
CHAPITRE14
Endomorphismes symétriques

Cercles dans un cercle,
1923, VASSILY KANDINSKY

L’objectif principal de ce chapitre est l’étude de la réduction des matrices et endomorphismes symétriques par
l’intermédiaire du théorème spectral.

1 Matrices et endomorphismes symétriques

1.1 Les définitions et exemples

DÉFINITION (RAPPEL) matrice symétrique

On dit qu’une matrice A ∈Mn(R) est symétrique si tA = A.
Autrement dit, si (ai , j )i , j∈[[1;n]] sont les coefficients de la matrice A : ∀ (i , j ) ∈ [[1;n]]2, ai , j = a j ,i .

Exercice 1

F . Donner la dimension de Sn (R) défini comme le sous-espace vectoriel des matrices

symétriques de Mn (R).
p. 18

# AS1

Rappels. À partir de la décomposition

∀M ∈Mn(R), M = M+ tM

2
+ M− tM

2
,

on démontre que les sous-espaces vectoriels des matrices symétriques et antisymétriques sont supplémentaires dans
Mn(R).
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DÉFINITION endomorphisme symétrique

Soient, E un espace vectoriel muni d’un produit scalaire 〈·, ·〉 et ϕ ∈L (E).
On dit que ϕ est un endomorphisme symétrique si

∀u, v ∈ E, 〈ϕ(u), v〉 = 〈u,ϕ(v)〉.

Exemples.
• On définit

ϕ :

{
R2 → R2

(x, y) 7→ (2x −6y , −6x −7y ).

Pour u = (
x, y

) ∈R2, v = (
x ′, y ′) ∈R2 et avec le produit scalaire canonique sur R2

〈ϕ(u), v〉 = (2x −6y)x ′+ (−6x −7y)y ′ = x
(
2x ′−6y ′)+ y

(−6x ′−7y ′)= 〈u,ϕ(v)〉.

L’endomorphisme ϕ est symétrique.

• Soient E, un espace euclidien de dimension n Ê 2 et u0 ∈ E \ {0E}. Pour tout réel a ∈R+, on définit l’endomorphisme
ϕa : E → E par

ϕa(u) = u +a 〈u,u0〉u0.

Justifions que ϕa est symétrique. Soient u, v ∈ E〈
ϕa(u), v

〉 = 〈
u +a〈u,u0〉u0, v

〉 = 〈u, v〉+a
〈

u,u0〉〈u0, v
〉

= 〈u, v〉+〈u, a 〈u0, v〉u0〉 = 〈u, v +a 〈u0, v〉u0〉
= 〈

u,ϕa(v)
〉

.

• On pourra consulter l’exercice 25, p. 13, pour un exemple d’endomorphisme symétrique en dimension infinie.

Exercice 2 FF Soient
(
E,〈·, ·〉) un espace euclidien et f , g deux endomorphismes symétriques de E.

1. Justifier que si f et g commutent alors f ◦ g est symétrique.

2. On souhaite prouver la réciproque. On suppose donc f ◦ g symétrique.

a) Simplifier pour tous u, v ∈ E,
〈

u, f ◦ g (v)− g ◦ f (v)
〉

.

b) En déduire que f et g commutent.

p. 18

# AS2

1.2 Premières propriétés

LEMME caractérisation via une famille génératrice

Soient B = (e1, . . . ,en) une famille génératrice de E et ϕ ∈L (E). Les deux énoncés suivants sont équivalents.

i) L’endomorphisme ϕ est symétrique.

ii) ∀(i , j ) ∈ [[1,n]]2,
〈
ϕ (ei ) ,e j

〉= 〈
ei ,ϕ

(
e j

)〉
.

Preuve. Raisonnons par double implication.�� ��⇒ Si l’endomorphisme ϕ est symétrique :
∀u, v ∈ E, 〈ϕ(u), v〉 = 〈u,ϕ(v)〉.

On obtient directement le résultat avec u = ei et v = e j .�� ��⇐ Réciproquement, supposons l’énoncé ii) vrai.
Soient u, v ∈ E. Par définition d’une famille génératrice de E, il existe des réels λ1, λ2, . . . , λn , µ1, µ2, . . . , µn tels que

u =
n∑

i=1
λi ei et v =

n∑
j=1

µ j e j .
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Par linéarité de ϕ : ϕ(u) =
n∑

i=1
λiϕ(ei ) et ϕ(v) =

n∑
j=1

µ jϕ(e j ).

Puis, par bilinéarité du produit scalaire :

〈
ϕ(u), v

〉=〈
n∑

i=1
λiϕ

(
ei

)
,

n∑
j=1

µ j e j

〉
=

n∑
i=1

n∑
j=1

λiµ j

〈
ϕ

(
ei

)
,e j

〉
=

n∑
i=1

n∑
j=1

λiµ j

〈
ei ,ϕ(e j )

〉
condition ii)

=
〈

n∑
i=1

λi ei ,
n∑

j=1
µ jϕ j (e j )

〉
= 〈

u,ϕ(v)
〉

.

Ce qui prouve l’énoncé i).
■

THÉORÈME lien avec les matrices

Soit ϕ ∈L (E) où
(
E,〈·, ·〉) est un espace euclidien. Les trois énoncés suivants sont équivalents.

i) L’endomorphisme ϕ est un endomorphisme symétrique de E.

ii) Il existe une base orthonormée B de E telle que la matrice MatB(ϕ) soit une matrice symétrique.

iii) Pour toutes les bases orthonormées B de E, la matrice MatB(ϕ) est une matrice symétrique.

Preuve. Rappelons que pour une base orthonormée B = (e1,e2, . . . ,en ), on a pour tout i ∈ [[1,n]]

ϕ(e j ) =
n∑

i=1

〈
ei ,ϕ(e j )

〉
ei .

Par définition de la matrice d’une application linéaire, il vient

MatB (ϕ) =


〈

e1,ϕ (e1)
〉 〈

e1,ϕ (e2)
〉 · · · 〈

e1,ϕ (en )
〉〈

e2,ϕ (e1)
〉 〈

e2,ϕ (e2)
〉 · · · 〈

e2,ϕ (en )
〉

...
... · · ·

...〈
en ,ϕ (e1)

〉 〈
en ,ϕ (e2)

〉 · · · 〈
en ,ϕ (en )

〉

 .

