Test « Étude de fonctions » – Correction

Exercice 1:

On considère la fonction f définie sur \mathbb{R} par : $f(x) = -x^2 + 3x - 5$.

- 1. Déterminer les limites de f en $+\infty$ et en $-\infty$.
- 2. Calculer f'(x).
- 3. Étudier le signe de f'(x). En déduire les variations de f et construire le tableau des variations complet de f.

1.
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} -x^2 + 3x - 5 = \lim_{x \to +\infty} -x^2 = -\infty$$

 $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} -x^2 + 3x - 5 = \lim_{x \to -\infty} -x^2 = -\infty$

2.
$$f'(x) = -2x + 3$$
.

3.
$$-2x+3 \ge 0$$

$$\Leftrightarrow -2x \ge -3$$

$$\Leftrightarrow x \le \frac{3}{2}$$

On en déduit le signe de f'(x) ainsi que les variations de f:

x	$-\infty$		$\frac{3}{2}$	$+\infty$
Signe de $f'(x)$		+	þ	_
$\begin{array}{c} \text{Variations} \\ \text{de} f \end{array}$	$-\infty^-$		$\mathcal{F}^{\left(\frac{3}{2}\right)}$	$-\infty$

$$f\left(\frac{3}{2}\right) = -\left(\frac{3}{2}\right)^2 + 3 \times \left(\frac{3}{2}\right) - 5 = -\frac{9}{4} + \frac{9}{2} - 5 = \frac{-9 + 18 - 20}{4} = -\frac{11}{4}$$

E.C.P.1 – Jean PERRIN

Exercice 2:

On considère la fonction f définie sur \mathbb{R} par : $g(x) = -x^3 + 4x^2 + 3x - 1$.

- 1. Déterminer les limites de g en $+\infty$ et en $-\infty$.
- 2. Calculer g'(x).
- 3. Étudier le signe de g'(x). En déduire le tableau des variations de g.

On ne demande pas le calcul des images.

1.
$$\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} -x^3 + 4x^2 + 3x - 1 = \lim_{x \to +\infty} -x^3 = -\infty$$

 $\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} -x^3 + 4x^2 + 3x - 1 = \lim_{x \to -\infty} -x^3 = +\infty$

2.
$$g'(x) = -3x^2 + 8x + 3$$
.

3.
$$a = -3$$
, $b = 8$ et $c = 3$. $\Delta = b^2 - 4ac = 8^2 - 4 \times (-3) \times 3 = 64 + 36 = 100$.

Il y a deux racines:

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-8 - \sqrt{100}}{2 \times (-3)} = \frac{-8 - 10}{-6} = \frac{-18}{-6} = 3$$
 et

$$x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-8 + \sqrt{100}}{2 \times (-3)} = \frac{-8 + 10}{-6} = \frac{2}{-6} = -\frac{1}{3}$$

g'(x) est du signe de a à l'extérieur des racines.

On en déduit les variations de g:

