

Classes préparatoires aux grandes écoles

Programme de mathématiques approfondies – informatique de la classe d'ECG 2^{nde} année

Table des matières

1	Objectifs généraux de la formation	3
2	Compétences développées	3
3	Architecture des programmes	4
\mathbf{E}^{I}	NSEIGNEMENT DE MATHÉMATIQUES DU TROISIÈME SEMESTRE	6
Ι-	Algèbre linéaire et bilinéaire	6
	1 - Compléments d'algèbre linéaire	6
	a) Somme directe de sous-espaces vectoriels	6
	b) Changement de base	6
	c) Trace	6
	2 - Éléments propres des endomorphismes et des matrices carrées, réduction	7
	a) Vecteurs propres et espaces propres	7
	b) Recherche d'éléments propres	7
	c) Propriétés générales	7
	d) Réduction des endomorphismes et des matrices carrées	7
	3 - Algèbre bilinéaire	8
	a) Produit scalaire	8
	b) Espaces euclidiens	8
II	- Fonctions réelles définies sur \mathbf{R}^n	9
	1 - Introduction aux fonctions définies sur ${f R}^n$	9
	2 - Calcul différentiel	10
	a) Dérivées partielles, gradient	10
	b) Recherche d'extremum : condition d'ordre 1	11
II	I - Compléments de probabilités; couples et n -uplets de variables aléatoires réelles	11
	1 - Compléments sur les variables aléatoires réelles	11
	a) Généralités sur les variables aléatoires réelles	11
	b) Espérance et conditionnement pour les variables aléatoires discrètes	12
	2 - Introduction aux variables aléatoires à densité	12
	a) Densités et fonction de répartition d'une variable aléatoire	12
	b) Espérance des variables aléatoires à densité	13
	3 - Lois de variables aléatoires à densité usuelles $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	13
	4 - Variance des variables aléatoires à densité	14
	5 - $n-uplets$ de variables aléatoires réelles ; généralisation des propriétés de l'espérance et de	
	la variance	14

a) Généralisation	14	
b) Indépendance	15	
c) Le cas particulier du couple	15	
d) Sommes de variables aléatoires indépendantes	16	
ENSEIGNEMENT DE MATHÉMATIQUES DU QUATRIÈME SEMESTRE	17	
I - Compléments d'algèbre bilinéaire	17	
1 - Endomorphismes symétriques d'un espace euclidien, matrices symétriques $\ \ldots \ \ldots \ \ldots$	17	
2 - Projection orthogonale	17	
3 - Réduction des endomorphismes et des matrices symétriques	17	
II - Fonctions réelles de n variables définies sur un ouvert de \mathbf{R}^n ; recherche d'extrema	18	
1 - Fonction de n variables définies sur une partie de \mathbf{R}^n	18	
2 - Compléments sur les fonctions de classe C^2 sur un ouvert de ${\bf R}^n$	18	
3 - Recherche d'extrema	19	
a) Définition	19	
b) Extrema sur un ensemble fermé borné	19	
c) Condition d'ordre 1	19	
d) Condition d'ordre 2	19	
e) Recherche d'extrema sous contrainte d'égalités linéaires	20	
III - Probabilités : convergences, estimation	20	
1 - Convergences et approximations	21	
a) Convergence en probabilité	21	
b) Convergence en loi	21	
2 - Estimation	22	
a) Estimation ponctuelle	22	
b) Intervalle de confiance	23	
c) Estimation par intervalle de confiance asymptotique	23	
d) Comparaison des estimateurs	24	
TRAVAUX PRATIQUES DE MATHÉMATIQUES AVEC PYTHON	25	
I - Liste des exigibles	25	
1 - Commandes	25	
2 - Savoir-faire et compétences	26	

II - Liste des thèmes	
1 - Statistiques descriptives bivariées	26
2 - Fonctions de plusieurs variables	26
3 - Simulation de lois	26
4 - Estimation ponctuelle et par intervalle de confiance	27

1 Objectifs généraux de la formation

Les mathématiques jouent un rôle important en sciences économiques et en gestion, dans les domaines notamment de la finance ou de la gestion d'entreprise, de la finance de marché, des sciences sociales. Les probabilités et la statistique interviennent dans tous les secteurs de l'économie et dans une grande variété de contextes (actuariat, biologie, épidémiologie, finance quantitative, prévision économique...) où la modélisation de phénomènes aléatoires à partir de bases de données est indispensable.

L'objectif de la formation dans les classes préparatoires économiques et commerciales n'est pas de former des professionnels des mathématiques, mais des personnes capables d'utiliser des outils mathématiques ou d'en comprendre l'usage dans diverses situations de leur parcours académique et professionnel.

Les programmes définissent les objectifs de l'enseignement de ces classes et décrivent les connaissances et les capacités exigibles des étudiants. Ils précisent également certains points de terminologie et certaines notations.

Les limites du programme sont clairement précisées. Elles doivent être respectées aussi bien dans le cadre de l'enseignement en classe que dans l'évaluation.

Une fonction fondamentale de l'enseignement des mathématiques dans ces classes est de structurer la pensée des étudiants et de les former à la rigueur et à la logique en insistant sur les divers types de raisonnement (par équivalence, implication, l'absurde, analyse-synthèse...).

2 Compétences développées

L'enseignement de mathématiques en classes préparatoires économiques et commerciales vise en particulier à développer chez les étudiants les compétences suivantes :

- Rechercher et mettre en œuvre des stratégies adéquates : savoir analyser un problème, émettre des conjectures notamment à partir d'exemples, choisir des concepts et des outils mathématiques pertinents.
- Modéliser : savoir conceptualiser des situations concrètes (phénomènes aléatoires ou déterministes) et les traduire en langage mathématique, élaborer des algorithmes.
- Interpréter : être en mesure d'interpréter des résultats mathématiques dans des situations concrètes, avoir un regard critique sur ces résultats.
- Raisonner et argumenter : savoir conduire une démonstration, confirmer ou infirmer des conjectures.
- Maîtriser le formalisme et les techniques mathématiques : savoir employer les symboles mathématiques à bon escient, être capable de mener des calculs de manière pertinente et efficace. Utiliser avec discernement l'outil informatique.

• Communiquer par écrit et oralement : comprendre les énoncés mathématiques, savoir rédiger une solution rigoureuse, présenter une production mathématique.

3 Architecture des programmes

Le programme de mathématiques de deuxième année de la filière EC de mathématiques approfondies se situe dans le prolongement de celui de première année et permet d'en consolider les acquis. Son objectif est de fournir aux étudiants le bagage nécessaire pour suivre les enseignements spécialisés de mathématiques, économie et gestion dispensés en Grande École ou en troisième année de Licence à l'université.

Il s'organise autour de quatre points forts :

- En algèbre linéaire et bilinéaire, on introduit la réduction des endomorphismes et des matrices carrées ainsi que les structures euclidiennes. Ces notions d'algèbre linéaire trouveront des applications en analyse lors de l'optimisation des fonctions de plusieurs variables, mais aussi en probabilités et en analyse de données (statistiques descriptives bivariées).
- En analyse, on complète l'étude des intégrales généralisées débutée en première année de classe préparatoire et on introduit les fonctions de plusieurs variables définies sur \mathbb{R}^n ainsi que la notion de gradient. Au quatrième semestre, on poursuit cette étude dans le but de résoudre des problèmes d'optimisation avec ou sans contraintes, cruciaux en économie et en finance.
- En probabilités, l'étude des variables aléatoires discrètes, initiée au lycée et poursuivie en première année, se prolonge au troisième semestre par l'étude des couples et des suites de variables aléatoires discrètes; au quatrième semestre, les notions sur les variables aléatoires à densité sont complétées. L'ensemble des notions sera présenté en lien avec la simulation informatique des phénomènes aléatoires. Un des objectifs est de permettre, en fin de formation, une approche plus rigoureuse (et une compréhension plus aboutie) des méthodes de l'estimation ponctuelle ou par intervalles de confiance.
- L'informatique est enseignée tout au long de l'année en lien direct avec le programme de mathématiques. Cette pratique régulière permettra aux étudiants de construire ou de reconnaître des algorithmes relevant par exemple de la simulation de lois de probabilité, de la recherche d'extrema en analyse ou de différentes techniques d'estimation.

Au fur et à mesure de la progression, on aura à cœur de mettre en valeur l'interaction entre les différentes parties du programme.

Le programme de mathématiques est organisé en deux semestres. Ce découpage en deux semestres d'enseignement doit être respecté. En revanche, au sein de chaque semestre, aucun ordre particulier n'est imposé et chaque professeur conduit en toute liberté l'organisation de son enseignement, bien que la présentation par blocs soit fortement déconseillée.

Le programme se présente de la manière suivante : dans la colonne de gauche figurent les contenus exigibles des étudiants; la colonne de droite comporte des précisions sur ces contenus ou des exemples d'activités ou d'applications.

Les développements formels ou trop théoriques doivent être évités. Ils ne correspondent pas au cœur de formation de ces classes préparatoires.

Les résultats mentionnés dans le programme seront admis ou démontrés selon les choix didactiques faits par le professeur. Pour certains résultats, marqués comme «admis», la présentation d'une démonstration en classe est déconseillée.

Les séances de travaux dirigés permettent de privilégier la prise en main, puis la mise en œuvre par les étudiants, des techniques usuelles et bien délimitées, inscrites dans le corps du programme. Cette maîtrise s'acquiert notamment par l'étude de problèmes que les étudiants doivent in fine être capables de résoudre par eux-mêmes. Le symbole ightharpoonup indique les parties du programme pouvant être traitées en liaison avec l'informatique.

Le langage Python comporte de nombreuses fonctionnalités permettant d'illustrer simplement certaines notions mathématiques. Ainsi, on utilisera avec pertinence l'outil informatique en cours de mathématiques pour visualiser et illustrer les notions étudiées.

Les travaux pratiques de mathématiques avec Python sont organisés autour de quatre thèmes faisant intervenir divers points du programme de mathématiques. L'objectif est d'apprendre aux étudiants à utiliser Python de manière judicieuse et autonome ainsi que de leur permettre d'illustrer ou de modéliser des situations concrètes en mobilisant leurs connaissances mathématiques. Les savoir-faire et compétences que les étudiants doivent acquérir lors de ces séances de travaux pratiques sont spécifiés dans la liste des exigibles et rappelés en préambule de chaque thème. Les nouvelles notions mathématiques introduites dans certains thèmes ne font pas partie des exigibles du programme. L'enseignement de ces travaux pratiques se déroulera sur les créneaux horaires dédiés à l'informatique.

ENSEIGNEMENT DE MATHÉMATIQUES DU TROISIÈME SEMESTRE

I - Algèbre linéaire et bilinéaire

1 - Compléments d'algèbre linéaire

a) Somme directe de sous-espaces vectoriels

Dimension d'une somme directe de k espaces vectoriels.

Base adaptée à une somme directe.

Concaténation de bases de sous espaces vectoriels.

Caractérisation de sommes directes par concaténation des bases.

b) Changement de base

Matrice d'un endomorphisme dans une base.

Rappels.

Matrice de passage de \mathcal{B} vers \mathcal{B}' .

Notation $P_{\mathcal{B},\mathcal{B}'}$.

$$P_{\mathcal{B}',\mathcal{B}}^{-1} = P_{\mathcal{B},\mathcal{B}'}.$$

Formules de changement de base.

$$X_{\mathcal{B}} = P_{\mathcal{B},\mathcal{B}'} X_{\mathcal{B}'}.$$

$$\begin{split} X_{\mathcal{B}} &= P_{\mathcal{B},\mathcal{B}'} X_{\mathcal{B}'}.\\ \operatorname{Mat}_{\mathcal{B}'}(f) &= P_{\mathcal{B},\mathcal{B}'}^{-1} \operatorname{Mat}_{\mathcal{B}}(f) \ P_{\mathcal{B},\mathcal{B}'}. \end{split}$$

Matrices semblables.

Deux matrices A et B carrées sont semblables s'il existe une matrice inversible P telle que $B = P^{-1}AP.$

A et B sont semblables si et seulement si elles représentent les matrices d'un même endomorphisme dans des bases différentes.

c) Trace

La trace d'une matrice carrée est introduite uniquement comme outil simple et efficace en vue de la recherche de valeurs propres. Tout développement théorique est exclu. Aucun autre résultat concernant la trace n'est au programme.

Trace d'une matrice carrée.

Notation Tr(A).

Linéarité de la trace et Tr(AB) = Tr(BA).

Invariance de la trace par changement de base.

 $\operatorname{Tr}(A) = \operatorname{Tr}(P^{-1}AP).$

2 - Éléments propres des endomorphismes et des matrices carrées, réduction

Les espaces vectoriels considérés dans ce chapitre sont définis sur \mathbf{R} . Dans toute cette partie, f désignera un endomorphisme d'un espace vectoriel E de dimension finie, et A une matrice carrée.

a) Vecteurs propres et espaces propres

Valeurs propres, vecteurs propres, sous-espaces propres d'un endomorphisme de E et d'une matrice carrée.

Valeurs propres des matrices triangulaires.

Spectre d'un endomorphisme et d'une matrice carrée.

Notations Sp(f) et Sp(A).

Si Q est un polynôme, obtention d'éléments propres de Q(f) à partir d'éléments propres de f.

Si
$$f(x) = \lambda x$$
 alors $Q(f)(x) = Q(\lambda)x$.
Si $AX = \lambda X$ alors $Q(A)X = Q(\lambda)X$.

b) Recherche d'éléments propres

Polynômes annulateurs d'un endomorphisme, d'une matrice carrée.

Si Q est un polynôme annulateur de f (respectivement A) et λ une valeur propre de f (respectivement A), alors λ est racine de Q.

Tout endomorphisme d'un espace de dimension finie admet au moins un polynôme annulateur non nul.

Toute matrice carrée admet au moins un polynôme annulateur non nul. On pourra donner les exemples des homothéties, des projecteurs et des symétries.

