Lois de probabilité usuelles

On considère une expérience aléatoire d'univers associé Ω .

I. Loi certaine

On dit qu'une variable aléatoire réelle X suit une loi certaine s'il existe $a \in \mathbb{R}$ tel que l'événement [X = a] est certain c'est-à-dire :

$$X(\Omega) = \{a\}$$
 et $P[X = a] = 1$

On dit aussi que *X* est une variable aléatoire certaine.

Exemple:

Une urne contient n boules de couleurs différentes qui portent toutes le numéro 7. On tire une boule et on note X le numéro tiré. Alors X est une variable aléatoire certaine et $\begin{bmatrix} X=7 \end{bmatrix}$ est un événement certain.

Soient $a \in \mathbb{R}$ et X une variable aléatoire certaine égale à a. Alors,

$$E(X) = a$$
 et $V(X) = 0$

II. Loi uniforme sur [1,n]

Exercices 1, 2 & 3

Soit $n \in \mathbb{N}^*$. On dit qu'une variable aléatoire réelle X suit la loi uniforme sur [1, n] si :

$$X(\Omega) = [1, n]$$
 et $\forall k \in [1, n], P[X = k] = \frac{1}{n}$

On note $X \hookrightarrow \mathcal{U}(\llbracket 1, n \rrbracket)$.

Soit X une variable aléatoire réelle qui suit la loi uniforme sur [1, n]. Alors,

$$E(X) = \frac{n+1}{2}$$
 et $V(X) = \frac{n^2 - 1}{12}$

E.C.P.1 – Jean PERRIN

III. Loi de Bernoulli

On appelle épreuve de Bernoulli une expérience aléatoire à deux issues possibles.

Exemple : lancer d'une pièce de monnaie.

On considère la variable aléatoire X qui associe 1 à l'issue de l'épreuve et 0 sinon.

On appelle loi de Bernoulli de paramètre p la loi de probabilité associée à une épreuve de Bernoulli de probabilité de succès p.

x_i	0	1
p_i	1 – p	p

On note $X \hookrightarrow \mathcal{B}(p)$.

Soit X une variable aléatoire réelle qui suit la loi de Bernoulli de paramètre p. Alors,

$$E(X) = p$$
 et $V(X) = p(1-p)$

★ Exercice : schéma de Bernoulli :

On considère trois lancers successifs d'un dé non truqué avec le succès « obtenir 6 ». Soit X la variable aléatoire comptant le nombre de succès. Calculer p[X=2].

IV.Loi binomiale

La loi binomiale de paramètres n et p est la loi de probabilité obtenue lors de la répétition de n épreuves de Bernoulli de probabilité de succès p identiques et indépendantes.

Exemple : 10 lancers d'une pièce de monnaie.

On considère la variable aléatoire X qui compte le nombre de succès.

Soit un entier k tel que $0 \le k \le n$. La probabilité d'obtenir k succès lors de la répétition de n

épreuves de Bernoulli de probabilité de succès
$$p$$
 est : $P[X = k] = \binom{n}{k} p^k (1-p)^{n-k}$.

On note $X \hookrightarrow \mathcal{B}(n, p)$.

Soit X une variable aléatoire réelle qui suit la loi binomiale de paramètres n et p. Alors,

$$E(X) = n p$$
 et $V(X) = n p(1-p)$