Par définition de la transposée

tMatB (ϕ) =


〈

e1,ϕ (e1)
〉 〈

e2,ϕ (e1)
〉 · · · 〈

en ,ϕ (e1)
〉〈

e1,ϕ(e2)
〉 〈

e2,ϕ (e2)
〉 · · · 〈

en ,ϕ (e2)
〉

...
... · · ·

...〈
e1,ϕ (en )

〉 〈
e2,ϕ (en )

〉 · · · 〈
en ,ϕ (en )

〉

 .

Le lemme précédent justifie alors directement les équivalences i)⇔ii) et i)⇔iii). ■

! Attention. Il ne faut pas oublier que B doit être une base orthonormée !

Exemple. Si on reprend l’exemple de ϕ défini sur R2 par ϕ(x, y) = (2x −6y , −6x −7y ), la matrice de ϕ dans la base
canonique est bien symétrique

A =
[

2 −6
−6 −7

]
.

Remarque. Donnons une seconde justification de l’implication ii) ⇒ iii).
Soit B, une base orthonormée telle que la matrice MatB(ϕ) soit symétrique. Soit C , une seconde base orthonormée
de E. Montrons que MatC (ϕ) est symétrique. Par la formule de changement de base, il vient

MatC (ϕ) = PBC
−1 MatB(ϕ)PBC
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et la matrice de passage PBC est orthogonale (c’est-à-dire PBC
−1 = tPBC ). Ensuite,

tMatC (ϕ) = t(PBC
−1 MatB(ϕ)PBC

)
= tPBC

tMatB(ϕ)t(PBC
−1)

= PBC
−1 MatB(ϕ)PBC = MatC (ϕ).

La matrice MatC (ϕ) est bien symétrique.

Exercice 3 FF

1. Justifier que l’ensemble S (E) des endomorphismes symétriques de E est un sous-
espace vectoriel de L (E).

2. Si E est de dimension finie, pouvez-vous préciser sa dimension?

p. 18

# AS3

2 Réduction

2.1 Diagonalisation des endomorphismes symétriques

Premières propriétés

PROPOSITION espace stable

Soient ϕ un endomorphisme symétrique d’un espace euclidien
(
E,〈·, ·〉) et F un sous-espace vectoriel de E.

Si F est stable par ϕ,

alors F⊥ est également stable par ϕ.

Preuve. Rappelons que
F⊥ = {

v ∈ E | ∀u ∈ F, 〈u, v〉 = 0
}
.

Soit v ∈ F⊥, montrons que ϕ(v) ∈ F⊥.
Soit u ∈ F. L’endomorphisme ϕ étant symétrique

〈ϕ(v),u〉 = 〈v,ϕ(u)〉 = 0

car v ∈ F⊥ et ϕ(u) ∈ F. Ainsi, pour tout u ∈ F, ϕ(v) est orthogonal à u, c’est-à-dire ϕ(v) ∈ F⊥.
En conclusion, F⊥ est stable par ϕ. ■

PROPOSITION vecteurs propres orthogonaux

Soit ϕ un endomorphisme symétrique d’un espace euclidien
(
E,〈·, ·〉).

Si u et v sont deux vecteurs propres de ϕ associés à des valeurs propres distinctes,

alors les vecteurs u et v sont orthogonaux.

Preuve. Soient u, v deux vecteurs propres de ϕ associés respectivement aux valeurs propres λ et µ (distinctes).

λ〈u, v〉 = 〈λu, v〉 = 〈ϕ(u), v〉
= 〈u,ϕ(v)〉 = 〈u,µv〉 =µ〈u, v〉.

Or λ 6=µ, nécessairement 〈u, v〉 = 0. Les vecteurs u et v sont orthogonaux. ■
Remarque. On a la généralisation suivante. Si e1, . . . ,ep sont des vecteurs propres de ϕ associés à des valeurs propres
deux à deux distinctes, alors la famille

(
e1, . . . ,ep

)
est orthogonale.
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On en déduit directement le résultat suivant.

COROLLAIRE sous-espaces propres orthogonaux

Soit ϕ un endomorphisme symétrique d’un espace euclidien
(
E,〈·, ·〉).

Alors les sous-espaces propres de ϕ sont deux à deux orthogonaux.

Exemple. On considère Mn(R) muni du produit scalaire 〈A,B〉 = Tr(tAB). On vérifie que ϕ : M ∈Mn(R) 7→ tM ∈Mn(R)
est un endomorphisme symétrique. L’endomorphisme ϕ possède deux valeurs propres : −1 et 1 où E1(ϕ), E−1(ϕ)
désigne respectivement l’ensemble des matrices symétriques et antisymétriques. Ces sous-espaces sont donc ortho-
gonaux.

Le théorème spectral

THÉORÈME spectral

Soit ϕ un endomorphisme d’un espace euclidien
(
E,〈·, ·〉).

Si ϕ est un endomorphisme symétrique,

alors * L’endomorphisme ϕ est diagonalisable.

* Il existe une base orthonormée de E formée de vecteurs propres de ϕ.

! Attention. Il ne faut pas oublier le second point du théorème : la base des vecteurs propres peut être choisie
orthonormée.

Preuve. On admet que tout endomorphisme symétrique d’un espace euclidien admet une valeur propre réelle (voir exercice ??,
p. ?? sur le quotient de Rayleigh pour une preuve).

On raisonne par récurrence forte sur la propriété :

P (k) : Tout endomorphisme symétrique d’un espace euclidien de dimension k
est diagonalisable dans une base orthonormée.

* Initialisation. P (1) est claire puisque la linéarité impose dans ce cas que tout endomorphisme est de la forme λ idE.

* Hérédité. Soit k ∈N∗. Supposons P (1), P (2), . . . ,P (k) vraies et démontrons P (k +1). Soit ϕ un endomorphisme symétrique
d’un espace euclidien de dimension k +1. D’après la remarque préliminaire, il existe une valeur propre λ à ϕ. Notons Eλ(ϕ), le
sous-espace propre associé à la valeur propre λ.

- Si E = Eλ(ϕ), alors ϕ= λ idE et ϕ est directement diagonalisable dans une b.o.n de E.