Aucune autre connaissance sur les polynômes annulateurs ne figure au programme.

c) Propriétés générales

Un endomorphisme d'un espace de dimension finie admet un nombre fini de valeurs propres et ses sous-espaces propres sont en somme directe.

$$\sum_{\lambda \in \operatorname{Sp}(f)} \dim \ker(f - \lambda \operatorname{Id}_E) \leqslant \dim(E).$$

Une concaténation de familles libres de sousespaces propres associés à des valeurs propres distinctes forme une famille libre de E. En particulier, une famille de vecteurs propres associés à des valeurs propres distinctes est une famille libre.

Un endomorphisme d'un espace vectoriel de dimension n a au plus n valeurs propres.

d) Réduction des endomorphismes et des matrices carrées

f est diagonalisable si et seulement s'il existe une base \mathcal{B} de E composée de vecteurs propres de f.

Caractérisation des endomorphismes diagonalisables à l'aide des dimensions des sous-espaces propres.

f est diagonalisable si et seulement si E est somme directe des sous-espaces propres de f.

Matrices diagonalisables, diagonalisation d'une matrice carrée.

Application au calcul des puissances d'une matrice carrée.

 $Mat_{\mathcal{B}}(f)$ est alors une matrice diagonale.

$$f$$
 est diagonalisable si et seulement si
$$\sum_{\lambda \in \operatorname{Sp}(f)} \dim \ker (f - \lambda \operatorname{Id}_E) = \dim(E).$$

Si $\dim(E) = n$, tout endomorphisme de E admettant n valeurs propres distinctes est diagonalisable et les sous-espaces propres sont tous de dimension 1.

Interprétation matricielle des résultats précédents.

A est diagonalisable si et seulement s'il existe une matrice P inversible telle que $P^{-1}AP$ est une matrice diagonale. Les colonnes de Pforment une base de $\mathcal{M}_{n,1}(\mathbf{R})$ constituée de vecteurs propres de A.

3 - Algèbre bilinéaire

L'objectif de ce chapitre est d'introduire les notions fondamentales de l'algèbre bilinéaire dans le cadre euclidien, utilisées en particulier lors de l'étude des fonctions de n variables. L'étude des endomorphismes symétriques sera faite au quatrième semestre.

Les espaces vectoriels considérés dans ce chapitre sont des **R**-espaces vectoriels. On identifiera **R** et $\mathcal{M}_1(\mathbf{R})$.

a) Produit scalaire

Produit scalaire, norme associée.

Inégalité de Cauchy-Schwarz.

Vecteurs orthogonaux, sous-espaces orthogonaux

Familles orthogonales, familles orthonormales ou orthonormées.

Théorème de Pythagore.

Un produit scalaire est une forme bilinéaire symétrique, définie positive.

Produit scalaire canonique sur \mathbb{R}^n ; exemples de produits scalaires.

Cas de l'égalité.

On ne considèrera que des familles finies. Toute famille orthogonale ne contenant pas le vecteur nul est libre.

b) Espaces euclidiens

Dans ce paragraphe x, y désignent des vecteurs d'un espace vectoriel et X, Y sont les colonnes coordonnées correspondantes dans une base.

Espace euclidien.

Existence de bases orthonormées.

Coordonnées et norme d'un vecteur dans une base orthonormée.

Expression matricielle du produit scalaire et de la norme euclidienne en base orthonormée. Changement de bases orthonormées.

Supplémentaire orthogonal d'un sous-espace vectoriel.

Complétion d'une famille orthonormée en une base orthonormée.

buse of monormee.

Un espace euclidien est un espace vectoriel de dimension finie sur **R**, muni d'un produit scalaire.

On pourra introduire la méthode de l'orthonormalisation de Schmidt sur des exemples en petite dimension, mais cette méthode n'est pas exigible.

$$\begin{split} x &= \sum_i \langle x, e_i \rangle e_i \ , \ \|x\|^2 = \sum_i \langle x, e_i \rangle^2. \\ \langle x, y \rangle &= {}^t\!XY \, ; \ \|x\|^2 = {}^t\!XX. \end{split}$$

La matrice de passage d'une base orthonormée à une base orthonormée est orthogonale : $P^{-1} = {}^tP$.

Aucune autre connaissance sur les matrices orthogonales n'est au programme.

Notation F^{\perp} .

II - Fonctions réelles définies sur \mathbb{R}^n

1 - Introduction aux fonctions définies sur \mathbb{R}^n

Au troisième semestre, l'objectif est de confronter les étudiants à la notion de fonction réelle de n variables, aux principales définitions tout en évitant les problèmes de nature topologique. C'est pourquoi le domaine de définition des fonctions sera systématiquement \mathbf{R}^n , muni de sa structure euclidienne canonique. L'étude de la continuité d'une fonction en un point pathologique est hors programme, ainsi que l'étude des recollements de formules lorsque f est définie sur \mathbf{R}^n par plusieurs formules.

Dès que possible, les notions introduites seront illustrées à l'aide de la libraire matplotlib.pyplot de Python.

Fonctions définies sur \mathbb{R}^n à valeurs dans \mathbb{R} .

Équation du graphe d'une fonction définie

Lignes de niveau pour les fonctions de deux variables.

On donnera de nombreux exemples de fonctions de $2, \ 3$ ou n variables réelles.

Les fonctions polynomiales de n variables donnent des exemples simples de fonctions définies sur \mathbf{R}^n .

Cas des fonctions affines de n variables.

On se limitera à des exemples simples.

Continuité d'une fonction de \mathbb{R}^n dans \mathbb{R} .

Opérations sur les fonctions continues.

Une fonction f, définie sur \mathbf{R}^n , est continue au point x_0 de \mathbf{R}^n si : $\forall \varepsilon > 0$, $\exists \alpha > 0$, $\forall x \in \mathbf{R}^n$,

$$||x - x_0|| \le \alpha \Longrightarrow |f(x) - f(x_0)| \le \varepsilon.$$

f est continue sur \mathbf{R}^n si et seulement si f est continue en tout point de \mathbf{R}^n .

Aucune difficulté ne sera soulevée sur ce sujet. On mettra en avant l'analogie avec la notion de continuité des fonctions d'une variable vue en première année.

Les fonctions polynomiales de n variables sont continues sur \mathbb{R}^n . Résultat admis.

Somme, produit, quotient.

La composition d'une fonction continue sur \mathbb{R}^n à valeurs dans un intervalle I de \mathbb{R} par une fonction continue de I à valeurs dans \mathbb{R} est continue. Résultats admis.

2 - Calcul différentiel

L'introduction des notions différentielles concernant les fonctions numériques de plusieurs variables réelles se fait en se limitant aux fonctions définies sur \mathbb{R}^n . La détermination de la classe d'une fonction n'est pas au programme.

La recherche d'extremum est abordée ici, jusqu'à la condition nécessaire du premier ordre.

Les fonctions sont désormais supposées définies et continues sur \mathbb{R}^n .

a) Dérivées partielles, gradient

Fonctions partielles en un point.

Dérivées partielles d'ordre 1.

Gradient en un point x.

Dérivées partielles d'ordre 2.

Fonctions de classe C^1 et C^2 sur \mathbf{R}^n .

Opérations sur les fonctions de classe C^1 et C^2 .

Pour une fonction de classe C^1 : existence et unicité d'un développement limité d'ordre 1 en un point.

Si f est de classe C^1 , dérivée de la fonction g définie sur \mathbf{R} par :

$$g(t) = f(x + th).$$

Notation $\partial_i f$.

Notation $\nabla f(x)$.

 $\nabla f(x)$ est l'élément de \mathbf{R}^n égal à $(\partial_1 f(x), \dots, \partial_n f(x))$.

Notation $\partial_{i,j}^2 f$.

Les fonctions polynomiales de n variables sont des fonctions de classe C^2 sur \mathbf{R}^n . Résultat admis

Somme, produit, quotient.

La composition d'une fonction de classe C^1 [resp. C^2] sur \mathbf{R}^n à valeurs dans un intervalle I de \mathbf{R} par une fonction de classe C^1 [resp. C^2] sur I à valeurs dans \mathbf{R} est de classe C^1 [resp. C^2].

Résultats admis.

 $f(x+h) = f(x) + \langle \nabla f(x), h \rangle + ||h|| \varepsilon(h)$ où $\varepsilon(0) = 0$ et ε continue en 0. Résultat admis.

 $g'(t) = \langle \nabla f(x+th), h \rangle$ et donc $g'(0) = \nabla f(x_0)$. Interprétation géométrique du gradient.

10

©Ministère de l'enseignement supérieur, de la recherche et de l'innovation, 2021 https://www.enseignementsup-recherche.gouv.fr/

b) Recherche d'extremum : condition d'ordre 1

Définition d'un extremum local, d'un extremum global.

Condition nécessaire du premier ordre.

Point critique.

Si une fonction f de classe C^1 sur \mathbf{R}^n admet un extremum local en un point x, alors $\nabla f(x) = 0$. Les points où le gradient s'annule sont appelés points critiques.

III - Compléments de probabilités ; couples et n-uplets de variables aléatoires réelles

L'objectif est double :

- d'une part, consolider les acquis de première année concernant les variables aléatoires discrètes, et enrichir le champ des problèmes étudiés, avec, en particulier, l'étude simultanée de variables aléatoires (vecteurs aléatoires de Rⁿ);
- d'autre part, effectuer une étude élémentaire des lois continues usuelles discrètes ou à densité.

On fera des liens entre certaines lois dans le cadre des approximations et des convergences, ainsi que les liens entre statistique et probabilités dans le cadre de l'estimation.

La théorie des familles sommables n'est pas au programme. Aucune difficulté concernant la dénombrabilité ne sera soulevée (on pourra si besoin admettre que \mathbf{N}^k est dénombrable.) On admettra le théorème suivant :

Soit I un ensemble dénombrable infini, indexé par \mathbf{N} sous la forme $I = \{\varphi(n); n \in \mathbf{N}\}$ où φ est une bijection de \mathbf{N} dans I. Si la série $\sum u_{\varphi(n)}$ converge absolument, alors sa somme est indépendante de l'indexation φ , et pourra également être notée $\sum_{i \in I} u_i$. L'étude de cette convergence n'est pas un objectif

du programme. On dira alors que la série est absolument convergente (ou converge absolument). Toutes les opérations (somme, produit, regroupement par paquets, etc.) sont alors licites. Aucune difficulté ne sera soulevée sur ces notions, qui ne sont pas exigibles des étudiants, et tout exercice ou problème y faisant référence devra impérativement les rappeler.

1 - Compléments sur les variables aléatoires réelles

a) Généralités sur les variables aléatoires réelles

On rappellera la signification de la notation (Ω, \mathcal{A}, P) .

Définition d'une variable aléatoire.

Une variable aléatoire sur (Ω, \mathcal{A}, P) est une application $X : \Omega \to \mathbf{R}$ telle que, pour tout x dans \mathbf{R} , $[X \leq x]$ est un événement.

Le fait de vérifier qu'une fonction est une variable aléatoire n'est pas un des objectifs du programme.

Fonction de répartition d'une variable aléatoire.

Loi d'une variable aléatoire

C'est la donnée des probabilités $P(X \in I)$ où Iest intervalle.

La loi est caractérisée par la fonction de répartition.

Une combinaison linéaire, un produit de variables aléatoires sont des variables aléatoires. Le maximum et le minimum de variables aléatoires sont des variables aléatoires.

Résultat admis.

b) Espérance et conditionnement pour les variables aléatoires discrètes

Espérance conditionnelle.

Formule de l'espérance totale.

Si A est un événement de probabilité non nulle, E(X/A) est l'espérance de X, si elle existe, pour la probabilité conditionnelle P_A .

Soit X une variable aléatoire discrète, soit (A_n) un système complet d'événements tels que, pour tout n dans N, $P(A_n) \neq 0$. Alors X admet une espérance pour P si et seulement si :

— pour tout $n \in \mathbf{N}$ l'espérance conditionnelle $E(X/A_n)$ existe;

nelle
$$E(X/A_n)$$
 existe;

— la série $\sum_{n \in \mathbf{N}} E(|X|/A_n)P(A_n)$ converge.

Dans ce cas, $E(X) = \sum_{n \in \mathbf{N}} E(X/A_n)P(A_n)$.

Dans ce cas,
$$E(X) = \sum_{n \in \mathbb{N}} E(X/A_n)P(A_n)$$
.

2 - Introduction aux variables aléatoires à densité

a) Densités et fonction de répartition d'une variable aléatoire

Définition d'une densité de probabilité sur R.

Une fonction $f: \mathbf{R} \to \mathbf{R}$ est une densité de probabilité lorsqu'elle est continue sauf en nombre fini de points, positive et vérifie :

$$\int_{-\infty}^{+\infty} f(t) \, \mathrm{d}t = 1.$$

Définition d'une variable aléatoire à densité.

On dit qu'une variable aléatoire X est à densité si sa fonction de répartition F_X est continue sur \mathbf{R} et de classe C^1 sur \mathbf{R} éventuellement privé d'un ensemble fini de points.

Toute fonction égale à F_X' sauf éventuellement en un nombre finie de point est une densité de probabilité et on dit que c'est une densité de X.

Pour tout
$$x$$
 de \mathbf{R} , $F_X(x) = \int_{-\infty}^x f_X(t) dt$.

Caractérisation de la loi d'une variable aléatoire à densité par la donnée d'une densité f_X . Toute densité de probabilité sur R est la densité d'une variable aléatoire.

Résultat admis.

Transformation affine d'une variable à densité.

Exemples simples de calculs de fonctions de répartition et de densités de fonctions d'une variable aléatoire à densité.

Les étudiants devront savoir calculer la fonction de répartition et la densité de aX + b ($a \neq 0$). Les étudiants devront savoir retrouver les lois de X^2 et $\varphi(X)$ avec φ de classe C^1 strictement monotone sur $X(\Omega)$.

b) Espérance des variables aléatoires à densité

Espérance d'une variable aléatoire à densité. Variables aléatoires centrées.

Linéarité et croissance de l'espérance pour les variables aléatoires à densité.

Existence d'espérance par domination.

Théorème de transfert.

Une variable aléatoire X de densité f_X admet une espérance E(X) si et seulement si l'intégrale $\int_{-\infty}^{+\infty} x f_X(x) \mathrm{d}x \text{ est absolument convergente};$ dans ce cas, E(X) est égale à cette intégrale.

Exemple de variables aléatoires n'admettant pas d'espérance.

Résultat admis.

Résultat admis.

