mémes vecteurs propres. En déduire que la matrice A admet une
unique racine carrée dans .%; notée dans la suite vA.

3. Expression de VA via les polynémes de Lagrange.
Soient p € N* et Ay,...,Ap, les p valeurs propres de A deux a deux distinctes. Pour tout j € [[1; p]], on définit le polynéme :

xX—A;
Liw= ] L.
] L
ieit;py A~ A

i#j
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a) Montrer que %8 = [Ll,...,Lp) est une base de Ry_1 [x]. En déduire I'existence d’'un unique polynéme P de R, [x] tel que,
pour tout i € [[1;pll, P(A;) = V/A;.
b) Exprimer v/A comme un polynéme en A.

2 1 1
4. SoitA=| 1 2 1 |[.vérifier que A est dans S}, et déterminer vA.
1 1 2

> Solution p.

Exercice 20. 44 SoientA et B deux matrices symétriques réelles d’ordre n dont les valeurs propres sont strictement positives. # AS20
1. Montrer 'équivalence: A=B <= A2=B2
2. Est-ce encore vrai si on suppose les valeurs propres positives ou nulles?

> Solution p. 22

Exercice 21. 4+ 44 Matrices symétriques positives et définies positives #AS21

Soient neN*, S = [“ij] € M, (R) symétrique telle que :

1<i,j<n
Vi, j)el;nl?,  a;j>0.
On note f la plus grande valeur propre de S et V le sous-espace propre de S associé a 8. On munit .4, 1 (R) de son produit scalaire
canonique et de la norme associée | - ||.
X1 [x1]
1. SoitXg = € V\{0}. On note |Xg| =
Xn [Xnl
a) Montrer XoSXp < '|Xo|S|Xo! et en déduire : |Xg| € V.
b) Montrer que les coordonnées de S |Xg| sont toutes strictement positives et en déduire que Xg n’a aucune coordonnée nulle.
©) Montrer : 'XSXg = !|Xg|S|Xg| et en déduire que les coordonnées de X sont toutes de méme signe.
2. a) Endéduire qu'il n’existe pas deux vecteurs de V\{0} orthogonaux entre eux.
b) Conclure: dim(V) =1.

> Solution p. 2

Endomorphismes symétriques

Exercice 22. 4 Soient (E, (-,-)) un espace euclidien et ¢ un endomorphisme symétrique de E. Démontrer que Ker(¢p) et Im(¢p) # AS22
sont supplémentaires orthogonaux.

>> Solution p.

Exercice 23. <> Vrai ou faux? #AS23
Si % est une base adaptée a la décomposition en sous-espaces propres d'un endomorphisme symétrique d'un espace euclidien,

alors 28 est une base orthogonale.
> Solution p.[3|

Exercice 24. 44 Lasymétrie implique la linéarité # AS24
Soit ¢ : E — E tel que, pour tous u, v € E, on a (p(u), v) = (u, p(v)). Justifier que ¢ est un endomorphisme.

> Solution p.[23]

Exercice 25. 4 Exemple d’endomorphisme symétrique en dimension infinie D’apres EMLyon 2011 # AS25
On note E = €°°([0; 1];R), muni du produit scalaire (-, -) défini par :

1
V.geh  (f.g)= [ fwgd

et, pour toute fonction f € E, on pose

(01 — R
T(f)'{ x = (®=x) )+ @x-1Df (x).

Montrer que T est un endomorphisme symétrique de E.
> Solution p.[23]

Exercice 26. ¢ Endomorphisme symétrique et produit scalaire d’apres EDHEC 2015 # AS27
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On considere I'espace euclidien R” muni du produit scalaire canonique. On note % = (ey, e, ...,ey) la base canonique de R” qui
est orthonormée pour le produit scalaire :,-).
On considere un endomorphisme f de R”, symétrique, dont les valeurs propres sont toutes strictement positives.

1. Justifier 'existence d’une base orthonormée de R”, %’ = (uy, uy, ..., un), formée de vecteurs propres de f.
2. a) Montrer que, pour tout x de R”, ona: (x, f(x)) = 0.
b) Vérifier que I'égalité (x, f(x)) = 0 a lieu si et seulement si x = 0.
¢) En déduire que 'application ¢, de R" x R" dans R, définie par ¢(x, y) = (x, (1)), est un produit scalaire sur R”.