- Si Eλ(ϕ) 6= E. Alors Eλ(ϕ) est stable parϕ et d’après la première proposition de cette section, Eλ(ϕ)⊥ 6= {0E} est aussi stable
par ϕ. On peut donc considérer l’endomorphisme ϕ̃ obtenu par la restriction de ϕ à Eλ(ϕ)⊥. Comme ϕ est symétrique, ϕ̃
l’est aussi pour l’espace euclidien Eλ(ϕ)⊥ muni du produit scalaire restreint.

∀u, v ∈ Eλ(ϕ)⊥, 〈u,ϕ̃(v)〉 = 〈u,ϕ(v)〉 = 〈ϕ(u), v〉 = 〈ϕ̃(u), v〉.

Or Eλ(ϕ)⊥ est de dimension comprise entre 1 et k. D’après l’hypothèse de récurrence, ϕ̃ est diagonalisable dans une b.o.n
de Eλ(ϕ)⊥. Soit B̃ une telle base. Noter que les vecteurs de B̃ constituent aussi des vecteurs propres de ϕ. Soit aussi Bλ,
une base de Eλ(ϕ). Les vecteurs de Bλ sont des vecteurs propres de ϕ (associés à la valeurs propres λ). Comme

Eλ(ϕ)⊕⊥ Eλ(ϕ)⊥ = E,

on peut concaténer les familles Bλ et B̃ respectivement en une base B orthonormée de E. On obtient ainsi une b.o.n de
E constituée de vecteurs propres de ϕ. L’endomorphisme ϕ est diagonalisable dans une b.o.n.
Si P (1), P (2), . . . ,P (k) sont vraies, P (k +1) l’est aussi.

* Conclusion. Pour tout k ∈N∗, P (k) est vraie. ■
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Remarque. La réciproque est vraie mais elle est beaucoup moins utile.

Exemples. Vérifions le théorème sur les deux premiers exemples du chapitre (page p.2).
• La matrice de ϕ dans la base canonique est

A = Matcan(ϕ) =
[

2 −6
−6 −7

]
.

Soit λ ∈R. Déterminons les valeurs propres par un calcul de déterminant.

det(A−λI3) = det

[
2−λ −6
−6 −7−λ

]
= (2−λ)(−7−λ)−36

= λ2 +5λ−50

det(A−λI3) = (λ+10)(λ−5).

Il y a deux valeurs propres −10 et 5. Précisons les espaces propres. Soit X =
[

x
y

]
∈M2,1(R)

AX = 5X ⇐⇒
{

2x −6y = 5x
−6x −7y = 5y

⇐⇒
{

3x +6y = 0
6x +12y = 0

⇐⇒ x +2y = 0 ⇐⇒ x =
[ −2y

y

]
.

Ainsi E5(ϕ) = Vect(u1) où u1 = (−2,1).

De même, on trouve
E−10(ϕ) = Vect(u2) où u2 = (1,2).

Il est clair que u1 et u2 sont orthogonaux, E5(ϕ) et E−10(ϕ) le sont aussi.

• Reprenons l’exemple de ϕa du début de chapitre. On constate que

ϕa (u0) = u0 +a 〈u0,u0〉u0 =
(
1+a ‖u0‖2)u0.

* Comme u0 6= 0E, u0 est vecteur propre pour la valeur propre λ= 1+a ‖u0‖2 6= 0 (car a Ê 0).
* De plus, pour tout u ∈ Vect(u0)⊥, on a

ϕa(u) = u +a

=0︷ ︸︸ ︷
〈u,u0〉u0 = u.

Le réel 1 est donc une seconde valeur propre pourϕa . Précisons que Vect(u0)⊥ n’est pas réduit à {0E} car dimE Ê 2. De
plus,

dimVect(u0) = 1 et dimVect(u0)⊥ = n −1.

D’où dimE1(ϕa)+dimEλ(ϕa) Ê n.

Nécessairement, il y a égalité des dimensions et même Eλ
(
ϕa

)⊕E1
(
ϕa

)= E. L’endomorphisme ϕa est diagonalisable
dans une b.o.n de E. Pour trouver un telle base, on peut ajouter le vecteur normée u0/‖u0‖ à une b.o.n de E1

(
ϕa

)
.

Exercice 4
FF . Les questions sont indépendantes.
Soit ϕ un endomorphisme symétrique d’un espace euclidien

(
E,〈·, ·〉).

1. Que dire de ϕ si pour tout u ∈ E, 〈u,ϕ(u)〉 = 0 ?

2. Justifier que Sp(ϕ) ⊂R+ si et seulement si ϕ vérifie

∀u ∈ E, 〈u,ϕ(u)〉 Ê 0 (•)

p. 19

# AS4
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Exercice 5
G Soit A ∈Mn (R) symétrique. Justifier que l’application linéaire

Φ :

{
Mn (R) → Mn (R)

M 7→ AM

est aussi diagonalisable.

On pourra introduire le produit scalaire canonique sur Mn (R).

p. 19

En mathématiques, les noms sont arbitraires. Libre à chacun d’appeler un
opérateur auto-adjoint un éléphant" et une décomposition spectrale une
"trompe". On peut alors démontrer un théorème suivant lequel "tout éléphant
a une trompe". Mais on n’a pas le droit de laisser croire que ce résultat a
quelque chose à voir avec de gros animaux gris.

GERALD SUSSMAN

spécialiste en intelligence artificielle (1947).

# AS5

2.2 Diagonalisation des matrices symétriques réelles

Théorème spectral dans le cas matriciel

THÉORÈME spectral, version matricielle

Si A est une matrice symétrique réelle,

alors * La matrice A est diagonalisable.

* Il existe une matrice orthogonale P et une matrice diagonale réelle D telles que

D = P−1AP = t PAP.

Preuve. Soit ϕ l’endomorphisme de Rn canoniquement associé à A. Comme la base canonique est une b.o.n pour le produit
scalaire canonique, ϕ est un endomorphisme symétrique en dimension finie. D’après ce qui précède ϕ est diagonalisable dans
une b.o.n. (notée C ). Précisons que la matrice de passage, notée P, entre la base canonique et la base C est orthogonale (puisque
les deux bases sont orthonormées). La formule de changement de base donne alors

A = Matcan(ϕ) = PMatC (ϕ)P−1 = PMatC (ϕ)tP.

