Fonction exponentielle Exercices

★ Exercice 16.1

Ecrire sous la forme d'une puissance de e les expressions suivantes :

1.
$$\frac{e^7}{e^2}$$

2.
$$\frac{(e^{-1})^4}{e}$$

★ Exercice 16.2

Pour chacune des fonctions ci-dessous :

- préciser l'ensemble de définition,
- calculer les limites aux bornes de l'ensemble de définition,
- calculer la dérivée,
- déterminer le signe de la dérivée et en déduire les variations de la fonction.

1.
$$f(x) = e^x + 2x$$

2.
$$f(x) = e^x - x$$

3.
$$f(x) = xe^{x}$$

1.
$$f(x) = e^x + 2x$$
 2. $f(x) = e^x - x$ 3. $f(x) = xe^x$
4. $f(x) = \frac{e^x}{x}$ 5. $f(x) = e^{2x}$ 6. $f(x) = e^{-x}$

5.
$$f(x) = e^{2x}$$

6.
$$f(x) = e^{-x}$$

7.
$$f(x) = (e^x - 1)^2$$
 8. $f(x) = (x+3)e^{-x}$ 9. $f(x) = x+4e^{-x}$

8.
$$f(x) = (x+3)e^{-x}$$

9.
$$f(x) = x + 4e^{-x}$$

10.
$$f(x) = \frac{e^x - 1}{e^x + 2}$$

10.
$$f(x) = \frac{e^x - 1}{e^x + 2}$$
 11. $f(x) = \frac{2e^x - 3}{e^x - 1}$ **12.** $f(x) = e^{2x} - 2e^x$

12.
$$f(x) = e^{2x} - 2e^x$$

★ Exercice 16.3

Soit f la fonction définie sur \mathbb{R} par $f(x) = e^{-2x}$.

Déterminer une équation de la tangente à la courbe représentative de f au point d'abscisse 0.

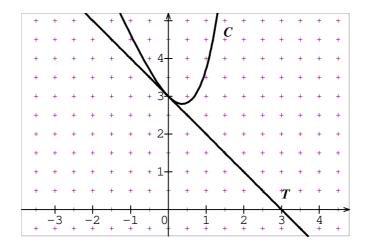
★ Exercice 16.4

On considère la fonction f définie sur \mathbb{R} par :

$$f(x) = ax + b + xe^{x},$$

où a et b sont des réels.

Sur le graphique ci-dessous, on donne sa courbe représentative C et la tangente T à C au point d'abscisse 0.



- 1. Indiquer, à l'aide du graphique, f(0) et f'(0).
- **2.** En déduire la valeur de chacune des constantes *a* et *b*.

★ Exercice 16.5

On considère la fonction f définie sur \mathbb{R} par :

$$f(x) = e^{x} - x - 1$$
.

On note C sa courbe représentative dans le plan muni d'un repère orthonormal $(O; \vec{i}, \vec{j})$.

- 1. Déterminer les limites de f en $-\infty$ et en $+\infty$.
- 2. Démontrer que la courbe de f admet une asymptote oblique que l'on précisera.
- 3. a) Calculer f'(x).
 - **b**) Déterminer le tableau complet des variations de f.
 - c) En déduire de signe de f(x) sur \mathbb{R} .
- **4.** Étudier la position relative de la courbe de la fonction exponentielle et de la droite d'équation y = x + 1.
- **5.** Donner l'allure de la courbe de *f*.

E.C.P.1 – Jean PERRIN

★ Exercice 16.6

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{3e^x}{2 + e^x}$.

- 1. Démontrer que $f(x) = \frac{3}{2e^{-x} + 1}$.
- 2. Étudier les limites de la fonction f en $+\infty$ et en $-\infty$. Interpréter graphiquement.
- 3. Étudier les variations de la fonction f.

★ Exercice 16.7

On appelle f la fonction définie sur \mathbb{R} par : $f(x) = \frac{1}{2}(e^x + e^{-x})$.

- **1.** Quel est le signe de la fonction f(x)?
- 2. Déterminer les limites de f en $-\infty$ et en $+\infty$.
- 3. Calculer f'(x) pour tout réel x. Déterminer le signe de f'(x) et en déduire le sens des variations de $f \operatorname{sur} \mathbb{R}$.
- **4.** Démontrer que $(f(x))^2 + (f'(x))^2 = f(2x)$.

★ Exercice 16.8

Initiation à la démonstration par récurrence.

Soit la fonction f définie sur \mathbb{R} par $f(x) = xe^x$.

- 1. Calculer f'(x).
- **2.** Calculer f''(x).
- **3.** D'après vous, sans la calculer, quelle serait l'expression de la dérivée 5^e de f, $f^{(5)}(x)$? Conjecturer pour tout $n \ge 1$, $f^{(n)}(x)$.

★ Exercice 16.9

Partie A:

On considère la fonction g définie sur \mathbb{R} par :

$$g(x) = e^x + x + 1$$
.

- **1.** Montrer que g est strictement croissante sur \mathbb{R} .
- **2.** a) Montrer que l'équation g(x) = 0 admet une unique solution α dans l'intervalle \mathbb{R} . Justifier que $\alpha \in [-2;-1]$. (On donne $e^{-1} \approx 0,4$ et $e^{-1} \approx 0,1$).
 - **b)** Que permet d'obtenir le programme Python suivant ?

```
import numpy as np
alpha=-2
while np.exp(alpha)+alpha+1<0:
    alpha=alpha+0.01
print(alpha-0.01,alpha)</pre>
```

3. Déterminer le signe de g(x) sur \mathbb{R} .

Partie B:

Soit f la fonction définie sur \mathbb{R} par :

$$f(x) = \frac{x e^x}{e^x + 1}.$$

On appelle C la courbe représentative de f dans un repère $(O; \vec{i}, \vec{j})$ d'unité graphique 1 cm en abscisse et 2 cm en ordonnée.

1. Le programme Python précédent affiche :

Montrer que $f(\alpha) = \alpha + 1$ et en donner une valeur approchée à 0,1 près.

- 2. a) Déterminer les limites en $-\infty$ et en $+\infty$ de f(x).

 Interpréter graphiquement le résultat en $-\infty$ et montrer que la courbe de f admet la droite d'équation y = x en $+\infty$.
 - **b)** Montrer que, pour tout x réel, $f'(x) = \frac{e^x g(x)}{(e^x + 1)^2}$.
 - c) En déduire les variations de f sur \mathbb{R} .