Si X est une variable aléatoire ayant une densité f_X nulle en dehors de l'intervalle]a,b[, avec $-\infty \leqslant a < b \leqslant +\infty,$ et si g est une fonction continue sur]a,b[éventuellement privé d'un nombre fini de points, E(g(X)) existe et est égale à $\int_a^b g(t)f_X(t)\mathrm{d}t$ si et seulement si cette intégrale converge absolument.

On pourra admettre ou démontrer ce résultat dans le cas où g est de classe C^1 , avec g' strictement positive (ou strictement négative) et le vérifier dans des cas simples.

Cette démonstration n'est pas exigible.

3 - Lois de variables aléatoires à densité usuelles

Loi uniforme sur un intervalle. Espérance.

Loi exponentielle. Caractérisation par l'absence de mémoire. Espérance.

Loi normale centrée réduite, loi normale (ou de Laplace-Gauss). Espérance.

Transformées affines de variables aléatoires suivant des lois normales.

Notation
$$X \hookrightarrow \mathcal{U}[a, b]$$
.
 $X \hookrightarrow \mathcal{U}[0, 1] \iff a + (b - a)X \hookrightarrow \mathcal{U}[a, b]$.
Notation $X \hookrightarrow \mathcal{E}(\lambda)$.
 $X \hookrightarrow \mathcal{E}(1) \iff \frac{1}{\lambda}X \hookrightarrow \mathcal{E}(\lambda) \quad (\lambda > 0)$.

Notation $X \hookrightarrow \mathcal{N}(\mu, \sigma^2)$.

Si X suit une loi normale, et si a et b sont deux réels, avec $a \neq 0$, alors la variable aléatoire aX + b suit également une loi normale. Si $\sigma > 0$,

$$X \hookrightarrow \mathcal{N}(\mu, \sigma^2) \Leftrightarrow \frac{X - \mu}{\sigma} \hookrightarrow \mathcal{N}(0, 1).$$

Propriété de la fonction de répartition de la loi normale centrée réduite.

Pour tout réel $x: \Phi(-x) = 1 - \Phi(x)$.

Lois γ . Espérance d'une variable aléatoire suivant une loi γ .

Exemples d'utilisation de la table de la loi normale et interprétation graphique.

On attend des étudiants qu'ils sachent représenter graphiquement les fonctions densités des lois normales et utiliser la fonction de répartition Φ de la loi normale centrée réduite. \blacktriangleright

X suit une loi $\gamma(\nu)$, avec $\nu > 0$, si X admet comme densité :

$$f_X(t) = \begin{cases} 0 & \text{si } t \leq 0 \\ \frac{1}{\Gamma(\nu)} t^{\nu-1} e^{-t} & \text{si } t > 0, \end{cases}$$
 avec $\Gamma(\nu) = \int_0^{+\infty} t^{\nu-1} e^{-t} dt$. Pour le calcul des moments de la loi γ , on pourra établir $\Gamma(\nu+1) = \nu \Gamma(\nu)$ et $\Gamma(n+1) = n!$ pour tout entier n de \mathbf{N} .

4 - Variance des variables aléatoires à densité

Variance, écart-type. Variables aléatoires centrées, centrées réduites.

Variance d'une variable aléatoire suivant une loi usuelle (uniforme sur un intervalle, exponentielle, normale).

On admettra que l'existence de l'espérance et de la variance d'une variable aléatoire X est équivalente à l'existence de $E(X^2)$.

Illustrations avec les lois usuelles.

On pourra donner un exemple de variable aléatoire n'admettant pas de variance.

5 - *n*-uplets de variables aléatoires réelles ; généralisation des propriétés de l'espérance et de la variance

Dans cette partie, on étend la notion de loi de couple de variables aléatoires discrètes vue en première année à un vecteur aléatoire, puis, de manière intuitive, la notion d'espérance à une somme de variables aléatoires admettant chacune une espérance. La définition de l'espérance générale ou des moments d'une variable aléatoire dans un cadre quelconque n'étant pas au programme, toute difficulté s'y ramenant est à écarter. On admettra que les propriétés opératoires usuelles de l'espérance et la variance se généralisent aux variables aléatoires quelconques.

L'étude, pour n > 2, de n-uplets à composantes non indépendantes n'est pas un objectif du programme.

a) Généralisation

Loi d'un vecteur aléatoire à valeurs dans \mathbf{R}^n . Loi marginale.

Caractérisation de la loi d'un vecteur aléatoire discret à valeurs dans \mathbf{R}^n .

deux vecteurs (X_1,X_2,\ldots,X_n) (Y_1, Y_2, \dots, Y_n) ont même loi et si g est une fonction continue sur \mathbb{R}^n à valeurs dans R, alors les variables aléatoires réelles $g(X_1, X_2, \dots, X_n)$ et $g(Y_1, Y_2, \dots, Y_n)$ même loi.

b) Indépendance

Indépendance mutuelle de n variables aléatoires réelles.

Caractérisation de l'indépendance mutuelle de n variables aléatoires réelles.

Caractérisation de l'indépendance mutuelle de n variables aléatoires réelles discrètes.

Lemme des coalitions.

c) Le cas particulier du couple

On généralisera les notions de linéarité, de croissance et d'existence par domination de l'espérance à des variables aléatoires quelconques.

Espérance du produit de variables aléatoires indépendantes.

La loi d'un vecteur (X_1, \ldots, X_n) de variables aléatoires réelles est donné par la fonction $F_{(X_1,...,X_n)}$ définie sur \mathbf{R}^n par :

$$F_{(X_1,...,X_n)}(x_1,...,x_n) = P\left(\bigcap_{i=1}^n [X_i \leqslant x_i]\right).$$
 Aucune difficulté ne sera soulevée sur cette no-

tion.

Aucune difficulté ne sera soulevée. Résultat admis.

 X_1, \ldots, X_n sont mutuellement indépendantes si et seulement si:

$$F_{(X_1,...,X_n)}(x_1,...,x_n) = \prod_{k=1}^n F_{X_k}(x_k)$$

pour tous réels x_1, \ldots, x_n .

 X_1, \ldots, X_n sont mutuellement indépendantes si et seulement si:

$$P\left(\left[\bigcap_{i=1}^{n} X_{i} \in I_{i}\right]\right) = \prod_{i=1}^{n} P([X_{i} \in I_{i}])$$
 pour tous intervalles I_{1}, \ldots, I_{n} de \mathbf{R} .

Résultat admis.

$$P\left(\bigcap_{i=1}^{n} [X_i = x_i]\right) = \prod_{i=1}^{n} P([X_i = x_i]) \text{ pour tout}$$
$$(x_1, \dots, x_n) \in X_1(\Omega) \times \dots \times X_n(\Omega).$$

Résultat admis.

Si X_1, X_2, \ldots, X_n , sont indépendantes, toute variable aléatoire fonction de $X_1, X_2, ..., X_p$ est indépendante de toute variable aléatoire fonction de $X_{p+1}, X_{p+2}, ..., X_n$.

Résultat admis.

Résultats admis

Si X et Y admettent une espérance et sont indépendantes, XY admet une espérance et E(XY) = E(X)E(Y).

Généralisation à n variables aléatoires mutuellement indépendantes.

Résultats admis.

Covariance de deux variables aléatoires admettant une variance. Propriétés.

Formule de Huygens.

Variance d'une somme.

Cœfficient de corrélation linéaire.

Propriétés.

Si X et Y sont indépendantes et admettent un moment d'ordre 2, leur covariance est nulle.

Variance d'une somme de variables aléatoires indépendantes.

Notation Cov(X, Y).

Bilinéarité, symétrie, positivité de la covariance.

Cov(X, Y) = E(XY) - E(X)E(Y).

$$V(X+Y) = V(X) + V(Y) + 2\operatorname{Cov}(X,Y).$$

Notation $\rho(X, Y)$.

 $|\rho(X,Y)| \leq 1$. Interprétation dans le cas où $\rho(X,Y) = \pm 1$.

La réciproque est fausse.

Si X et Y sont indépendantes et admettent une variance, X+Y admet une variance et V(X+Y)=V(X)+V(Y).

Généralisation à n variables aléatoires mutuellement indépendantes.

Résultats admis.

d) Sommes de variables aléatoires indépendantes

Densité de la somme Z=X+Y de deux variables aléatoires à densité indépendantes, produit de convolution.

Stabilité de la loi γ pour la somme.

Loi de la somme de n variables aléatoires indépendantes de loi $\mathcal{E}(1)$.

Stabilité de la loi normale pour la somme.

Si la fonction h définie par la relation

 $h(x) = \int_{-\infty}^{+\infty} f_X(t) f_Y(x-t) dt$ est définie et continue sauf peut-être en un nombre fini de points, c'est une densité de Z.

C'est le cas si f_X (ou f_Y) est bornée.

Si X_1 et X_2 sont deux variables aléatoires indépendantes suivant respectivement des lois $\gamma(\nu_1)$ et $\gamma(\nu_2)$, alors $X_1 + X_2 \hookrightarrow \gamma(\nu_1 + \nu_2)$.

Pour étudier la somme de n variables aléatoires indépendantes de loi $\mathcal{E}(\lambda)$, on se ramènera après multiplication par λ à une somme de n variables aléatoires indépendantes de loi $\mathcal{E}(1)$.

ENSEIGNEMENT DE MATHÉMATIQUES DU QUATRIÈME SEMESTRE

I - Compléments d'algèbre bilinéaire

1 - Endomorphismes symétriques d'un espace euclidien, matrices symétriques

Endomorphismes symétriques.

Un endomorphisme est symétrique si et seulement si sa matrice dans une base orthonormée est symétrique.

Si f est un endomorphisme symétrique et si Fest un sous-espace vectoriel stable par f, alors F^{\perp} est stable par f.

Les sous-espaces propres d'un endomorphisme symétrique f d'un espace vectoriel de dimension finie sont deux à deux orthogonaux.

2 - Projection orthogonale

Projection orthogonale sur un sous-espace vectoriel F.

Si (u_1, \ldots, u_k) est une base orthonormée de F, alors:

$$p_F(x) = \sum_{i=1}^k \langle x, u_i \rangle u_i.$$

Si p est un projecteur, alors p est un projecteur orthogonal si et seulement si c'est un endomorphisme symétrique.

Caractérisation par minimisation de la norme.

Un endomorphisme f d'un espace vectoriel euclidien E est symétrique si et seulement si pour tout couple (x, y) de vecteurs de E, on a :

$$\langle f(x), y \rangle = \langle x, f(y) \rangle.$$

Si $(u_k)_{1 \leq k \leq p}$ sont p vecteurs propres d'un endomorphisme symétrique f associés à des valeurs propres distinctes, alors la famille $(u_k)_{1 \leq k \leq p}$ est une famille orthogonale.

Notation p_F .

$$v = p_F(x) \Longleftrightarrow ||x - v|| = \min_{u \in F} ||x - u||.$$

Application au problème des moindres carrés et à la droite de régression : minimisation de ||AX - B|| avec $A \in \mathcal{M}_{n,p}(\mathbf{R})$ de rang $p, B \in$ $\mathcal{M}_{n,1}(\mathbf{R}) \text{ et } X \in \mathcal{M}_{p,1}(\mathbf{R}).$

Résultats non exigibles.

3 - Réduction des endomorphismes et des matrices symétriques

Si E est un espace vectoriel euclidien, tout endomorphisme symétrique de E est diagonalisable et ses sous-espaces propres sont orthogonaux.

Résultat admis.

Si f est un endomorphisme symétrique, il existe une base $\mathcal B$ de E orthonormée composée de vecteurs propres de f.

17

Toute matrice symétrique réelle est diagonalisable avec une matrice de changement de base orthogonale. Si A est symétrique réelle, il existe une matrice orthogonale P et une matrice diagonale D telles que $D = P^{-1}AP = {}^t\!PAP$.

II - Fonctions réelles de n variables définies sur un ouvert de \mathbb{R}^n ; recherche d'extrema

L'objectif est de présenter la démarche de recherche d'extrema et d'en acquérir une maîtrise raisonnable à partir d'un minimum d'outils théoriques. L'espace \mathbf{R}^n sera muni de la norme euclidienne usuelle. La détermination de la nature topologique d'un ensemble n'est pas un objectif du programme; elle devra toujours être précisée. Néanmoins, il est nécessaire de sensibiliser les étudiants aux notions d'ouverts et de fermés. Les étudiants ont été familiarisés avec les fonctions continues sur \mathbf{R}^n au troisième semestre, aussi on s'appuiera, pour mener une initiation à la topologie de \mathbf{R}^n , sur les sous-ensembles de \mathbf{R}^n définis par des inégalités du type $\{x \in \mathbf{R}^n/\varphi(x) < a\}$ ou $\{x \in \mathbf{R}^n/\varphi(x) \leqslant a\}$ où φ est une fonction continue sur \mathbf{R}^n . On donnera également la définition d'un ensemble borné.

L'étude de fonctions de n variables à valeurs dans \mathbf{R} se limitera à des fonctions définies sur des sousensembles de \mathbf{R}^n pouvant être définis simplement (réunion, intersection finies) à l'aide des ensembles fermés ou ouverts précédents.

Les résultats seront énoncés dans le cas de fonctions de n variables. Pour les démonstrations, on pourra se limiter aux cas n = 2 ou n = 3.

Aucune des démonstrations de ce chapitre n'est exigible des étudiants.

Dans ce paragraphe, h désigne un vecteur de \mathbb{R}^n et H la colonne coordonnée correspondante.

1 - Fonction de n variables définies sur une partie de \mathbb{R}^n

Dans ce paragraphe, on étend à des fonctions définies sur un sous-ensemble de \mathbb{R}^n , les notions et définitions vues au troisième semestre pour des fonctions définies sur \mathbb{R}^n . Toute difficulté concernant la détermination de la classe d'une fonction est exclue.

Extension de la notion de continuité aux fonctions définies sur un sous-ensemble de \mathbb{R}^n . Extension de la notion de fonctions C^1 et C^2 aux fonctions définies sur un ouvert \mathcal{O} de \mathbb{R}^n .

Aucune difficulté théorique ne sera soulevée.