D’où le résultat avec D = MatC (ϕ) qui est bien diagonale. ■

Remarques.
• Les colonnes de la matrice P forment une b.o.n de vecteurs propres de A.

• La réciproque, qui est bien moins utile, est vraie. S’il existe P orthogonale et D diagonale telles que A = PDtP alors la
matrice A est symétrique puisque

tA = t(PtDP
)= t(tP

)tDtP = PDtP = A.

Exercice 6

Les questions sont indépendantes.

1. F On considère la matrice A =
 0 0 1

0 1 0
1 0 0

 .

Justifier que A est diagonalisable. Calculer A2. En déduire que Sp(A) = {−1;1}.

2. FF Soit M ∈Mn (R) telle que M+ tM soit nilpotente.
Montrer que la matrice M est antisymétrique.

p. 19

# AS6
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Exercice 7
F Soit A = (ai , j )i , j∈[[1;n]] une matrice symétrique réelle, et soientλ1, . . . ,λn ses valeurs propres
comptées sans multiplicité (c’est-à-dire que l’on prend en compte les éventuelles répétitions).
Grâce au calcul de Tr

(tAA
)
, démontrer que

∑
(i , j )∈[[1;n]]2

ai , j
2 =

n∑
i=1

λi
2.

p. 19

# AS7

PROPOSITION décomposition d’une matrice symétrique

Soit A une matrice symétrique de Mn(R).

Notons * (λ1, . . . ,λn) les valeurs propres de A.
* (X1, . . . ,Xn) une b.o.n de vecteurs propres de A telle que AXi = λi Xi pour tout i ∈ [[1;n]].

Alors A =
n∑

i=1
λi Xi

t Xi = λ1 X1
t X1 +·· ·+λn Xn

t Xn .

Preuve. Posons B = n∑
i=1
λi Xi

t Xi de sorte que, pour j ∈ [[1;n]],

BX j =
(

n∑
i=1

λi Xi
t Xi

)
X j =

n∑
i=1

λi Xi

(
t Xi X j

)
.

Or la famille (X1,X2, . . . ,Xn ) est orthonormée

tXi X j =
{

1 si i = j

0 sinon.

La somme précédente se simplifie, et on obtient
BX j = λ j X j = AX j .

Les endomorphismes canoniquement associés à A et B sont donc égaux sur la base (X1, . . . ,Xn ), ils sont donc égaux et A = B. ■

Remarque. En particulier, A est combinaison linéaire de n matrices de projecteurs de rang 1.

Exercice 8

F Justifier que les matrices Xi
t Xi pour i ∈ [[1;n]] sont des matrices de projection dont on

déterminera les éléments caractéristiques (ici, une base du noyau et de l’image).
p. 20

# AS8

Exercice 9
F On reprend les notations de l’énoncé précédent et on suppose en plus les réels λi positifs.

1. Montrer que la matrice L = n∑
i=1

√
λi Xi

t Xi est symétrique à valeurs propres positive et vérifie

l’égalité L2 = A. Prouver que L commute avec A.

2. On admet que c’est la seule matrice symétrique avec des valeurs propres dont le carré vaut
A et on la note

p
A. Montrer que si A est de plus inversible, alors on a (

p
A)−1 =

p
A−1.

p. 20

# AS9
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Pratique de la réduction des matrices symétriques

Comment obtenir une b.o.n de vecteurs propres d’une matrice/endomorphisme symétrique?

* Déterminer les valeurs propres.
(Par un calcul du rang, un polynôme annulateur, le déterminant ...)

* Pour chaque valeur propre, déterminer une base de vecteurs propres.

* À l’aide du procédé d’orthonormalisation de Schmidt, déterminer une base orthonormée pour chacun
des sous-espaces propres.

* On obtient une base de vecteurs propres par concaténation des bases orthonormées de chacun des sous-
espaces propres.

M
ét

h
o

d
e

Exemple. Partons de la matrice symétrique

A =
 2 1 1

1 2 1
1 1 2

 .

* Le spectre est donné par Sp(A) = {1;4}. Pour s’en convaincre, on remarque que rg(A− I3) = 2, donc 1 est valeur
propre, l’espace propre associé est de dimension 2. Pour trouver la dernière valeur propre, on considère la trace.

* On vérifie que X1 =
 1

1
1

 est une base de E4 et une base de E1 est donnée par les deux vecteurs colonnes

X2 =
 −1

1
0

 et X3 =
 −1

0
1

 .

* Comme E4 est de dimension 1, il suffit de renormaliser X1 pour obtenir une base orthonormée de E4.

‖X1‖2 = 3 et E1 = 1p
3

X1.

Par contre, X2 et X3 ne sont pas orthogonaux. On pose donc

E2 =
X2

‖X2‖
= 1p

2
X2.

Puis V2 = X3 −〈X3,E2〉 E2 = X3 −
〈X3,X2〉
‖X2‖2 X2 = 1

2

 −1
−1

2

 .

Et E3 = V2
‖V2‖ =

1p
6

 −1
−1
2

 .

* Finalement, une b.o.n de vecteurs propres de A est donnée par la famille

(E1,E2,E3) =
 1p

3

 1
1
1

 ,
1p
2

 −1
1
0

 ,
1p
6

 −1
−1

2

 .

Exercice 10 F Diagonaliser dans une b.o.n chacune des matrices symétriques suivantes :

A =
 2 0 2

0 0 0
2 0 2

 et B =
 2 2 −2

2 5 −4
−2 −4 5

 . p. 20

# AS10
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Exercice 11

F On considère la matrice carrée d’ordre 3 : d’après EMLyon 2007 E

A = 1

2

 0 1 1
1 0 1
1 1 0

 .

1. Montrer, sans calcul, que A est diagonalisable.

2. Déterminer une matrice diagonale D et une matrice inversible et symétrique P, de pre-
mière ligne

[
1 1 1

]
et de deuxième ligne

[
1 −1 0

]
telles que A = PDP−1.

p. 20

# AS11

3 Formes quadratiques associées à une matrice
Définition et exemples

DÉFINITION forme quadratique d’une matrice symétrique

Soit A ∈Mn(R), symétrique. La forme quadratique associée à A est l’application définie sur Rn par

q(h) = tHAH

où H est la matrice des coordonnées de h dans la base canonique de Rn .

Exemple. Si on pose A =
[

2 3
3 −1

]
, la forme quadratique associée est définie pour tout h = (h1,h2) ∈R2 par

q(h) = [
h1 h2

][
2 3
3 −1

][
h1

h2

]
= [

h1 h2
][

2h1 +3h2

3h1 −h2

]
= h1 (2h1 +3h2)+h2 (3h1 −h2) = 2h1

2 +6h1h2 −h2
2 = 2h1

2+ 3h1h2

+3h2h1+ −1h2
2 .

Remarque. En généralisant le calcul précédent, on constate que pour A = (
ai j

)
(i , j )∈[[1;n]]2 et h = (hi )i∈[[1;n]]

q(h) = ∑
i , j∈[[1;n]]

ai j hi h j .

Par symétrie de A, on peut réécrire cette expression

q(h) =
n∑

i=1
ai i hi

2 +2
∑
i< j

ai j hi h j .

En particulier, si A est diagonale avec A = diag(λ1,λ2, . . . ,λn), on a simplement

q(h) =
n∑

i=1
λi hi

2.

Exercice 12
F Forme quadratique associée à un endomorphisme symétrique
On se place dans Rn muni du produit scalaire canonique. Soient ϕ un endomorphisme symé-
trique de Rn et A la matrice de ϕ dans la base canonique.
Justifier que si q est la forme quadratique associée à A alors

∀h ∈Rn , q(h) = 〈
h,ϕ(h)

〉
.

p. 20

# AS12
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Expression de la forme quadratique dans une b.o.n

THÉORÈME expression dans une b.o.n

Soit q, une forme quadratique associée à une matrice symétrique A. Alors il existe une base orthonormée B de Rn telle
que si h a pour coordonnées h̃1, . . . , h̃n dans B, on a

q(h) =
n∑

i=1
λi h̃i

2

où λ1, . . . ,λn sont les valeurs propres de A.

Preuve. D’après le théorème spectral, il existe une matrice orthogonale P et une matrice diagonale D telles que A = PDtP. Ainsi,
pour tout h ∈Rn

q(h) = tHAH

= tHPDtPH.

q(h) = tH̃DH̃ où H̃ = tPH.

Il existe une base B telle que tP soit la matrice de passage de la base canonique à la base B. Si
(
h̃1, h̃2, . . . , h̃n

)
sont les coordonnées

de H dans cette nouvelle base

H̃ =


h̃1
h̃2
...

h̃n

 et q(h) = [
h̃1, h̃2 . . . h̃n

] ·

λ1

λ2
. . .

λn

 ·


h̃1
h̃2
...

h̃n

=
n∑

i=1
λi h̃i

2
.

■
Application. . L’encadrement de Rayleigh
Si on pose α= minSp(A) et β= maxSp(A), montrons que

∀h ∈Rn \ {0}, αÉ q(h)

‖h‖2 É β.

Il suffit de reprendre l’expression obtenue précédemment

q(h) =
n∑

i=1
λi h̃i

2
puis, α

n∑
i=1

h̃i
2 É q(h) É β

n∑
i=1

h̃i
2

.

On conclut en rappelant que pour une base B = (e1,e2, . . . ,en) orthonormée, on a
n∑

i=1
h̃i

2 = n∑
i=1

〈h,ei 〉2 = ‖h‖2.

Signe d’une forme quadratique

Exercice 13 G . À quelles conditions nécessaires et suffisantes sur le spectre de A, a-t-on

i) ∀u ∈ E, q(u) Ê 0 ?

ii) ∀u ∈ E, q(u) É 0 ?

iii) ∀u ∈ E \
{
0E

}
, q(u) > 0 ?

iv) ∀u ∈ E \
{
0E

}
, q(u) < 0 ?

p. 20

# AS13
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Exercices

Matrices symétriques

Exercice 14. F Soit n Ê 3. On note A ∈Mn (R) la matrice dont tous les coefficients valent 1 sauf le coefficient en position (n,n) # AS14

qui vaut 0.

1. Justifier que A est diagonalisable.

2. Vérifier que A est semblable à une matrice diagonale de la forme D = diag(0, . . . ,0, a,b) avec a, b ∈R.

3. En calculant de deux manières la trace de A et celle de A2, déterminer a et b.

À Solution p. 20

Exercice 15. FF ¤ Soient A et B deux matrice symétriques réelles telles que les formes quadratiques associées qA et qB # AS15

soient égales. Justifier que A = B.
À Solution p. 20

Exercice 16. F Rayon spectral, exemple de convergence de suite de matrices # AS16

On munit Mp,1(R) du produit scalaire canonique défini par 〈M,N〉 = tMN et on note ||·|| la norme associée. Soit A, une matrice
symétrique de Mp (R). On pose ρ(A) = max

λ∈Sp(A)
|λ|.

1. Justifier que pour tout X ∈Mp,1(R), ‖AX‖ É ρ(A)‖X‖.

2. Établir l’équivalence entre les énoncés :

i) ρ(A) < 1 ii) Pour tout X ∈Mp,1(R),
∥∥An X

∥∥ −→
n→∞0.

À Solution p. 21

Exercice 17. FF Soit A ∈ Mn (R) symétrique à valeurs propres positives. Trouver une solution de l’équation X6 = A, où X ∈ # AS17

Mn (R). A-t-on unicité de la solution?
À Solution p. 21

Matrices symétriques positives, définies positives

Exercice 18. F . Définitions des symétriques définies positives et équivalences # AS18

On dit qu’une matrice symétrique M de Mn (R) est définie positive si pour tout X ∈ Mn,1(R) non nul, on a t XMX > 0. Montrer
l’équivalence des quatre énoncés suivants :

i ) M est une matrice symétrique définie positive.

i i ) Les valeurs propres de M sont strictement positives.

i i i ) Il existe P orthogonale, D diagonale à coefficients diagonaux strictement positifs, telles que M = PDt P.

i v) Il existe une matrice R inversible et symétrique telle que M = R2.

À Solution p. 21

Exercice 19. FFF Racine carrée d’une matrice de S +
n # AS19

Pour tout n ∈N∗, on note S +
n l’ensemble des matrices symétriques de Mn (R) dont les valeurs propres sont strictement positives.

Soit A ∈S +
n .