3. a) Enutilisant 98, montrer qu’il existe un endomorphisme g de R”, symétrique pour le produit scalaire canonique, dont les
valeurs propres sont strictement positives, et tel que g2 = f.

b) Etablir que g est bijectif.
c¢) Montrer que la famille (g_1 (e1),g (e2),...,g7! (en)) est une base orthonormée de R” pour le produit scalaire .

> Solution p.

Exercice 27. 44 D'aprés ESCP 2011. # AS28
Soit n un entier naturel non nul. On désigne par E un espace vectoriel de dimension finie muni d'un produit scalaire (.,.). On note
(e1,...,en) une base de E. Pour tout vecteur x de E, on pose

n

f= 3 (xex)er.

k=1

1. a) Lapplication f est-elle un endomorphisme de E?
b) Lapplication f est-elle injective? surjective?
¢) Lapplication f est-elle un endomorphisme symétrique de E?
d) Caractériser les bases (ey, ..., ey) telles que f soit un projecteur.
2. a) Montrer que les valeurs propres de f sont strictement positives.
b) Montrer qu'il existe un isomorphisme symétrique s de E 2 valeurs propres strictement positives tel que s = (so f) 1.
¢) Montrer que (s(ey),...,S(en)) est une base orthonormée de E.

d) Que dire de f sila matrice de s dans 98 est une matrice orthogonale?

> Solution p.

Exercice 28. ¢4 & # AS36
Soient (E,(-,-)) un espace euclidien de dimension r, et f un endomorphisme symétrique de E. En notant AL,...,Ap ses valeurs
propres telles que A} <--- < Ap, montrer que

VxeE,  Allxl® < (F(x), %) < Aplxl?

> Solution p.[§|

Exercice 29. 4+ 44 Oraux HEC 2009 # AS29
Soient (E, (-,-)) un espace euclidien de dimension n et f, g deux endomorphismes de E symétriques et ayant des valeurs propres
strictement positives.

1. Prouver qu'il existe un endomorphisme ¢ de E ayant des valeurs propres positives tel que f = % = @o .
2. Montrer que : Ker(f + g) =Ker f nKerg.
> Solution p.[25]

Endomorphismes particuliers d’un espace euclidien

Exercice 30. 4+ Etle cas antisymétrique? # AS30
Soit A une matrice de .4, (R) antisymétrique.
1. Montrer que la seule valeur propre réelle possible de A est 0.
2. Montrer que B = AZ est une matrice symétrique réelle.

3. Quel est le signe des valeurs propres non nulles de B?
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> Solution p.

Exercice 31. 4 Un exemple d’endomorphisme antisymétrique #AS31
Soit n un entier au moins égal a 3. On travaille dans I'espace E = R” muni de son produit scalaire canonique. On considére deux
vecteurs a et b de R” de norme 1 et orthogonaux. On définit sur E I'application f par:

VxeE, f(x)={(a,x)b—(bx)a.

1. Vérifier que f est un endomorphisme de E.
2. a) Déterminer Ker f et une base de Im f.
b) Vérifier que Ker f et Im f sont supplémentaires.

3. Montrer que:

Vo y) B2, (f@),0) = —(x f()
4. En déduire que f o f est un endomorphisme symétrique.
5. A quelle condition sur I'entier naturel k, I'endomorphisme f k est diagonalisable.

> Solution p.[26]
Exercice 32. ¢4 Soit E un espace euclidien de dimension 7. Soient f et g deux endomorphismes de E tels que fog = go f.On #AS32

note S (resp. T) la matrice de f (resp. g) dans une base orthonormée 28 de E. On suppose que S est symétrique et T antisymétrique.

Montrer que :
VxeE ||(f-9W|=|+9®)|.

> Solution p.

Exercice 33. ¢ % Adjoint u* d’'un endomorphisme u et endomorphismes normaux d'apres EDHEC 2019 # AS33
Soient (E, (-,-)) un espace euclidien de dimension 7 et ¢ un endomorphisme de E. On note 8 = (e}, €2, ..., ¢;) une base orthonor-
mée de E.

e Définition de l'adjoint d’'un endomorphisme de E
n
Pour tout y € E, on pose 9* () = Y_ {9 (e;),¥)e;.
i=1
1. Vérifier que ¢* estun endomorphisme de Eet: Vx,ye€E,  (px),y)={x,¢* ).
2. & Quedire de (¢*)*?

3. & Comparer les matrices de ¢ et ¢* dans la base %8. En déduire que @o @™ est diagonalisable.

e Ftude des endomorphismes normaux
Dans la suite, on suppose que ¢ est un endomorphisme normal, ¢’est-a-dire ¢ commute avec ¢* :
* ¥
Ppop =@ oQ.

. Montrer que: Vx€E, [lo@)l=|¢*@].
. En déduire que Ker(¢) = Ker (¢*).

. Montrer que si F est un sous-espace vectoriel de E stable par , alors FL est stable par ¢*.

I U= 2B S I

. On suppose que ¢ possede une valeur propre A et on note E) (¢) le sous espace propre associé. Montrer que E) (¢) est stable par
¢*, puis en déduire que E* est stable par ¢.

> Pour aller plus loin, HEC 2019 Maths I, Essec 2014
> Solution p.[26]
Compléments

Exercice 34. ¢ 44 Une descente de gradient D'aprés ESCP 2012 # AS34
Soit n € N\ {0;1}. On considere R” muni de son produit scalaire canonique noté (-,-) et || - ||, la norme associée, et A € .4, (R),
symétrique réelle dont les valeurs propres sont toutes strictement positives.

On confond vecteur de R” et matrice colonne canoniquement associée et on pose, pour tout X € R”,

X = XAX.

1. Soit B un élément de R™. Montrer que I’équation AX = B d’inconnue X € R” admet une unique solution qu’on notera R.

2. Montrer qu'il existe deux réels a et B strictement positifs tels que pour tout X de R”

all X% < oX) < BIXIZ.
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. Dans la suite de I'exercice, on pose pour X € R” : F(X) = ®(X) — 2!BX.

a) Déterminer le gradient VFx de Fen X.

b) Soient X et H deux éléments de R". Montrer que
FX+H) =FX) + (VFx,H) + ®(H).

¢) En déduire que F posséde un minimum sur R”. En quel point est-il atteint?

. SoitX € R” fixé, X # 0. Déterminer « € R de fagon a ce que F (X — aVFy) soit minimal. Calculer ce minimum.

5. Soit Xg € R”. On définit une suite (Xk)ker\l de vecteurs de R” par, pour tout k € N :

| vEx, [
Xi+1 =X — o VFx,, o ag = 20 (gk) si X # R et 0 sinon.
a) Montrer que la suite (F (Xj)) .cp converge.

b) Exprimer F(Xj.1) — F (X)) en fonction de oy, et de VFy;, .

Une suite (Y) ren de vecteurs de R” sera dite convergente vers un vecteur Z € R” si . lim ||Yk - Z|| =0, ce qui revient a dire que
—+00
les coordonnées de Yj. convergent vers les coordonnées correspondantes de Z.

a) Montrer que la suite (VFy, ), _, converge vers 0.

keN
b) En déduire la limite de la suite (X) el

> Solution p. 22

Exercice 35. 444 Exemple dendomorphisme symétrique #AS35

On pose E = Ry [x] muni du produit scalaire définie par

1
(P,Q) =f0 P(1)Q(r)dt.

1
1. Montrer que la relation u(P)(x) = f (x+ t)"P(r)dt définit un endomorphisme u de 'espace E.
0

2. Vérifier que 'endomorphisme u est symétrique.

>> Solution p.
Exercice 36. 444 Décomposition spectrale, calcul et application #ASpl

Soit M € ., (R), inversible.

1.

Existence de la décomposition

Montrer que ‘MM est une matrice symétrique de valeurs propres strictement positives. En déduire qu'il existe une matrice
symétrique a valeurs propres strictement positives S telle que ‘MM = S2.

. & Montrer qu'il existe une matrice orthogonale O telle que M = OS.

Unicité de la décomposition

1l existe un unique couple (0,S), O orthogonale, S symétrique a valeurs propres strictement positives, tel que M = OS. Pour s'en
convaincre, on a vu en exercice que la matrice S est unique (le refaire si besoin). La matrice O l'est donc tout autant et on a bien
l'unicité du couple (O, S).

Algorithme par la méthode de Newton
Dans la suite, on dit qu'une suite de matrices (Ay); de .45 (R) converge vers une matrice A si pour tout couple (i, j) € [[1; nl?, la

suite des coefficients ([Ag]; ;) converge vers le coefficient [A]; ;. On admetf’|le résultat suivant :
Soit M € .y (R) inversible. La suite (M) . de matrices de M € .4, (R) définie par

1 .l
Mog=M et Mk+1:§Mk(In+([MkMk) )

est bien définie, converge vers O, ou M = OS est la décomposition polaire de M. De plus, la suite (t MyM) « converge vers S.

3. & Justifier que pour tout k € N, la matrice My, est inversible.

4. Proposer un programme python qui prend en argument M et renvoie une approximation du couple (O, S) obtenue par décom-

position polaire.

1. mais on pourrait le démontrer (DS11 de 'année derniére).
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e Application
Soit (E, (-,-)) un espace euclidien et ||| la norme euclidienne associée.
Un endomorphisme f de E est appelé contraction si pour tout x de E, || f(x) || < [ x]|.

5. Donner un exemple de contraction de E.
6. On suppose dans cette question que I'endomorphisme f est symétrique.
a) & Montrer que | est une contraction si et seulement si pour toute valeur propre A de f,ona |A| < 1.
b) Soit P un polynéme de R[x]. Montrer que pour tout x de E :
IP(AG)II< sup [PA)]-lxIl
AeSp(f)
ol Sp(f) désigne 'ensemble des valeurs propres de f.

e On suppose désormais que f est un endomorphisme bijectif de E, et on note M sa matrice associée dans une base 28 orthonor-
mée de E.

7. & Montrer que [ est une contraction si et seulement si pour toute valeur propre A de S, ona |A| < 1.

* Exemple

b
Pour tout (@, b) € R?\ {(0,0)}, on pose Mg p = a

-b al
Onnote (S, p, O, p) le couple obtenue dans la décomposition polaire.

8.  a) Expliciter la matrice S, j, dans cet exemple.

cos(0) sin(0)

b) & Justifier ensuite que det(O, ) = 1 et qu'il existe un réel 0 tel que O, 5 = —sin®@) cos@®)|"

2n+1 1
9. & On pose ] =M(0,1). On pose ensuite exp(0]) = lim Y —onk.
n—+oo ;= k!

Démontrer que Og,p = exp(0)).

Exercice 37. 444 Lemme du théoréme spectral # ASp2
On se propose dans la suite d’établir le résultat préliminaire et admis dans la preuve du théoréme spectral : toute matrice symé-
trique réelle admet un valeur propreEl

e Résultat1
Soient A € ./ (R), symétrique et § € R} .

1. Justifier que A2+ O8I, est une matrice inversible.
2. & Soit R, un polyndome de degré 2 dont le discriminant est strictement négatif. Déduire de la question 1 que R(A) est inversible.

e Résultat 2 - Polynome minimal
. Justifier que toute matrice A € .4 (R) admet un polynéme annulateur non nul.

. Démontrer qu'il existe un polyndéme non nul annulateur de A de degré minimal et unitaire. Notons I, un tel polyndme.

G s W

. (facultatif). Montrer que pour tout polynéme P annulateur de A, il existe Q polynome tel que P = I1 - Q. En déduire que le
polyndéme I15 est unique.
6. Justifier que si A est une racine de I, alors A est une valeur propre de A.

e Résultat3
On rappelle que pour tout polynéme P, il existe :

— a,unréel;

— desréels (A;) ;c[y., et des entiers naturels (12;) ;¢ 1.5

— des polyndmes |R; de degré 2, unitaire et de discriminant négatif
Poy [ ’)je[u;m] & &
tels que P=a[] (x-A)" - ]]R;.
i=1 j=1

7. Alaide des trois résultats, montrer que pour toute matrice A symétrique admet une valeur propre réelle.

On montre ainsi que la matrice admet un polynéme annulateur non nul scindé a racines simples. On a vu en exercice que cela prouve
la diagonasabilité de la matrice. C'est le théoréme spectral.

2. La preuve classique utilise les nombres complexes. Ces derniers sont hors-programme en ECG.
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