Aucune difficulté théorique ne sera soulevée. Extension des notions, vues au troisième semestre, de dérivées partielles d'ordre 1 et 2, gradient, développement limité d'ordre 1, opérations sur les fonctions de classe C^1 ou C^2 .

2 - Compléments sur les fonctions de classe \mathbb{C}^2 sur un ouvert de \mathbb{R}^n

Matrice hessienne en un point x.

Notation $\nabla^2 f(x)$.

Théorème de Schwarz.

Si f est de classe C^2 sur un ouvert \mathcal{O} , alors la matrice hessienne est symétrique en tout point de \mathcal{O} .

Résultat admis.

Fonction quadratique définie sur \mathbf{R}^n associée à une matrice symétrique réelle A.

$$q(h) = {}^{t}HAH.$$

On remarquera qu'il existe une base orthonormale \mathcal{B} de \mathbf{R}^n telle que si h a pour coordonnées h_1, \ldots, h_n dans \mathcal{B} on a :

$$q(h) = \sum \lambda_i h_i^2,$$

où $\lambda_i, \ldots, \lambda_n$ sont les valeurs propres de A.

$$f(x+h) = f(x) + \langle \nabla f(x), h \rangle + \frac{1}{2} q_x(h) + ||h||^2 \varepsilon(h)$$
 où $\varepsilon(0) = 0$, ε continue en 0 et q_x est la fonction quadratique associée à la matrice hessienne $\nabla^2 f(x)$.

Résultat admis.

Existence et unicité d'un développement limité d'ordre 2 d'une fonction de classe C^2 sur un ouvert \mathcal{O} .

Si f est de classe \mathbb{C}^2 , dérivée seconde de la fonction g définie au voisinage de 0 par :

$$g(t) = f(x + th).$$

 $g''(t) = q_{x+th}(h)$ où q_{x+th} est la fonction quadratique associée à la matrice hessienne $\nabla^2 f(x+th)$ et donc $g''(0) = q_x(h)$.

3 - Recherche d'extrema

Dans un premier temps, on étendra rapidement les notions vues au troisième semestre à une fonction définie sur un sous-ensemble de \mathbb{R}^n .

a) Définition

Définition d'un extremum local, d'un extremum global.

b) Extrema sur un ensemble fermé borné

Une fonction continue sur une partie fermée bornée admet un maximum global et un minimum global. Résultat admis.

c) Condition d'ordre 1

Condition nécessaire du premier ordre. Point critique. Si une fonction de classe C^1 sur un ouvert \mathcal{O} de \mathbf{R}^n admet un extremum local en un point x_0 de \mathcal{O} , alors $\nabla f(x_0) = 0$.

Les points où le gradient s'annule sont appelés points critiques.

d) Condition d'ordre 2

Étude locale d'une fonction f de classe C^2 sur un ouvert \mathcal{O} en un point critique.

Si x_0 est un point critique de f:

- si $\operatorname{Sp}(\nabla^2 f(x_0)) \subset \mathbf{R}_+^*$, alors f admet un minimum local en x_0 ,
- si $\operatorname{Sp}(\nabla^2 f(x_0)) \subset \mathbf{R}_-^*$, alors f admet un maximum local en x_0 ,
- si $\operatorname{Sp}(\nabla^2 f(x_0))$ contient deux réels non nuls de signes distincts, f n'admet pas d'extremum en x_0 .

On fera le lien avec le signe de la fonction quadratique q_{x_0} associée à la hessienne de f en x_0 .

Point selle (ou col).

Une condition suffisante d'extremum global.

Si Ω est un ouvert convexe de \mathbf{R}^n et si x_0 est un point critique de f:

- si pour tout $x \in \Omega$, $\operatorname{Sp}(\nabla^2 f(x)) \subset \mathbf{R}^+$, alors f admet un minimum global en x_0 ,
- si pour tout $x \in \Omega$, $\operatorname{Sp}(\nabla^2 f(x)) \subset \mathbf{R}_-$, alors f admet un maximum global en x_0 ,

On introduira la notion d'ouvert convexe sans soulever aucune difficulté théorique et la vérification de cette propriété n'est pas un objectif du programme.

On admet ce résultat.

e) Recherche d'extrema sous contrainte d'égalités linéaires

Dans tout ce paragraphe, C désigne l'ensemble des solutions d'un système linéaire $\begin{cases} g_1(x) &= b_1 \\ \vdots & \vdots & \text{et } \mathcal{H} \\ g_p(x) &= b_p \end{cases}$

l'ensemble des solutions du système homogène associé.

Condition nécessaire du premier ordre sous la contrainte \mathcal{C} .

Si f est une fonction de classe C^1 sur un ouvert \mathcal{O} , et si la restriction de f à \mathcal{C} admet un extremum local en un point x_0 , alors $\nabla f(x_0)$ est dans $\text{Vect}(\nabla g_1(x_0), \ldots, \nabla g_p(x_0))$.

On remarquera que:

$$\mathcal{H}^{\perp} = \operatorname{Vect}(\nabla g_1(x_0), \dots, \nabla g_p(x_0)).$$

— Il existe
$$\lambda_1,\ldots,\lambda_p$$
 réels tels que :

$$\nabla f(x_0) = \sum_{i=1}^{p} \lambda_i \nabla g_i(x_0).$$

Point critique pour l'optimisation sous contrainte.

Exemples de recherche d'extrema globaux sous contrainte d'égalités linéaires dans des cas simples.

III - Probabilités : convergences, estimation

1 - Convergences et approximations

a) Convergence en probabilité

On pourra rappeler l'inégalité de Markov et l'inégalité de Bienaymé-Tchebychev vues en première année.

Convergence en probabilité.

On pourra énoncer la loi faible des grands nombres en terme de convergence en probabilité.

Composition par une fonction continue.

Convergence en probabilité et somme.

b) Convergence en loi

Définition de la convergence en loi d'une suite $(X_n)_{n \in \mathbb{N}^*}$ de variables aléatoires vers X.

Cas où les X_n et X prennent leurs valeurs dans \mathbf{N} .

Composition par une fonction continue.

La suite $(X_n)_{n \in \mathbb{N}^*}$ converge en probabilité vers X si :

$$\forall \varepsilon > 0, \quad \lim_{n \to +\infty} P([|X_n - X| \geqslant \varepsilon]) = 0.$$

Notation $X_n \xrightarrow{P} X$.

Si $X_n \xrightarrow{P} X$ et si f est une fonction continue sur \mathbf{R} à valeurs réelles, alors $f(X_n) \xrightarrow{P} f(X)$. Résultat admis.

Si
$$X_n \xrightarrow{P} X$$
 et $Y_n \xrightarrow{P} Y$ alors $X_n + Y_n \xrightarrow{P} X + Y$.

Notation $X_n \xrightarrow{\mathcal{L}} X$.

La suite $(X_n)_{n\in\mathbb{N}^*}$ converge en loi vers X si et seulement si en tout point de continuité x de F_X :

$$\lim_{n \to +\infty} F_{X_n}(x) = F_X(x).$$

On illustrera cette définition à l'aide des approximations vues en première année.

La suite $(X_n)_{n \in \mathbb{N}^*}$ converge en loi vers X si et seulement si :

$$\forall k \in \mathbf{N}, \quad \lim_{n \to +\infty} P([X_n = k]) = P([X = k]).$$

Si $(X_n)_{n\in\mathbb{N}^*}$ converge en loi vers X et si f est une fonction continue sur \mathbf{R} à valeurs réelles, alors $(f(X_n))_{n\in\mathbb{N}^*}$ converge en loi vers f(X). Résultat admis.

Théorème limite central.

Si $(X_n)_{n\in\mathbb{N}^*}$ est une suite de variables aléatoires indépendantes et de même loi, admettant une espérance m et une variance σ^2 non nulle, si on note : $\overline{X}_n = \frac{X_1 + \ldots + X_n}{n}$, alors la suite de variables aléatoires centrées réduites $\overline{X}_n^* = \sqrt{n} \left(\frac{\overline{X}_n - m}{\sigma} \right)$ converge en loi vers une variable aléatoire suivant la loi normale centrée réduite.

D'où, on a pour tout (a,b) tel que $-\infty \le a \le b \le +\infty$:

$$\lim_{n \to +\infty} P([a \leqslant \overline{X}_n^* \leqslant b]) = \int_a^b \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{t^2}{2}\right) dt.$$

Résultats admis.

Exemples d'approximations de la loi binomiale et de la loi de Poisson par la loi normale.

Toutes les indications devront être fournies aux candidats quant à la justification de l'utilisation des approximations.

2 - Estimation

L'objectif de cette partie est d'introduire le vocabulaire et la démarche de la statistique inférentielle en abordant, sur quelques cas simples, le problème de l'estimation, ponctuelle ou par intervalle de confiance. On se restreindra à une famille de lois de probabilités indexées par un paramètre scalaire (ou vectoriel) dont la valeur (scalaire ou vectorielle) caractérise la loi. On cherche alors à estimer la valeur du paramètre (ou une fonction simple de ce paramètre) à partir des données disponibles.

Dans ce contexte, on considère un phénomène aléatoire et on s'intéresse à une variable aléatoire réelle X qui lui est liée, dont on suppose que la loi de probabilité n'est pas complètement spécifiée et appartient à une famille de lois dépendant d'un paramètre θ décrivant un sous-ensemble Θ de \mathbf{R} (éventuellement de \mathbf{R}^2). Le paramètre θ est une quantité inconnue, fixée dans toute l'étude, que l'on cherche à déterminer ou pour laquelle on cherche une information partielle.

Le problème de l'estimation consiste alors à estimer la vraie valeur du paramètre θ ou de $g(\theta)$ (fonction à valeurs réelles du paramètre θ), à partir d'un échantillon de données x_1, \ldots, x_n obtenues en observant n fois le phénomène. Cette fonction du paramètre représentera en général une valeur caractéristique de la loi inconnue comme son espérance, sa variance, son étendue...

On supposera que cet échantillon est la réalisation de n variables aléatoires X_1, \ldots, X_n définies sur un même espace probabilisable (Ω, \mathcal{A}) muni d'une famille de probabilités $(P_{\theta})_{\theta \in \Theta}$. Les X_1, \ldots, X_n seront supposées P_{θ} -indépendantes et de même loi que X pour tout θ .

On appellera estimateur de $g(\theta)$ toute variable aléatoire réelle de la forme $\varphi(X_1, X_2, ..., X_n)$ où φ est une fonction de \mathbf{R}^n dans \mathbf{R} , éventuellement dépendante de n, et indépendante de θ , dont la réalisation après expérience est envisagée comme estimation de $g(\theta)$.

Si T_n est un estimateur, on notera, lorsque ces valeurs existent, $E_{\theta}(T_n)$ l'espérance de T_n et $V_{\theta}(T_n)$ la variance de T_n , pour la probabilité P_{θ} .

a) Estimation ponctuelle

Estimer ponctuellement $g(\theta)$ par $\varphi(x_1,\ldots,x_n)$ où $\varphi(X_1,X_2,\ldots,X_n)$ est un estimateur de $g(\theta)$ et

 (x_1, \ldots, x_n) est une réalisation de l'échantillon (X_1, \ldots, X_n) , c'est décider d'accorder à $g(\theta)$ la valeur $\varphi(x_1, \ldots, x_n)$.

n-échantillon (X_1, \ldots, X_n) de variables aléatoires réelles indépendantes et de même loi que X.

Définition d'un estimateur.

Exemples simples d'estimateurs.

Exemples simples d'estimations.

Exemples de n-échantillons associés à une loi de Bernoulli $\mathcal{B}(p)$ avec $\theta = p$.

Un estimateur de $g(\theta)$ est une variable aléatoire de la forme $T_n = \varphi(X_1, \ldots, X_n)$. La réalisation $\varphi(x_1, \ldots, x_n)$ de l'estimateur T_n est l'estimation de $g(\theta)$. Cette estimation ne dépend que de l'échantillon (x_1, x_2, \ldots, x_n) observé.

Exemple de la moyenne empirique $\frac{X_1 + X_2 + \dots + X_n}{n}.$

b) Intervalle de confiance

S'il existe des critères pour juger des qualités d'un estimateur ponctuel T_n de $g(\theta)$, aucune certitude ne peut jamais être apportée quant au fait que l'estimation donne la vraie valeur à estimer.

La démarche de l'estimation par intervalle de confiance consiste à trouver un intervalle aléatoire qui contienne $g(\theta)$ avec une probabilité minimale donnée. Dans tout ce paragraphe, $(U_n)_{n\geqslant 1}$ et $(V_n)_{n\geqslant 1}$ désigneront deux suites d'estimateurs de $g(\theta)$ telles que pour tout $\theta \in \Theta$ et pour tout $n\geqslant 1$, $P_{\theta}([U_n\leqslant V_n])=1$.

Intervalle de confiance.

Soit $\alpha \in [0,1]$. $[U_n, V_n]$ est un intervalle de confiance de $g(\theta)$ au niveau de confiance $1-\alpha$ si pour tout θ de Θ ,

$$P_{\theta}([U_n \leqslant g(\theta) \leqslant V_n]) \geqslant 1 - \alpha.$$

L'utilisation dans certains cas du théorème limite central impose d'introduire la notion d'intervalle de confiance asymptotique.

Sa réalisation est l'estimation de cet intervalle de confiance.

Les variables aléatoires X_n seront supposées P_{θ} -indépendantes et de même loi que X pour tout θ . On éclairera ces notions à l'aide de simulations informatiques.

En utilisant l'inégalité de Bienaymé-Tchebychev.

On pourra utiliser cet exemple pour introduire la variance empirique.

Estimation par intervalle de confiance du paramètre d'une loi de Bernoulli.

Estimation par intervalle de confiance de la moyenne d'une loi normale dont l'écart type est connu.

c) Estimation par intervalle de confiance asymptotique

Intervalle de confiance asymptotique.

Intervalles de confiance asymptotiques obtenus avec le théorème central limite.

On appelle intervalle de confiance asymptotique de $g(\theta)$ au niveau de confiance $1 - \alpha$ une suite $([U_n, V_n])_{n \geqslant 1}$ vérifiant : pour tout θ de Θ , il existe une suite de réels (α_n) à valeurs dans [0, 1], de limite α , telle que pour tout $n \geqslant 1$, $P_{\theta}([U_n \leqslant g(\theta) \leqslant V_n]) \geqslant 1 - \alpha_n$.

Par abus de langage on dit aussi que $[U_n, V_n]$ est un intervalle de confiance asymptotique.

Exemple du paramètre d'un loi de Bernoulli. On pourra comparer, en majorant p(1-p) par $\frac{1}{4}$, les intervalles de confiance obtenus par l'inégalité de Bienaymé-Tchebychev, et les intervalles de confiance asymptotiques obtenus par l'approximation normale de la loi binomiale.

d) Comparaison des estimateurs

La notion de risque quadratique n'est pas au programme.

Estimateur sans biais.

Suite $(T_n)_{n\geqslant 1}$ d'estimateurs.

Estimateur convergent.

Condition suffisante de convergence.

L'estimateur T_n de $g(\theta)$ est sans biais si pour tout θ de Θ , $E_{\theta}(T_n) = g(\theta)$.

Chaque T_n est de la forme $\varphi(X_1, X_2, \dots, X_n)$.

Une suite d'estimateurs $(T_n)_{n\geqslant 1}$ de $g(\theta)$ est convergente si pour tout θ , la suite $(T_n)_{n\geqslant 1}$ converge en probabilité vers $g(\theta)$.

Par abus de langage, on dit aussi que l'estimateur est convergent.

On rappellera que si $(T_n)_{n\geqslant 1}$ est une suite convergente d'estimateurs de $g(\theta)$ et si f est une fonction continue sur \mathbf{R} à valeurs réelles, alors $(f(T_n))_{n\geqslant 1}$ est une suite convergente d'estimateurs de $f(g(\theta))$.

Une suite d'estimateurs $(T_n)_{n\geqslant 1}$ de $g(\theta)$ telle que $\lim_{n\to +\infty} E(T_n) = g(\theta)$ et $\lim_{n\to +\infty} V(T_n) = 0$ est convergente.

Cette convergence pourra être étudiée à l'aide de l'inégalité de Markov.

La démonstration de ce théorème donne naturellement un intervalle de confiance asymptotique de $g(\theta)$ ainsi qu'un moyen de comparer la qualité des estimateurs.

On illustrera en informatique ces notions .

TRAVAUX PRATIQUES DE MATHÉMATIQUES AVEC PYTHON

En première année, les élèves ont acquis les bases de manipulation du logiciel Python. L'objectif de l'enseignement d'informatique de seconde année est de permettre aux étudiants d'utiliser Python de manière judicieuse et autonome pour illustrer ou modéliser des situations concrètes en mobilisant leurs connaissances mathématiques.

Les séances de travaux pratiques doivent se faire le plus souvent possible sur ordinateur. Les étudiants, au cours de leurs études ultérieures puis de leur parcours professionnel, seront amenés à utiliser des outils informatiques divers choisis pour leurs fonctionnalités, etdés que seule une pratique régulière de ces outils informatiques peut leur permettre d'en acquérir la maîtrise. De plus, en adoptant cette démarche exploratoire permise par le dialogue interactif avec la machine, cette pratique peut s'avérer bénéfique pour les apprentissages et faciliter la compréhension de concepts plus abstraits.

Le programme d'informatique s'articule autour de quatre thèmes : statistiques descriptives bivariées, fonctions de plusieurs variables, simulation de lois, estimation ponctuelle ou par intervalle de confiance.

L'ordre dans lequel les thèmes sont abordés est libre, mais il est préférable de mener ces activités en cohérence avec la progression du cours de mathématiques.

Dans certains thèmes, il s'avérera nécessaire d'introduire de nouvelles notions ou approches mathématiques. Celles-ci devront être explicitées en préambule des séances d'informatique et ne pourront en aucun cas être exigibles des étudiants. Certaines seront propres à un thème particulier, d'autres (comme par exemple les méthodes de Monte-Carlo) pourront au contraire être envisagées de manière transversale. Toutes les précisions nécessaires devront toujours être données lors de leur utilisation.

Toute la richesse du langage Python ne peut pas être entièrement maîtrisée par un étudiant, aussi seules certaines fonctions et commandes sont exigibles. Néanmoins, se contenter de ces seules commandes, en ignorant les nombreuses possibilités et commodités du langage, se révélerait rapidement contraignant et limitatif. De nouvelles commandes Python peuvent donc être introduites, mais cela devra se faire avec parcimonie, l'objectif principal de l'activité informatique reste la mise en pratique des connaissances mathématiques. Dans les sujets, les commandes introduites devront être présentées en préambule et toutes les précisions nécessaires seront données lors de leur utilisation et leur interprétation. On favorisera à cette occasion l'autonomie et la prise d'initiatives des étudiants grâce à l'utilisation de l'aide de Python, et à l'usage d'opérations de « copier-coller » qui permettent de prendre en main rapidement des fonctions nouvelles et évitent d'avoir à connaître par cœur la syntaxe de commandes complexes.

L'objectif de ces travaux pratiques n'est pas l'écriture de longs programmes mais l'assimilation de savoir-faire et de compétences spécifiés dans la liste des exigibles et rappelés en préambule de chaque thème.

Les exemples traités dans un thème devront être tirés, autant que possible, de situations réelles (traitement de données économiques, sociologiques, historiques, démographiques, en lien avec le monde de l'entreprise ou de la finance, etc), en faisant dès que possible un rapprochement avec les autres disciplines.

I - Liste des exigibles

1 - Commandes

Les commandes exigibles ont été listées dans le programme de première année. On rappellera dans les sujets toutes les syntaxes des commandes non exigibles.

2 - Savoir-faire et compétences

C1 : Produire et interpréter des résumés numériques et graphiques d'une série statistique (simple, double) ou d'une loi.

C2 : Modéliser et simuler des phénomènes (aléatoires ou déterministes) et les traduire en langage mathématique.

C3: Représenter et exploiter le graphe d'une fonction d'une, deux variables.

C4: Représenter et interpréter différents types de convergences.

C5 : Utiliser la méthode de Monte-Carlo sur des exemples pertinents (calcul approché d'intégrales, de probabilités).

C6: Porter un regard critique sur les méthodes d'estimation et de simulation.

II - Liste des thèmes

1 - Statistiques descriptives bivariées

(Durée indicative : 3 heures. Compétences développées : C1 et C6)

Série statistique à deux variables, nuage de points associé.

Point moyen (\bar{x}, \bar{y}) du nuage.

Covariance et cœfficient de corrélation empiriques, droites de régression.

On tracera le nuage de points et les droites de régression et on pourra effectuer des prétransformations pour se ramener au cas linéaire. On différenciera les variables explicatives des variables à expliquer.

2 - Fonctions de plusieurs variables

(Durée indicative : 3 heures. Compétences développées : C2 et C3)

Graphe d'une fonction de deux variables, lignes de niveau, plan affine tangent au graphe. Dérivées partielles et dérivées directionnelles, représentation du gradient.

Position du graphe par rapport au plan affine tangent au graphe, lien avec les valeurs propres de la matrice hessienne, points selles. Étude d'extrema locaux et globaux. Extrema sous contrainte linéaire.

À cette occasion, on pourra mettre en évidence l'orthogonalité du gradient avec les tangentes aux lignes de niveau du graphe d'une fonction de deux variables.

Programmation de fonctions variées permettant de mettre en évidence les notions d'extrema locaux ou globaux, avec ou sans contrainte. On pourra prendre des exemples issus de l'économie ou de la finance.

3 - Simulation de lois

(Durée indicative : 6 heures. Compétences développées : C1, C2, C3 et C6)

Dans toutes les simulations effectuées, on pourra comparer les échantillons obtenus avec les distributions théoriques, en utilisant des diagrammes en bâtons et des histogrammes. On pourra aussi tracer la fonction de répartition empirique et la comparer à la fonction de répartition théorique.

Méthode d'inversion.

Application de la méthode d'inversion pour la simulation par exemple des lois exponentielles ou de Cauchy.

On pourra mettre en évidence, grâce aux simulations, qu'une variable aléatoire suivant une loi de Cauchy n'admet pas d'espérance.

Méthodes de simulation d'une loi géométrique.

Simulations informatiques d'une loi normale par utilisation du théorème limite central appliqué à différentes lois. Utilisation d'une loi de Bernoulli et d'une boucle while, utilisation d'une loi exponentielle et de la fonction floor, utilisation de la librairie numpy.random.

Comparaison entre différentes méthodes de simulation d'une loi normale.

Utilisation de la librairie numpy.random.

On pourra s'intéresser au cas particulier de 12 variables aléatoires indépendantes suivant une même loi uniforme.

4 - Estimation ponctuelle et par intervalle de confiance

(Durée indicative : 6 heures. Compétences développées : C2, C4, C5 et C6)

Méthode de Monte-Carlo : principe, garanties d'approximation.

Cette méthode permet d'estimer des quantités qu'il est difficile de calculer explicitement mais qu'il est facile d'approcher par simulation (probabilités d'événements, espérances de variables aléatoires).

Ainsi, on pourra estimer par exemple les valeurs prises par la fonction de répartition de la somme ou du produit de deux variables aléatoires.

On pourra justifier par simulation la validité de l'approche par intervalle de confiance asymptotique à partir d'un certain rang.

On pourra utiliser des données issues de situations réelles ou créer plusieurs jeux de données par simulation. Dans ce dernier cas, on pourra comparer les lois des estimateurs par exemple à l'aide d'histogrammes.

Comparaison des intervalles de confiance d'un paramètre obtenus par différentes méthodes.

Comparaison de différents estimateurs ponc-

tuels d'un paramètre.

Estimation par intervalle de confiance du paramètre d'une loi de Bernoulli et de l'espérance d'une loi normale.

La comparaison pourra se faire en calculant les demi-largeurs moyennes des intervalles et leurs niveaux de confiance.

Classes préparatoires aux grandes écoles

Filière économique

Voie générale ECG

Annexe III

Programmes d'économie, sociologie, histoire du monde contemporain

1ère et 2nde années

Programme d'Économie, Sociologie et Histoire du monde contemporain (ESH) CPGE Économique et commerciale, voie générale (ECG)

Présentation générale

L'enseignement d'économie, sociologie et histoire vise à apporter aux étudiants les instruments d'analyse et de compréhension du monde contemporain. Pour cela, il associe trois approches complémentaires : la science économique ; l'histoire de la pensée et des faits économiques et sociaux ; la sociologie.

Cet enseignement a pour ambition de développer les compétences de synthèse, d'analyse et d'argumentation des étudiants. Ils devront maîtriser les principaux concepts, mécanismes et modèles de l'analyse économique (notamment de la microéconomie et de la macroéconomie), savoir mobiliser et mettre en perspective de façon pertinente les principaux phénomènes économiques et sociaux depuis le début du XIX^e siècle et maîtriser les éléments de base, les méthodes et démarches de la sociologie, plus particulièrement celles de la structure sociale, des modes de vie et des organisations.

L'étude des fondements et des analyses théoriques de l'économie et de la sociologie ne doit pas faire perdre de vue la dimension historique. Il s'agira, dans une perspective dynamique, d'expliquer les faits économiques et sociaux par l'analyse ou d'éclairer l'analyse par les faits.

Le programme est structuré en quatre modules semestriels dont le premier a pour objectif de faciliter la transition entre l'enseignement secondaire et l'enseignement supérieur, en favorisant l'adaptation des étudiants à ce nouvel enseignement.

Le premier module présente les bases et les méthodes essentielles de l'économie (de la microéconomie notamment) et de la sociologie ; il introduit une histoire de la pensée économique et sociologique. Le deuxième module traite de la croissance et du développement depuis le début du XIX^e siècle. Le troisième module est consacré à l'étude de la mondialisation. Le quatrième module est centré sur les modèles macroéconomiques, sur les déséquilibres et l'action des pouvoirs publics. Les professeurs pourront exercer leur liberté pédagogique en organisant comme ils le souhaitent le contenu de chaque module.

Module 1. Les fondements de l'économie et de la sociologie

- 1-1/ Les fondements de l'économie
- 1.2 L'équilibre des agents et le fonctionnement du marché
- 1.3/ Les fondements de la sociologie

Module 2. Croissance et développement

- 2.1/ La croissance et le développement depuis le XIXe siècle
- 2.2/ Les transformations des structures économiques, sociales et démographiques depuis le XIXe siècle
- 2.3/ Entreprise et organisation

Module 3. La mondialisation économique et financière

- 3.1/ La dynamique de la mondialisation économique
- 3.2/ La dynamique de la mondialisation financière
- 3.3/ L'intégration européenne

Module 4. Déséquilibres, régulation et action publique

- 4.1/ Équilibres et déséquilibres macroéconomiques
- 4.2/ L'intervention économique des pouvoirs publics
- 4.3/ Les politiques sociales

Module 1. Les fondements de l'économie et de la sociologie

Orientation générale

Ce module constitue une présentation des bases essentielles de l'économie et de la sociologie. La première partie vise à présenter les principaux acteurs de l'économie et les liens qui les unissent, dans une perspective inspirée de la comptabilité nationale. La seconde partie met l'accent sur les équilibres de marché. La troisième présente les fondements de la sociologie.

1.1/ Les fondements de l'économie

Objectifs

Il s[†]agira ici d'étudier le cadre général des activités économiques et l'histoire de la pensée économique pour éclairer les enjeux économiques contemporains.

- 1.1.1. Les acteurs et les grandes fonctions de l'économie
- 1.1.2. La monnaie et le financement de l'économie
- 1.1.3. Les grands courants de la pensée économique depuis le XVIe siècle

Commentaires

On étudiera les caractéristiques des différents acteurs économiques ainsi que les opérations qui les relient. Cette approche utilisera les concepts et outils de la comptabilité nationale. On abordera ainsi la présentation du circuit économique et des agrégats de la comptabilité nationale. On mettra l'accent sur l'équilibre ressources-emplois et sa traduction dans le tableau entrées-sorties, y compris en introduisant les coefficients techniques. On mettra en évidence les relations entre secteurs institutionnels pour montrer la logique de la répartition des revenus. La construction du tableau économique d'ensemble ne sera pas exigée.

On étudiera l'évolution des formes et des fonctions de la monnaie, le processus de création monétaire et les différents modes de financement de l'économie sans analyser précisément les politiques monétaires qui seront traitées en seconde année.

Enfin on présentera les grands courants de la pensée économique depuis la naissance de l'économie politique, ainsi que les filiations entre les auteurs.

1.2/ Le comportement des agents et le fonctionnement du marché

Objectifs

Il s'agira de présenter les concepts essentiels de la démarche microéconomique, plus particulièrement les décisions de consommation et de production, et les équilibres de marché, avant d'analyser les défaillances de marché.

- 1.2.1. L'équilibre micro-économique du producteur et du consommateur
- 1.2.2. L'offre, la demande et l'équilibre du marché en concurrence parfaite
- 1.2.3. Les défaillances de marché

Commentaires

On étudiera la manière dont le consommateur optimise ses choix, en présentant les concepts d'utilité et de fonctions d'utilité, de courbes d'indifférences, de contrainte budgétaire et de taux marginal de substitution ; on étudiera les conséquences d'une variation de revenu ou de prix sur l'équilibre du consommateur. On définira et mesurera les élasticités. On étudiera les choix du producteur à partir d'une fonction de production, et la façon dont une variation du coût de l'un ou l'autre des facteurs de production modifie leur utilisation. On étudiera ensuite les différents types de coûts, et on montrera comment sont construites les offres de court et de long terme.

La présentation du marché concurrentiel sera l'occasion de définir l'équilibre partiel à l'aide des courbes d'offre et de demande, et de montrer comment consommateurs et producteurs réagissent à des variations de prix (effet-revenu et effet-substitution). On analysera les gains à l'échange qu'un offreur ou un demandeur peuvent tirer de leur participation au marché. On montrera les enjeux de la notion d'équilibre général.

On présentera les situations de défaillance du marché : monopole naturel, biens collectifs, biens communs, externalités et asymétries d'information.

L'étude des externalités permettra d'introduire la question des modalités de leur internalisation.

1.3/ Les fondements de la sociologie

Objectifs

Il s'agira de montrer, à travers le thème « individu et société », la nature de la contribution de la sociologie à la connaissance du social et comment elle s'est constituée comme une discipline propre, avec ses concepts, ses méthodes, ses auteurs.

- 1.3.1. Les grands courants de la pensée sociologique depuis le XIXe siècle
- 1.3.2. La pluralité des méthodes sociologiques

Commentaires

On étudiera comment les sociologues se sont saisis de la question de l'antériorité de la société ou de l'individu pour construire une science sociale explicative du monde social. On montrera qu'il est nécessaire de concevoir l'individualisation comme un processus toujours à l'œuvre. On montrera, à l'aide d'exemples, que l'innovation sociologique est passée par le renouvellement théorique comme par le renouvellement des obiets.

À partir de cette même question de l'individu et de la société, on montrera que les méthodes de la sociologie sont multiples (méthodes qualitatives et quantitatives) et que les outils d'enquête, nécessairement pluriels, opèrent des rapprochements avec d'autres sciences sociales (ethnologie, science politique, économie et histoire).

Module 2. Croissance et développement

Orientation générale

Ce module étudie différentes dimensions de la croissance et du développement depuis la révolution industrielle et s'interroge sur leurs conséquences. La première partie est centrée sur l'étude de la croissance et du développement. La seconde partie, qui porte sur les transformations économiques, sociales et démographiques, montrera que la croissance économique s'est accompagnée de changements importants à la fois dans l'organisation de la production, dans les structures sociales et démographiques ainsi que dans les modes de vie. La troisième partie a pour objet d'étude l'entreprise, organisation centrale de l'activité économique comme de la société, qui est à l'origine des mutations du système productif mais est également transformée par les évolutions économiques et sociales.

2.1/ La croissance et le développement depuis le XIX^e siècle

Objectifs

La croissance sera analysée dans sa double dimension théorique et historique depuis la révolution industrielle. On étudiera les inégalités de développement et les stratégies suivies par les pays au cours des deux derniers siècles. On s'interrogera sur la soutenabilité du développement dans un monde aux ressources finies où les contraintes environnementales pèsent de plus en plus.

- 2.1.1. La croissance économique
- 2.1.2. Inégalités et stratégies de développement
- 2.1.3. La soutenabilité de la croissance et du développement

Commentaires

On présentera les caractéristiques de la croissance depuis la révolution industrielle en montrant que tous les pays ne sont pas concernés en même temps et avec la même intensité. On présentera les principaux modèles d'analyse de la croissance.

On étudiera les inégalités de développement en montrant qu'elles sont évaluées à l'aune d'un modèle, celui des pays capitalistes avancés, et à travers de nombreux indicateurs. On montrera que leur appréhension n'est pas exempte de références axiologiques et qu'elle est dépendante des instruments de mesure. On montrera que ces inégalités existent entre les pays et au sein des pays.

On montrera que la diversité des stratégies de développement mises en œuvre, avec plus ou moins de réussite, pose la question de l'homogénéité du développement.

On étudiera la manière dont des contraintes nouvelles en termes d'écologie et de soutenabilité pèsent de plus en plus sur le développement de l'ensemble du monde. On réfléchira aux conditions d'un développement durable, notamment dans le domaine de la transition écologique.

2.2/ Les transformations des structures économiques, sociales et démographiques depuis le XIX^e siècle

Objectifs

On présentera les transformations des structures économiques, sociales et démographiques et on montrera que leurs relations avec la croissance sont complexes.

- 2.2.1. Les transformations des structures économiques et financières
- 2.2.2. Mobilité sociale et transformations des structures sociales
- 2.2.3. Transformations démographiques et évolution des modes de vie

Commentaires

Croissance, développement et transformations du système productif sont en interaction permanente. On étudiera l'évolution de la productivité, ainsi que les mutations des secteurs d'activité et des modes de financement depuis la révolution industrielle.

Les transformations économiques s'accompagnent de transformations de la structure sociale. La prise en compte du temps long sera nécessaire pour appréhender les évolutions des groupes sociaux et le changement social. L'analyse de la mobilité sociale nécessitera de s'interroger sur les instruments de sa mesure et la définition des populations concernées. On étudiera les trajectoires individuelles et collectives. On présentera le mode de calcul et la signification des grands indicateurs démographiques. On étudiera les relations entre développement économique, évolution des pyramides des âges et flux démographiques. On montrera que les modes de vie - notamment la consommation - se transforment en raison de multiples facteurs, sociologiques, démographiques et environnementaux.

2.3/ Entreprise et organisations

Objectifs

Il s'agira ici de présenter l'entreprise, son objet social, et sa place centrale dans l'activité économique. On étudiera la stratégie des firmes et plus largement l'importance des organisations s'inscrivant dans l'évolution des sociétés contemporaines.

- 2.3.1. Les transformations de l'entreprise et de sa gouvernance depuis le XIX^e siècle
- 2.3.2. Concurrence imparfaite et stratégies des firmes
- 2.3.3. Éléments de sociologie du travail et des organisations

Commentaires

Les entreprises sont à l'origine des mutations du système productif en même temps qu'elles sont transformées par les évolutions économiques et sociales. L'analyse de la place des entreprises et des entrepreneurs doit permettre de mettre en exergue leur rôle moteur dans l'émergence des nouveaux modes productifs. On s'interrogera sur le rapport de l'entreprise à l'intérêt général.

Il conviendra de s'interroger sur la nature de la firme notamment comme mode d'allocation des ressources, sur l'efficacité des formes organisationnelles et sur les transformations des modes de gouvernance. Cette analyse des firmes permettra d'étudier leurs stratégies dans le cadre de la concurrence imparfaite (monopole, oligopole, concurrence monopolistique, cartels, abus de position dominante, barrière à l'entrée). Les éléments de sociologie du travail et des organisations permettront d'étudier comment les individus organisent leurs relations et comment les acteurs coordonnent leurs activités. L'analyse se focalisera sur la manière dont la sociologie du travail rend compte de l'organisation du travail, des relations de travail, de la représentation des salariés, des professions et des inégalités professionnelles (sexes, statuts d'emploi). La sociologie des organisations permettra de rendre compte des questions de hiérarchie, autorité, contrôle, coordination et culture d'entreprise. On replacera l'étude du développement des organisations dans son contexte historique.

Module 3. La mondialisation économique et financière

Orientation générale

Ce module vise à étudier le phénomène de la mondialisation en rappelant ses origines historiques et en mettant l'accent sur son amplification et ses spécificités contemporaines. Aux deux premiers chapitres qui traitent des dimensions économique et financière de la mondialisation, s'ajoute un troisième portant sur l'intégration européenne, partie prenante de la dynamique de la mondialisation mais aussi expérience singulière.

3.1/ La dynamique de la mondialisation économique

Objectifs

On retracera l'histoire de l'ouverture des économies depuis le XIXe siècle et on en dressera un tableau contemporain présentant les tendances majeures et les acteurs principaux. En s'appuyant sur les théories économiques, on mettra en évidence les mécanismes et les vecteurs de la mondialisation et les débats qu'elle suscite.

- 3.1.1. L'ouverture des économies depuis le XIX^e siècle : évolution et acteurs
- 3.1.2. L'analyse économique des échanges internationaux
- 3.1.3. Régionalisation, gouvernance et régulations internationales

Commentaires

On présentera l'évolution des échanges des biens et services, des mouvements de facteurs de production (hommes et capitaux) et des politiques commerciales depuis le XIXe siècle. On mettra en évidence les spécificités des phénomènes contemporains, notamment le rôle des institutions internationales et le poids croissant des firmes multinationales dont il conviendra d'étudier les stratégies.

On mobilisera et on confrontera données factuelles et théories économiques pour traiter les questions de l'explication du contenu des échanges, des déterminants de la spécialisation, du choix entre libre-échange et protectionnisme. On analysera les différences de performances commerciales entre nations (on s'interrogera notamment sur la pertinence de la notion de compétitivité appliquée à une nation), et les effets de la mondialisation en termes d'emploi et de répartition.

L'étude de la libéralisation multilatérale des échanges et celle des principales expériences d'intégration régionale nourrira un questionnement sur leur compatibilité. On réfléchira aux modalités de la gouvernance et de la régulation de la mondialisation.

3.2/ La dynamique de la mondialisation financière

Objectifs

On montrera que la mondialisation se manifeste aussi par l'émergence d'un marché mondial des capitaux dont on analysera le fonctionnement. On étudiera la façon dont flux réels et flux financiers influencent la formation des cours de change dans le cadre d'un système monétaire international dont on retracera les transformations depuis le XIX^e siècle.

- 3.2.1. Balance des paiements, cours de change et systèmes de change
- 3.2.2. L'évolution du système monétaire international depuis le XIXe siècle
- 3.2.3. Constitution et fonctionnement du marché international des capitaux

Commentaires

On étudiera la construction de la balance des paiements et on interprétera les différents soldes. En confrontant théories économiques et données factuelles, on s'interrogera sur les déterminants, réels et financiers, de la formation des cours de change. On analysera également les politiques de change et leur influence, et on discutera les forces et faiblesses respectives des différents systèmes de change.

On analysera les fonctions d'un système monétaire international, puis on présentera les différents systèmes qui se sont succédé depuis le XIX^e siècle en étudiant les débats dont ils ont été l'objet.

On étudiera l'évolution des mouvements de capitaux depuis le XIXe siècle, et on s'interrogera sur leur développement contemporain et ses effets sur l'allocation du capital à l'échelle mondiale.

On analysera le processus de globalisation financière. Dans cette optique on présentera brièvement les principaux segments du marché international des capitaux (marchés des taux d'intérêt, des changes, des actions et des matières premières), les différentes catégories d'opérateurs et les principaux instruments cotés, On mettra en évidence les interconnexions entre les différents segments et acteurs du marché.

3.3/ L'intégration européenne

Objectifs

On présentera et analysera l'exemple le plus abouti d'intégration régionale : l'Union européenne. On montrera que ce projet européen s'est construit progressivement, au fil des traités, des conflits et des accords, pour arriver à l'union économique et monétaire, symbolisée par l'adoption de la monnaie unique. On s'interrogera sur la possibilité de créer une Europe sociale.

- 3.3.1. La dynamique de la construction européenne
- 3.3.2. L'Europe économique et monétaire
- 3.3.3. L'Europe sociale

Commentaires

On partira du questionnement, mené à partir des années 1950, autour du projet européen. On étudiera les réalisations de l'Europe, tant dans le domaine économique que dans le domaine monétaire. On étudiera les progrès de l'intégration économique et les problèmes auxquels l'Union est aujourd'hui confrontée notamment du fait de son hétérogénéité et des évolutions de son périmètre géographique. On traitera les problèmes et les débats liés à l'adoption et à l'existence d'une monnaie unique. On abordera la question de la gouvernance de l'Union, principalement à travers les questions budgétaires et monétaires. Les questions purement institutionnelles, si elles peuvent être abordées, ne relèvent pas directement de ce programme. On abordera la question de l'Europe sociale à travers les instruments de coordination et d'harmonisation déjà mis en place en matière d'emploi et de politiques sociales. On s'interrogera sur la nature du modèle social européen.

Module 4 : Déséquilibres, régulation et action publique

Orientation générale

Ce module est centré sur les déséquilibres économiques, sur leurs conséquences économiques et sociales, et sur l'intervention des pouvoirs publics. On étudiera les déséquilibres que constituent l'inflation et le chômage et on présentera la manière dont les grands modèles macroéconomiques conçoivent la notion d'équilibre. On étudiera l'intervention publique en matière économique et les contraintes auxquelles elle se heurte. La troisième partie sera consacrée à l'étude des politiques sociales.

4.1/ Équilibres et déséquilibres macroéconomiques

Objectifs

On étudiera les grands déséquilibres macroéconomiques que sont l'inflation et le chômage. On s'interrogera sur la construction des indicateurs et sur les analyses théoriques permettant d'expliquer ces déséquilibres. Cette approche sera complétée par une étude des grands modèles d'équilibre macroéconomiques.

4.1.1. L'inflation et le chômage

4.1.2. L'équilibre macroéconomique à travers les modèles : IS-LM / IS-LM-BP / OGDG

Commentaires

On retracera les principales tendances de l'évolution des prix depuis le XIX^e siècle, et on mobilisera les théories économiques sur l'inflation et la déflation, tant pour proposer des explications de ces phénomènes, que pour en évaluer les conséquences.

On montrera que la nature et l'intensité du chômage ont beaucoup varié dans le temps et dans l'espace. On abordera les différentes approches théoriques. On exposera les explications issues de l'arbitrage inflation / chômage : interprétations keynésiennes, puis interprétations classiques qui seront l'occasion de présenter les anticipations adaptatives, puis les anticipations rationnelles. On présentera enfin les analyses les plus récentes sur le chômage et l'emploi.

On présentera les principes de construction des courbes IS et LM en économie fermée, en montrant comment les déplacements des courbes rendent compte des politiques conjoncturelles. On introduira à cette occasion la notion de multiplicateur. On construira le modèle IS-LM-BP.

On présentera les principes de construction des courbes d'offre globale et de demande globale, le rôle joué par les anticipations et la rigidité des prix et des salaires dans la forme des courbes.

4.2/ L'intervention économique des pouvoirs publics

Objectifs

En mobilisant des exemples historiques et contemporains, on étudiera l'intérêt et les limites de l'intervention économique des pouvoirs publics. On analysera ensuite les politiques économiques conjoncturelles et structurelles, leurs effets et les contraintes auxquelles elles sont soumises.

- 4.2.1. Fluctuations économiques et politiques de régulation des cycles
- 4.2.2. Politiques structurelles et interventions de l'État face aux défaillances de marché
- 4.2.3. Les contraintes auxquelles se heurtent les politiques économiques

Commentaires

On montrera que la croissance économique a été marquée depuis le XIX^e siècle par des fluctuations économiques et des crises auxquelles les pouvoirs publics ont dû répondre. On mettra l'accent sur les politiques de régulation menées depuis le début des années 1930. On analysera les politiques fiscales, budgétaires et monétaires, qui visent à prévenir les crises et à lutter contre les récessions. On soulignera l'importance des crises financières et la diversité de leurs origines et manifestations et on présentera les différentes solutions proposées par les pouvoirs publics pour limiter le risque d'occurrence de nouvelles crises.

On étudiera les politiques qui visent à accroitre la croissance potentielle des économies et leur compétitivité, à limiter les imperfections de la concurrence, mais aussi à corriger les externalités négatives et préserver la soutenabilité de cette croissance.

On montrera que ces politiques, qui ne s'exercent plus seulement dans un cadre national mais recouvrent également des actions coordonnées notamment au niveau européen, sont soumises à des contraintes et sont l'objet de controverses. On s'interrogera en particulier sur la soutenabilité de la dette publique, et sur la contrainte extérieure.

4.3/ Les politiques sociales

Objectifs

On étudiera les fondements de la légitimité de l'intervention sociale des pouvoirs publics. On montrera que les débats depuis le XIX^e siècle influencent les politiques de lutte contre les inégalités et produisent des modèles différents d'État-providence et de protection sociale.

- 4.3.1. Justice sociale et légitimation de l'intervention publique
- 4.3.2. Les politiques de lutte contre les inégalités
- 4.3.3. Etat-providence et protection sociale

Commentaires

On mettra en évidence les différentes voies qu'ont pu emprunter les pays industrialisés pour faire émerger les grands systèmes d'État social et les difficultés auxquelles ils sont confrontés aujourd'hui.

On étudiera les principaux débats en matière de conception de la justice sociale et d'intervention des pouvoirs publics dans ce domaine. On analysera notamment l'influence des conceptions de la justice sociale sur le traitement des inégalités et de l'exclusion ainsi qu'en matière de lutte contre la pauvreté. On montrera comment ont évolué dans le temps les termes du débat entre performances économiques d'une part et protection et justice sociales d'autre part.

On étudiera les grands types de politique de lutte contre les inégalités, leurs effets et les contraintes qui pèsent sur elles.

Classes préparatoires aux grandes écoles

Filière économique

Voie générale ECG

Annexe IV

Programmes d'histoire, géographie et géopolitique du monde contemporain 1ère et 2^{nde} années

Programme d'histoire, géographie et géopolitique du monde contemporain (HGGMC) CPGE économique et commerciale

Les orientations générales du programme

Le programme d'histoire, géographie et géopolitique du monde contemporain (HGGMC) de la filière économique et commerciale, voie générale, s'inscrit dans la continuité de celui de 2013 en tenant compte de la rénovation des programmes d'histoire-géographie de l'enseignement secondaire, de l'introduction d'un enseignement de spécialité du cycle terminal des lycées en histoire, géographie, géopolitique et sciences politiques, ainsi que du renouvellement des approches méthodologiques et conceptuelles intervenues depuis.

Le programme est structuré en quatre modules semestriels, dont le premier a pour objectif de marquer la transition entre l'enseignement secondaire et l'enseignement supérieur. Chaque module est accompagné d'un commentaire qui précise les finalités de l'enseignement, l'esprit du programme et le cadre dans lequel il peut être traité.

L'ensemble du programme favorise l'adaptation des étudiants aux méthodes de l'enseignement supérieur. Il s'inscrit dans les modalités de parcours des études supérieures de l'espace européen, telles qu'elles sont définies par les textes en vigueur. Il prend également en compte les objectifs de formation des écoles de management, notamment en favorisant une réflexion d'ensemble sur le monde contemporain. *In fine*, ce programme vise à favoriser la maîtrise de compétences décisives pour de futurs entrepreneurs destinés à travailler dans un monde complexe : ouverture culturelle et recul critique, analyse interdisciplinaire et capacité à la synthèse.

Le programme propose d'articuler les approches historique, géographique, géoéconomique et géopolitique

Le programme d'histoire-géographie-géopolitique du monde contemporain est placé sous le signe de l'hybridation des savoirs, sans pour autant confondre leurs démarches respectives. Interdisciplinaire dans son esprit, il doit permettre aux étudiants d'approcher la complexité du monde contemporain.

La démarche géopolitique constitue le fil directeur du programme. Conçue comme un champ disciplinaire, elle permet de combiner les dimensions historiques, géographiques et géoéconomiques pour étudier les rivalités de pouvoirs et d'influences qui s'exercent sur les territoires à toutes les échelles et qui structurent le monde contemporain. Elle insiste sur les jeux d'acteurs, leurs systèmes de représentation et leurs stratégies.

Dans cette optique, l'enseignement de l'histoire permet une mise en perspective des analyses sur le temps long du XX^e siècle. Il ne se réduit donc pas à une simple étude chronologique des faits économiques et sociaux mais s'inscrit dans un cadre plus large, à l'écart de toute modélisation abusive. Il prend notamment en compte les aspects politiques, économiques et culturels, scientifiques et techniques.

© Ministère de l'enseignement supérieur, de la recherche et de l'innovation, 2021 http://www.enseignementsup-recherche.gouv.fr

Les orientations de l'enseignement de la géographie inscrivent la géopolitique dans ses dimensions spatiales et territoriales. La préférence accordée en seconde année à la dynamique géographique, géoéconomique et géopolitique des aires régionales et des continents favorise une vision des lignes de force de l'évolution du monde actuel. Elle impose une démarche à plusieurs échelles, qui permet notamment d'appréhender les dimensions du jeu des réseaux dans le monde contemporain.

L'organisation du programme et de l'évaluation

La dimension synthétique du programme permet de consacrer le temps de la classe à l'acquisition et à la maîtrise de connaissances, de concepts, de méthodes et d'outils qui fondent une réflexion critique sur la complexité du monde contemporain. Le travail prend tout son sens quand le cours est centré sur un chapitre court, ouvert par une introduction problématisée et clos par une conclusion de mise en perspective. Cette démarche accroît la capacité d'argumentation et de synthèse des étudiants, qualités si importantes dans les métiers auxquels ils se préparent. Le travail personnel devient ainsi davantage l'occasion d'un élargissement par l'indispensable lecture de médias ou d'ouvrages qui complètent le cours du professeur et permettent la construction d'une culture générale la plus large possible.

La prise en compte des orientations historiques, géographiques, géoéconomiques et géopolitiques renouvelées conduit le professeur à une réflexion épistémologique indispensable à l'étude des questions abordées. Le programme constitue ainsi un outil de réflexion opératoire et contribue à développer les compétences d'analyse approfondie des situations.

Les quatre modules du programme constituent un ensemble étudié en deux années de préparation aux concours dont les conditions sont fixées dans les règlements pédagogiques des écoles de management. Les modules sont des acquis capitalisables en université.

A travers le programme et les méthodes étudiés, l'HGGMC contribue à la maîtrise de plusieurs compétences essentielles en école de management et dans le monde professionnel :

- combiner les apports de plusieurs champs disciplinaires pour comprendre, nuancer et synthétiser la complexité d'une situation ;
- être un acteur critique du monde contemporain ;
- être capable de raisonner à des échelles d'espace et de temps différentes :
- savoir poser une problématique et y répondre par une démonstration appropriée ;
- s'initier à la prospective et à ses limites ;
- comprendre les points de vue et les enjeux d'acteurs différents ;
- pouvoir s'exprimer de manière efficace et rigoureuse à l'écrit et à l'oral.

PROGRAMME DE PREMIERE ANNEE

Les deux premiers modules dressent un panorama du XX^e siècle et du début du XXI^e siècle sous l'angle géopolitique et économique. Ils fixent les principaux repères historiques nécessaires à la compréhension du monde contemporain. Ils sont centrés sur l'analyse d'un monde en mutations, de la veille de la Première Guerre mondiale à la mondialisation contemporaine. Une place toute particulière est accordée à l'étude de la France.

Module I.

Les grandes mutations du Monde de 1913 à nos jours

I.1. Panorama géopolitique du monde de 1913 à la fin de la guerre froide

- I.1.1. Géopolitique et relations internationales : une introduction
- I.1.2. Tableaux géopolitiques du monde en 1913, 1939 et en 1945
- I.1.3. Géopolitique de la guerre froide, de la décolonisation et des conflits jusqu'aux années 1990

I.2.Le monde depuis les années 1990 : entre ruptures et recompositions géopolitiques

- 1.2.1. Tableau géopolitique du monde à la fin de la guerre froide
- 1.2.2. Le monde actuel : ordre et désordre, émergences et rééquilibrages, espaces de paix et espaces de guerres
- 1.2.3. La gouvernance mondiale : crises et redéfinitions

I.3. L'économie mondiale d'un siècle à l'autre

- I.3.1. La croissance et le développement : une introduction
- I.3.2. Économie, croissance et sociétés dans les pays occidentaux de 1913 à 1945
- I.3.3. Les modèles de croissance de 1945 à nos jours

Commentaire

Le premier module propose un ensemble de perspectives permettant de saisir les grandes mutations survenues depuis les débuts du XX^e siècle. Il est aussi l'occasion d'acquérir progressivement, en ce premier semestre, les méthodes de travail requises par nos disciplines dans l'enseignement supérieur.

Le premier volet vise à donner un panorama géopolitique non exhaustif du monde de la veille de la Première Guerre mondiale à la fin de la guerre froide. Il débute par une *introduction* à la géopolitique et aux relations internationales, destinée à doter les étudiants d'un cadre conceptuel et épistémologique leur permettant de mieux approcher l'ensemble du programme. Il propose ensuite trois tableaux géopolitiques du monde : le monde en 1913 souligne le rôle d'une Europe divisée et inégalement industrialisée dans le contexte d'une phase nouvelle de la mondialisation et des « impérialismes ». Le monde en 1939 présente un monde instable, fracturé, fragilisé par la crise des années 1930 et l'arrivée au pouvoir de régimes autoritaires et totalitaires. Après une présentation du monde en 1945, l'étude géopolitique de la guerre froide, de la décolonisation et des conflits jusqu'aux années 1990 s'effectue dans une optique de synthèse et non d'énumération factuelle.

Le deuxième volet est centré sur l'analyse des ruptures et recompositions géopolitiques mondiales depuis le début des années 1990. Il débute par un tableau géopolitique du monde à la fin de la guerre froide abordant le basculement d'un ordre bipolaire à un ordre géopolitique dominé par les États-Unis, puissance par ailleurs économiquement dominante de la triade dans les années 1990. Cette partie analyse comment l'épuisement relatif de cet ordre mondial a débouché sur un monde aux désordres multiples, aux conflits nouveaux, avec un reclassement des puissances au sein d'un cadre désormais plus éclaté que multipolaire, où certains accords bilatéraux et internationaux, notamment de désarmement, sont remis en cause. Enfin, il considère la question de l'adaptation de la gouvernance mondiale aux enjeux de notre temps.

Le troisième volet est consacré à l'évolution économique mondiale depuis le début du XX^e siècle ; il débute par une introduction à l'étude des rapports entre croissance et développement. Une deuxième partie présente les évolutions économiques et sociales dans les pays occidentaux de 1913 à 1945,

entre croissance et crise, mondialisation et replis protectionnistes et deux conflits mondiaux. Enfin, les grandes mutations économiques mondiales depuis 1945 sont analysées au prisme des grands modèles de croissance – notamment libérale et communiste. Une place particulière doit être réservée au décollage inégal des économies émergentes depuis la fin du XXe siècle.

Dans l'ensemble de ce module, on prend appui sur des exemples variés dans l'espace sans négliger le cas de la France dont une étude plus particulière est prévue dans le deuxième module.

Module II.

La mondialisation contemporaine : rapports de force et enjeux

II.1. La mondialisation : acteurs, dynamiques et espaces

- II.1.1. La mondialisation : une introduction
- II.1.2. Les acteurs et leurs stratégies
- II.1.3. Nouvelles frontières, nouveaux territoires et limites de la mondialisation

II.2. Les défis du développement et les enjeux d'un monde durable

- II.2.1. Les défis géopolitiques et géoéconomiques du développement durable
- II.2.2. Les ressources, un enjeu stratégique
- II.2.3. Les défis géopolitiques et géoéconomiques du changement climatique

II.3. La France, une puissance en mutations depuis les années 1990

- II.3.1. La France: un modèle entre héritages, crises et transformations face à la mondialisation
- II.3.2. La France : une puissance européenne
- II.3.3. La France : une puissance mondiale et maritime

Commentaire

Le deuxième module fournit les principales clés de compréhension du monde sous un angle géoéconomique et géopolitique.

La première partie débute par une introduction à la mondialisation contemporaine devant permettre d'abord l'étude de ses caractéristiques principales : l'essor des flux commerciaux, financiers, humains, d'informations ; ses principaux vecteurs — notamment la baisse des obstacles tarifaires et du coût des transports ; le rôle décisif de la « maritimisation » du monde dans cette phase de mondialisation. Cet ensemble aboutit à un monde certes en réseau mais aussi parcouru de fractures. Une analyse des acteurs — étatiques comme non-étatiques — et de leurs stratégies sur les différents échiquiers de la mondialisation mettra notamment l'accent sur la guerre et la paix économiques pour les États, les concurrences et les partenariats pour les entreprises, les réseaux qui parcourent les sociétés et diffusent l'information. Le rôle des organisations multilatérales mais aussi des opinions publiques sera souligné. Cette partie s'achèvera sur une étude de la dimension géographique de la mondialisation autour des nouvelles frontières et des nouveaux territoires : mers et océans, espace et cyberespace, mutation du rôle des frontières...

La mondialisation est un processus complexe d'interconnexion des différentes parties du monde qui présente aujourd'hui des limites. Elle a fait prendre conscience d'un certain nombre d'enjeux globaux qui ont des impacts majeurs. A ce titre, et dans cette perspective, trois d'entre eux seront étudiés. Les défis du développement durable sont analysés sous le double angle géopolitique et géoéconomique.

© Ministère de l'enseignement supérieur, de la recherche et de l'innovation, 2021 http://www.enseignementsup-recherche.gouv.fr

Après cette analyse d'ensemble, deux points sont l'objet d'une attention particulière : les *ressources* (leur finitude, les stratégies d'appropriation et d'adaptation pour les acteurs concernés) et le *changement climatique*, dont les différentes dimensions seront abordées.

Pour conclure ce module, une place particulière est accordée à la France contemporaine, de manière à étudier sa situation dans un monde « mondialisé ». Il s'agira d'envisager les mutations du pays et son adaptation au contexte de la mondialisation, en prenant soin de montrer tant les faiblesses que les réussites, à travers l'étude des *crises et des transformations*. Cela permettra d'analyser, ensuite, les caractères, les atouts et les faiblesses de la France comme *puissance européenne* et comme puissance mondiale, en insistant sur ses singularités, notamment son espace maritime.

PROGRAMME DE SECONDE ANNEE

Les modules III et IV privilégient une approche synthétique de la géopolitique des aires régionales et des continents. Les pays cités sont abordés en fonction des déterminants et déclinaisons de leur puissance ainsi que dans leur rapport à leur environnement régional et au reste du monde. Ils ne font pas l'objet d'une étude exhaustive.

MODULE III

Géodynamique de l'Union européenne, de l'Afrique, du Proche et du Moyen-Orient

III.1. L'Union européenne, l'Europe et le monde

- III.1.1. L'Union européenne et ses territoires : intégrations et fragmentations
- III.1.2. L'Union européenne et son voisinage proche : la Russie et l'espace méditerranéen
- III.1.3. L'Union européenne dans le monde

III.2. Le continent africain, le Proche et le Moyen-Orient

- III.2.1. États et territoires, cultures et sociétés
- III.2.2. Le développement : politiques et enjeux
- III.2.3. Géopolitique du continent africain, du Proche et du Moyen-Orient

Commentaire

Le troisième module donne des clefs de compréhension et d'analyse des spécificités et de la complexité des situations qui prévalent aujourd'hui en Europe, sur le continent africain et au Proche et Moyen-Orient. Dans ce but, l'histoire, la géographie, la géoéconomie et la géopolitique sont associées pour offrir une lecture synthétique qui rende compte de manière à la fois précise, nuancée et critique d'une réalité mouvante.

Il s'agit tout d'abord de montrer que l'Union européenne consiste en une tentative toujours renouvelée d'intégrations multiples visant à dépasser les fragmentations héritées et contemporaines, au risque d'en susciter de nouvelles. C'est l'occasion d'expliquer que les élargissements successifs ont pu contribuer à questionner les modalités et la poursuite de l'approfondissement. Ainsi, dans une Union européenne à géométrie de plus en plus variable, assurer l'unité dans la diversité devient un défi de plus en plus complexe. La question de l'identité et de la cohésion de l'Union européenne est alors posée. Le débat entre les visions d'une « Europe marché » et d'une « Europe puissance » est exposé. Cela conduit à étudier la place et le rôle de l'Union européenne au sein du reste de l'Europe, dont *la Russie, de l'ensemble des pays du sud et de l'est de la Méditerranée* ainsi que du *reste du monde*.

Les dynamiques africaines, moyennes et proche-orientales demandent une réflexion sur les effets de la colonisation et de la décolonisation dans la structuration des États, des nations et des territoires. Il est tenu compte de la diversité et de l'ancienneté des cultures. L'importance du défi du développement est posée. Si les stratégies de *développement* mettent en jeu des acteurs locaux et régionaux, le continent africain, le Proche et le Moyen-Orient subissent encore les contraintes de la dépendance et parfois des ingérences. La faiblesse des intégrations régionales et les multiples fragmentations qui déstabilisent les territoires gênent l'affirmation de cette région dans le monde sont démontrées.

MODULE IV

Géodynamique continentale des Amériques et de l'Asie

IV.1. Les Amériques

IV.1.1. Géopolitique des Amériques

IV.1.2. Les États-Unis : société, politique et puissance à l'époque contemporaine

IV.1.3. L'Amérique latine : émergences et crises

IV.2. L'Asie

IV.2.1. Géopolitique d'une région multipolaire

IV.2.2. Les espaces asiatiques dans la mondialisation

IV.2.3. Deux géants asiatiques : la Chine, puissance mondiale, l'Inde, puissance émergente

Commentaire

L'étude des Amériques débute par une géopolitique régionale qui permet de mettre en évidence les relations entre l'Amérique anglo-saxonne et l'Amérique latine à l'époque contemporaine. L'attention est attirée sur le fait que le grand nombre des initiatives d'intégrations régionales révèle le jeu des ambitions de plusieurs États, dont le Brésil, sur un continent marqué par des fragmentations culturelles, politiques et de développement. Les États-Unis, du fait de profondes transformations intérieures et de leur exercice de la puissance, font l'objet d'une analyse spécifique. En Amérique latine, on explique combien les stratégies successives de développement mises en œuvre ont abouti à des processus d'émergence souvent éphémères, incomplets et émaillés de crises.

L'étude de l'Asie, région multipolaire, débute par sa géopolitique interne et externe. Cela suppose une présentation des États, des sociétés ainsi que de la diversité politique et culturelle dans le cadre d'une mise en perspective et des relations de pouvoir sur le temps long, de manière à mettre en évidence la dimension géopolitique et l'articulation entre les États.

L'importance et le rôle de certains pays non cités, dont le Japon, sont soulignés. La place montante de *l'Asie dans la maritimisation et la mondialisation*, l'importance de ses métropoles, de ses façades et de ses enjeux maritimes sont mises en valeur. La puissance géoéconomique et géopolitique des *deux géants asiatiques* fait l'objet d'une analyse particulière. L'accent est mis sur la Chine comme puissance mondiale, en soulignant les liens étroits entre la société et la politique chinoises au regard de ses ambitions mondiales. Quant à l'Inde, elle est étudiée comme puissance émergente et possible géant de demain.

Classes préparatoires aux grandes écoles

Filière économique

Voie générale ECG

Annexe V

Programme de lettres et philosophie 1^{ère} et 2^{nde} années

CPGE économiques et commerciales Programme « Lettres et Philosophie »

Objectifs de formation

Commun à l'ensemble des classes préparatoires économiques et commerciales, cet enseignement, qui implique à part égale les Lettres et la Philosophie, est partie constituante de la formation générale des étudiants.

Sa finalité est de former les élèves à une réflexion autonome et éclairée, par la lecture ample et directe d'œuvres de littérature et de philosophie, par l'étude des arts et des techniques, et par la pratique régulière de travaux écrits et oraux. Les étudiants développent ainsi leurs capacités à s'interroger, à conduire une pensée cohérente et à tirer profit avec finesse et pertinence de leurs connaissances.

L'enseignement « Lettres et Philosophie » a trois objectifs majeurs :

- 1. il permet aux élèves d'enrichir leur culture et de mieux comprendre le monde dans lequel ils vivent ;
- 2. il les entraîne à développer leur réflexion personnelle, ainsi qu'à aiguiser leur sens critique :
- il vise à développer la maîtrise de l'expression écrite et orale ainsi que l'aptitude à communiquer, compétences indispensables pour la future vie professionnelle des étudiants.

Les exercices écrits sont pris en charge collégialement par les deux professeurs de Lettres et de Philosophie.

Programme

Chaque professeur détermine librement et en pleine responsabilité, selon les parcours intellectuels et les choix pédagogiques qui répondent aux besoins des élèves, les œuvres philosophiques, littéraires ou relevant de l'ensemble des arts, dont il juge l'étude nécessaire à son enseignement. Les deux professeurs, de Lettres et de Philosophie, s'accordent pour assurer la cohérence d'ensemble de l'enseignement dispensé.

Première année

Le programme permet d'élargir et d'enrichir les connaissances acquises au cours des études secondaires, et de consolider la culture nécessaire à une réflexion personnelle. Il s'inscrit dans la continuité des enseignements de tronc commun, Lettres ou Philosophie, mais également d'un enseignement de spécialité comme « Humanités, Littérature et Philosophie ».

L'enseignement tient compte des relations qui unissent les notions ou les concepts à leur histoire, aux contextes et résonances à travers lesquels se sont précisés leur usage et leur

sens. On rapporte ainsi l'étude des œuvres littéraires, artistiques ou philosophiques aux représentations mythologiques, religieuses, esthétiques, ainsi qu'à l'histoire des sciences, des arts et des techniques.

Ce programme est constitué des rubriques suivantes :

- l'héritage de la pensée grecque et latine ;
- les apports du judaïsme, du christianisme et de l'islam à la pensée occidentale ;
- les étapes de la constitution des sciences exactes et des sciences de l'homme ;
- l'essor technologique, l'idée de progrès ;
- la société, le droit et l'Etat modernes ;
- les figures du moi et la question du sujet depuis la Renaissance ;
- l'esprit des Lumières et leur destin ;
- quelques grands courants artistiques et esthétiques depuis la Renaissance ;
- les principaux courants de pensée contemporains.

Les rubriques sont abordées selon un parcours que les professeurs de Lettres et de Philosophie déterminent ensemble, en fonction de regroupements et de problématiques dont ils ont l'initiative et la responsabilité.

Seconde année

Etude d'un thème renouvelé chaque année par arrêté conjoint du ministre chargé de l'éducation et du ministre chargé de l'enseignement supérieur.

Classes préparatoires aux grandes écoles

Filière économique

Voie générale ECG

Annexe VI

Programmes de langues vivantes étrangères 1^{ère} et 2^{nde} années

Objectifs de formation

L'enseignement des langues vivantes en classes préparatoires économiques et commerciales constitue un volet essentiel de la formation générale. La raison en est claire : les carrières auxquelles se destinent les étudiants des écoles de management ont une dimension internationale et interculturelle.

Dans cette perspective, l'enseignement obligatoire de deux langues vivantes est proposé aux étudiants afin qu'ils acquièrent les compétences linguistiques et les connaissances culturelles nécessaires à leur insertion professionnelle et à leur ouverture au monde.

Les niveaux de compétences ciblés en fin de 2^{de} année sont C1 pour la LVA, notamment dans les compétences de réception, et B2-C1 pour la LVB.

L'étude des langues vivantes, dans toutes les classes préparatoires économiques et commerciales, a comme objectifs :

- de consolider et d'approfondir les compétences de l'enseignement du second degré, dans le prolongement des enseignements du cycle terminal (en tronc commun et, le cas échéant, en enseignement de spécialité LLCER), sur le plan linguistique et culturel;
- de faire travailler la langue en contexte sur la base de supports variés ;
- de faire acquérir aux étudiants un niveau plus élevé de compréhension et d'expression, tant à l'écrit qu'à l'oral; le développement des compétences orales et oratoires en langue étrangère prise de parole en continu et en interaction fait l'objet d'une attention particulière et d'un entraînement régulier;
- d'assurer la mise en place des repères culturels indispensables à la connaissance de la civilisation et de la culture des pays concernés, de façon à éclairer les réalités économiques, sociales et politiques du monde contemporain; on proposera, le cas échéant, des thématiques croisées avec d'autres disciplines;
- d'apprendre à utiliser des ouvrages et des outils de référence, d'approfondir les compétences acquises précédemment pour rechercher, sélectionner et exploiter des documents. Les ressources et outils numériques sont utilisés avec profit ;
- d'entraîner à la traduction de textes variés, à la compréhension fine de documents, et à différents types de production écrite.

Organisation des enseignements

Le premier semestre est conçu pour aider les étudiants, dans leur diversité, à réussir la transition entre le lycée et les études supérieures. Il aura une fonction bien particulière, dont l'objectif essentiel est la prise en charge individualisée et l'homogénéisation du niveau des étudiants, en tenant compte, pour le compenser le cas échéant, de leur historique de formation dans chacune des deux langues étudiées.

Pour cela, les premiers mois devront être axés sur :

- un travail de la langue et sur la langue en contexte ;
- l'accès progressif à une compréhension fine, à l'écrit comme à l'oral ;
- l'acquisition d'une expression maîtrisée et adéquate ;
- l'acquisition d'une méthode adaptée aux différents savoir-faire visés.

Dans le cadre de la liberté pédagogique, le professeur choisit ses méthodes et sa progression. Il organise son enseignement en suivant deux principes directeurs :

- a) le professeur choisit le contexte, les problématiques et les méthodes qui favorisent les apprentissages et diversifie les modes d'acquisition des savoirs et des compétences. Il explicite pour les élèves les objectifs poursuivis, les méthodes utilisées et les critères d'évaluation;
- b) le professeur privilégie la mise en activité des étudiants : l'acquisition des connaissances et des capacités est d'autant plus efficace que les étudiants sont acteurs de leur formation. Ils sont amenés à manipuler la langue, les notions et les concepts en exerçant leur esprit critique. La pédagogie mise en œuvre développe la participation, la prise d'initiative et l'autonomie des étudiants.