1. Montrer qu’il existe R ∈S +
n telle que A = R2. On dit que R est une racine carrée de A.

2. Soient R1 et R2 deux racines carrées de A appartenant à S +
n .

Montrer que R1 et R2 ont les mêmes valeurs propres et les mêmes vecteurs propres. En déduire que la matrice A admet une
unique racine carrée dans S +

n notée dans la suite
p

A.

3. Expression de
p

A via les polynômes de Lagrange.
Soient p ∈N∗ et λ1, . . . ,λp , les p valeurs propres de A deux à deux distinctes. Pour tout j ∈ [[1; p]], on définit le polynôme :

L j (x) = ∏
i∈[[1;p]]

i 6= j

x −λi

λ j −λi
.

12



a) Montrer que B = (
L1, . . . ,Lp

)
est une base de Rp−1[x]. En déduire l’existence d’un unique polynôme P de Rp−1[x] tel que,

pour tout i ∈ [[1; p]], P
(
λi

)=√
λi .

b) Exprimer
p

A comme un polynôme en A.

4. Soit A =
 2 1 1

1 2 1
1 1 2

. vérifier que A est dans S+n et déterminer
p

A.

À Solution p. 22

Exercice 20. FF Soient A et B deux matrices symétriques réelles d’ordre n dont les valeurs propres sont strictement positives. # AS20

1. Montrer l’équivalence : A = B ⇐⇒ A2 = B2.

2. Est-ce encore vrai si on suppose les valeurs propres positives ou nulles ?

À Solution p. ??

Exercice 21. FFF Matrices symétriques positives et définies positives # AS21

Soient n ∈N∗, S =
(
ai j

)
1Éi , jÉn

∈Mn (R) symétrique telle que :

∀(i , j ) ∈ �1;n�2, ai j > 0.

On note β la plus grande valeur propre de S et V le sous-espace propre de S associé à β. On munit Mn,1(R) de son produit scalaire
canonique et de la norme associée ‖ ·‖.

1. Soit X0 =


x1
...

xn

 ∈ V\{0}. On note |X0| =


|x1|

...
|xn |

.

a) Montrer tX0SX0 É t |X0|S |X0| et en déduire : |X0| ∈ V.

b) Montrer que les coordonnées de S |X0| sont toutes strictement positives et en déduire que X0 n’a aucune coordonnée nulle.

c) Montrer : tX0SX0 = t |X0|S |X0| et en déduire que les coordonnées de X0 sont toutes de même signe.

2. a) En déduire qu’il n’existe pas deux vecteurs de V\{0} orthogonaux entre eux.

b) Conclure : dim(V) = 1.

À Solution p. ??

Endomorphismes symétriques

Exercice 22. F Soient
(
E,〈·, ·〉) un espace euclidien et ϕ un endomorphisme symétrique de E. Démontrer que Ker(ϕ) et Im(ϕ) # AS22

sont supplémentaires orthogonaux.
À Solution p. 22

Exercice 23. G Vrai ou faux? # AS23

Si B est une base adaptée à la décomposition en sous-espaces propres d’un endomorphisme symétrique d’un espace euclidien,
alors B est une base orthogonale.

À Solution p. 23

Exercice 24. FF La symétrie implique la linéarité # AS24

Soit ϕ : E → E tel que, pour tous u, v ∈ E, on a 〈ϕ(u), v〉 = 〈u,ϕ(v)〉. Justifier que ϕ est un endomorphisme.
À Solution p. 23

Exercice 25. F Exemple d’endomorphisme symétrique en dimension infinie D’après EMLyon 2011 # AS25

On note E =C ∞([0;1];R), muni du produit scalaire 〈·, ·〉 défini par :

∀ f , g ∈ E,
〈

f , g
〉= ∫ 1

0
f (x)g (x)dx.

et, pour toute fonction f ∈ E, on pose

T( f ) :

{
[0;1] → R

x 7→ (
x2 −x

)
f ′′(x)+ (2x −1) f ′(x).

Montrer que T est un endomorphisme symétrique de E.
À Solution p. 23

Exercice 26. F Endomorphisme symétrique et produit scalaire d’après EDHEC 2015 # AS27
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On considère l’espace euclidien Rn muni du produit scalaire canonique. On note B = (e1,e2, . . . ,en ) la base canonique de Rn qui
est orthonormée pour le produit scalaire 〈·, ·〉 .
On considère un endomorphisme f de Rn , symétrique, dont les valeurs propres sont toutes strictement positives.

1. Justifier l’existence d’une base orthonormée de Rn , B′ = (u1,u2, . . . ,un ), formée de vecteurs propres de f .

2. a) Montrer que, pour tout x de Rn , on a :
〈

x, f (x)
〉Ê 0.

b) Vérifier que l’égalité 〈x, f (x)〉 = 0 a lieu si et seulement si x = 0.

c) En déduire que l’application ϕ, de Rn ×Rn dans R, définie par ϕ(x, y) = 〈x, f (y)〉, est un produit scalaire sur Rn .

3. a) En utilisant B′, montrer qu’il existe un endomorphisme g de Rn , symétrique pour le produit scalaire canonique, dont les
valeurs propres sont strictement positives, et tel que g 2 = f .

b) Établir que g est bijectif.

c) Montrer que la famille
(
g−1 (e1) , g−1 (e2) , . . . , g−1 (en )

)
est une base orthonormée de Rn pour le produit scalaire ϕ.

À Solution p. 23

Exercice 27. FF D’après ESCP 2011. # AS28

Soit n un entier naturel non nul. On désigne par E un espace vectoriel de dimension finie muni d’un produit scalaire 〈., .〉. On note
(e1, . . . ,en ) une base de E. Pour tout vecteur x de E, on pose

f (x) =
n∑

k=1

〈
x,ek

〉
ek .

1. a) L’application f est-elle un endomorphisme de E ?

b) L’application f est-elle injective ? surjective?

c) L’application f est-elle un endomorphisme symétrique de E ?

d) Caractériser les bases (e1, . . . ,en ) telles que f soit un projecteur.

2. a) Montrer que les valeurs propres de f sont strictement positives.

b) Montrer qu’il existe un isomorphisme symétrique s de E à valeurs propres strictement positives tel que s = (s ◦ f )−1.

c) Montrer que (s (e1) , . . . , s (en )) est une base orthonormée de E.

d) Que dire de f si la matrice de s dans B est une matrice orthogonale ?

À Solution p. 24

Exercice 28. FF . # AS36

Soient
(
E,〈·, ·〉) un espace euclidien de dimension n, et f un endomorphisme symétrique de E. En notant λ1, . . . ,λp ses valeurs

propres telles que λ1 É ·· · É λp , montrer que

∀x ∈ E, λ1‖x‖2 É 〈 f (x), x〉 É λp‖x‖2.

À Solution p. 25

Exercice 29. FFF Oraux HEC 2009 # AS29

Soient
(
E,〈·, ·〉) un espace euclidien de dimension n et f , g deux endomorphismes de E symétriques et ayant des valeurs propres

strictement positives.

1. Prouver qu’il existe un endomorphisme ϕ de E ayant des valeurs propres positives tel que f =ϕ2 =ϕ◦ϕ.

2. Montrer que : Ker( f + g ) = Ker f ∩Ker g .

À Solution p. 25

Endomorphismes particuliers d’un espace euclidien

Exercice 30. F Et le cas antisymétrique? # AS30

Soit A une matrice de Mn (R) antisymétrique.

1. Montrer que la seule valeur propre réelle possible de A est 0.

2. Montrer que B = A2 est une matrice symétrique réelle.

3. Quel est le signe des valeurs propres non nulles de B?

14



À Solution p. 25

Exercice 31. F Un exemple d’endomorphisme antisymétrique # AS31

Soit n un entier au moins égal à 3. On travaille dans l’espace E = Rn muni de son produit scalaire canonique. On considère deux
vecteurs a et b de Rn de norme 1 et orthogonaux. On définit sur E l’application f par :

∀x ∈ E, f (x) = 〈a, x〉b −〈b, x〉a.

1. Vérifier que f est un endomorphisme de E.

2. a) Déterminer Ker f et une base de Im f .

b) Vérifier que Ker f et Im f sont supplémentaires.

3. Montrer que :
∀(x, y) ∈ E2, 〈 f (x), y〉 =−〈x, f (y)〉

4. En déduire que f ◦ f est un endomorphisme symétrique.

5. À quelle condition sur l’entier naturel k, l’endomorphisme f k est diagonalisable.

À Solution p. 26

Exercice 32. FF Soit E un espace euclidien de dimension n. Soient f et g deux endomorphismes de E tels que f ◦g = g ◦ f . On # AS32

note S (resp. T) la matrice de f (resp. g ) dans une base orthonormée B de E. On suppose que S est symétrique et T antisymétrique.
Montrer que :

∀x ∈ E,
∥∥( f − g )(x)

∥∥= ∥∥( f + g )(x)
∥∥ .

À Solution p. 26

Exercice 33. F . Adjoint u∗ d’un endomorphisme u et endomorphismes normaux d’après EDHEC 2019 # AS33

Soient
(
E,〈·, ·〉) un espace euclidien de dimension n et ϕ un endomorphisme de E. On note B = (e1,e2, . . . ,en ) une base orthonor-

mée de E.

• Définition de l’adjoint d’un endomorphisme de E

Pour tout y ∈ E, on pose ϕ∗(y) =
n∑

i=1

〈
ϕ

(
ei

)
, y

〉
ei .

1. Vérifier que ϕ∗ est un endomorphisme de E et : ∀x, y ∈ E, 〈ϕ(x), y〉 = 〈
x,ϕ∗(y)

〉
.

2. ¤ Que dire de (ϕ∗)∗ ?

3. ¤ Comparer les matrices de ϕ et ϕ∗ dans la base B. En déduire que ϕ◦ϕ∗ est diagonalisable.

• Étude des endomorphismes normaux
Dans la suite, on suppose que ϕ est un endomorphisme normal, c’est-à-dire ϕ commute avec ϕ∗ :

ϕ◦ϕ∗ =ϕ∗ ◦ϕ.

4. Montrer que : ∀x ∈ E, ‖ϕ(x)‖ = ∥∥ϕ∗(x)
∥∥.

5. En déduire que Ker(ϕ) = Ker
(
ϕ∗)

.

6. Montrer que si F est un sous-espace vectoriel de E stable par ϕ, alors F⊥ est stable par ϕ∗.

7. On suppose queϕ possède une valeur propre λ et on note Eλ(ϕ) le sous espace propre associé. Montrer que Eλ(ϕ) est stable par
ϕ∗, puis en déduire que E⊥

λ
est stable par ϕ.

À Pour aller plus loin, HEC 2019 Maths I, Essec 2014
À Solution p. 26

Compléments

Exercice 34. FFF Une descente de gradient D’après ESCP 2012 # AS34

Soit n ∈ N \ {0;1}. On considère Rn muni de son produit scalaire canonique noté 〈·, ·〉 et ‖ · ‖, la norme associée, et A ∈ Mn (R),
symétrique réelle dont les valeurs propres sont toutes strictement positives.
On confond vecteur de Rn et matrice colonne canoniquement associée et on pose, pour tout X ∈ Rn ,

Φ(X) = t XAX.

1. Soit B un élément de Rn . Montrer que l’équation AX = B d’inconnue X ∈Rn admet une unique solution qu’on notera R.

2. Montrer qu’il existe deux réels α et β strictement positifs tels que pour tout X de Rn

α‖X‖2 ÉΦ(X) É β‖X‖2.
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3. Dans la suite de l’exercice, on pose pour X ∈Rn : F(X) =Φ(X)−2t BX.

a) Déterminer le gradient ∇FX de F en X.

b) Soient X et H deux éléments de Rn . Montrer que

F(X+H) = F(X)+〈∇FX,H〉+Φ(H).

c) En déduire que F possède un minimum sur Rn . En quel point est-il atteint?

4. Soit X ∈Rn fixé, X 6= 0. Déterminer α ∈R de façon à ce que F
(
X−α∇FX

)
soit minimal. Calculer ce minimum.

5. Soit X0 ∈Rn . On définit une suite
(
Xk

)
k∈N de vecteurs de Rn par, pour tout k ∈N :

Xk+1 = Xk −αk∇FXk
, où αk =

∥∥∇FXk

∥∥2

2Φ
(
Xk

) si Xk 6= R et 0 sinon.

a) Montrer que la suite
(
F

(
Xk

))
k∈N converge.

b) Exprimer F
(
Xk+1

)−F
(
Xk

)
en fonction de αk et de ∇FXk

.

6. Une suite
(
Yk

)
k∈N de vecteurs de Rn sera dite convergente vers un vecteur Z ∈Rn si lim

k→+∞
∥∥Yk −Z

∥∥= 0, ce qui revient à dire que

les coordonnées de Yk convergent vers les coordonnées correspondantes de Z.

a) Montrer que la suite
(∇FXk

)
k∈N converge vers 0.

b) En déduire la limite de la suite
(
Xk

)
k∈N.

À Solution p. ??

Exercice 35. FFF Exemple d’endomorphisme symétrique # AS35

On pose E =Rn [x] muni du produit scalaire définie par

〈P,Q〉 =
∫ 1

0
P(t )Q(t )dt .

1. Montrer que la relation u(P)(x) =
∫ 1

0
(x + t )n P(t )dt définit un endomorphisme u de l’espace E.

2. Vérifier que l’endomorphisme u est symétrique.

À Solution p. 27
Exercice 36. FFF Décomposition spectrale, calcul et application # ASp1

Soit M ∈Mn (R), inversible.

• Existence de la décomposition

1. Montrer que t MM est une matrice symétrique de valeurs propres strictement positives. En déduire qu’il existe une matrice
symétrique à valeurs propres strictement positives S telle que t MM = S2.

2. ¤ Montrer qu’il existe une matrice orthogonale O telle que M = OS.

• Unicité de la décomposition
Il existe un unique couple (O,S), O orthogonale, S symétrique à valeurs propres strictement positives, tel que M = OS. Pour s’en
convaincre, on a vu en exercice que la matrice S est unique (le refaire si besoin). La matrice O l’est donc tout autant et on a bien
l’unicité du couple (O,S).

• Algorithme par la méthode de Newton
Dans la suite, on dit qu’une suite de matrices (Ak )k de Mn (R) converge vers une matrice A si pour tout couple (i , j ) ∈ [[1;n]]2, la
suite des coefficients ([Ak ]i , j )k converge vers le coefficient [A]i , j . On admet 1 le résultat suivant :
Soit M ∈Mn (R) inversible. La suite

(
Mk

)
k de matrices de M ∈Mn (R) définie par

M0 = M et Mk+1 = 1

2
Mk

(
In + (t Mk Mk

)−1
)

est bien définie, converge vers O, où M = OS est la décomposition polaire de M. De plus, la suite
(t Mk M

)
k converge vers S.

3. ¤ Justifier que pour tout k ∈N, la matrice Mk est inversible.

4. Proposer un programme python qui prend en argument M et renvoie une approximation du couple (O,S) obtenue par décom-
position polaire.

1. mais on pourrait le démontrer (DS11 de l’année dernière).
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• Application
Soit

(
E,〈·, ·〉) un espace euclidien et ||·|| la norme euclidienne associée.

Un endomorphisme f de E est appelé contraction si pour tout x de E,‖ f (x)‖ É ‖x‖.

5. Donner un exemple de contraction de E.

6. On suppose dans cette question que l’endomorphisme f est symétrique.

a) ¤ Montrer que f est une contraction si et seulement si pour toute valeur propre λ de f , on a |λ| É 1.

b) Soit P un polynôme de R[x]. Montrer que pour tout x de E :

‖P( f )(x)‖ É sup
λ∈Sp( f )

|P(λ)| · ‖x‖

où Sp( f ) désigne l’ensemble des valeurs propres de f .

• On suppose désormais que f est un endomorphisme bijectif de E, et on note M sa matrice associée dans une base B orthonor-
mée de E.

7. ¤ Montrer que f est une contraction si et seulement si pour toute valeur propre λ de S, on a |λ| É 1.

• Exemple
Pour tout (a,b) ∈R2 \ {(0,0)}, on pose Ma,b =

[
a b
−b a

]
.

On note (Sa,b ,Oa,b ) le couple obtenue dans la décomposition polaire.

8. a) Expliciter la matrice Sa,b dans cet exemple.

b) ¤ Justifier ensuite que det(Oa,b ) = 1 et qu’il existe un réel θ tel que Oa,b =
[

cos(θ) sin(θ)
−sin(θ) cos(θ)

]
.

9. ¤ On pose J = M(0,1). On pose ensuite exp(θJ) = lim
n→+∞

2n+1∑
k=0

1

k !
(θJ)k .

Démontrer que Oa,b = exp(θJ).

Exercice 37. FFF Lemme du théorème spectral # ASp2

On se propose dans la suite d’établir le résultat préliminaire et admis dans la preuve du théorème spectral : toute matrice symé-
trique réelle admet un valeur propre 2.

• Résultat 1
Soient A ∈Mn (R), symétrique et δ ∈R+∗ .

1. Justifier que A2 +δIn est une matrice inversible.

2. ¤ Soit R, un polynôme de degré 2 dont le discriminant est strictement négatif. Déduire de la question 1 que R(A) est inversible.

• Résultat 2 - Polynôme minimal

3. Justifier que toute matrice A ∈Mn (R) admet un polynôme annulateur non nul.

4. Démontrer qu’il existe un polynôme non nul annulateur de A de degré minimal et unitaire. Notons ΠA, un tel polynôme.

5. (facultatif). Montrer que pour tout polynôme P annulateur de A, il existe Q polynôme tel que P = ΠA ·Q. En déduire que le
polynôme ΠA est unique.

6. Justifier que si λ est une racine de ΠA, alors λ est une valeur propre de A.

• Résultat 3
On rappelle que pour tout polynôme P, il existe :

* a, un réel ;

* des réels
(
λi

)
i∈[[1;r ]] et des entiers naturels

(
mi

)
i∈[[1;r ]] ;

* des polynômes
(
R j

)
j∈[[1;p]]

de degré 2, unitaire et de discriminant négatif

tels que P = a
r∏

i=1

(
x −λi

)mi ·
p∏

j=1
R j .

7. À l’aide des trois résultats, montrer que pour toute matrice A symétrique admet une valeur propre réelle.

On montre ainsi que la matrice admet un polynôme annulateur non nul scindé à racines simples. On a vu en exercice que cela prouve
la diagonasabilité de la matrice. C’est le théorème spectral.

2. La preuve classique utilise les nombres complexes. Ces derniers sont hors-programme en ECG.
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