Polynômes du second degré

I. Fonctions polynômes

1. Généralités

On appelle fonction polynôme toute fonction P définie sur \mathbb{R} pour laquelle il existe un entier naturel n et des réels $a_0, a_1, a_2, a_3, \ldots, a_n$ tels que :

pour tout réel x,
$$P(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$$
.

L'expression $a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$ est appelée un polynôme.

La fonction polynôme qui à tout réel x associe la valeur 0 est appelée la fonction polynôme nul.

Soit P un polynôme, différent du polynôme nul, dont la forme réduite est : $P(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$, pour tout réel x, avec $a_n \neq 0$.

Les réels a_i sont appelés les coefficients du polynôme P.

L'entier naturel n est appelé le degré du polynôme P.

Un terme $a_k x^k$ est appelé un monôme de degré k.

Propriétés:

- (1) Toute fonction constante non nulle est une fonction polynôme de degré 0.
- (2) Toute fonction affine non nulle est une fonction polynôme de degré 1.

Définition:

Tout polynôme de degré 2, c'est-à-dire de forme réduite $ax^2 + bx + c$, avec $a \ne 0$, est appelé un **trinôme du second degré**.

Soient P et Q deux polynômes non nuls.

Pour tout réel x, P(x) = Q(x) si et seulement si P et Q ont le même degré et ont leurs coefficients respectifs des monômes de même degré égaux.

E.C.P.1 – Jean PERRIN

2. Opérations sur les polynômes

Propriétés:

P et Q étant deux polynômes, la somme P+Q (ou la différence P-Q) des deux polynômes P et Q est un polynôme.

P et Q étant deux polynômes non nuls, le produit $P \times Q$ des deux polynômes P et Q est un polynôme non nul.

De plus, le degré du polynôme $P \times Q$ est égal à la somme des degrés des deux polynômes P et Q.

P et Q étant deux polynômes, on appelle fonction rationnelle la fonction quotient $\frac{P}{Q}$, c'est-à-dire la fonction R définie pour tout réel x tel que $Q(x) \neq 0$ par : $R(x) = \frac{P(x)}{Q(x)}$.

Remarque:

En général, le quotient de deux polynômes n'est pas un polynôme.

3. Racines d'un polynôme

Définition:

Soit P un polynôme et x_0 un réel.

On dit que x_0 est une racine réelle du polynôme P lorsque $P(x_0) = 0$.

Voir exercice 1

Si x_0 est une racine d'un polynôme P de degré n, alors on peut mettre en facteur l'expression $x-x_0$ dans P(x) et il existe un polynôme Q tel que : pour tout réel x, $P(x)=(x-x_0)Q(x)$. De plus, Q est de degré n-1. On dit alors qu'on a factorisé le polynôme P par l'expression $x-x_0$.

Réciproquement, soit x_0 un réel, si on peut factoriser un polynôme P par $x-x_0$, alors x_0 est une racine de P.

Théorème:

Tout polynôme de degré n possède au plus n racines.

II. Trinômes et équations du second degré

1. Discriminant d'un trinôme du second degré

Définition:

Soit P un trinôme du second degré de forme réduite $P(x) = ax^2 + bx + c$, avec $a \ne 0$.

On appelle **discriminant** du trinôme, le réel noté Δ défini par : $\Delta = b^2 - 4ac$.

Voir exercice 2

2. Racines et factorisation d'un trinôme du second degré

Théorème:

Soit $P(x) = ax^2 + bx + c$, avec $a \ne 0$, un trinôme du second degré et Δ son discriminant.

• Si $\Delta > 0$, alors P admet deux racines réelles distinctes :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$.

et pour tout réel x, $P(x) = a(x-x_1)(x-x_2)$.

- Si $\Delta = 0$, alors P admet une seule racine réelle : $x_0 = \frac{-b}{2a}$. et pour tout réel x, $P(x) = a(x - x_0)(x - x_0) = a(x - x_0)^2$.
- Si $\Delta < 0$, alors P n'admet aucune racine réelle et on ne peut pas factoriser P(x).

Voir exercices 3 & 4

III. Représentation graphique et signe d'un trinôme du second degré

1. Étude d'une fonction trinôme de second degré

Une fonction trinôme du second degré est représentée dans un repère orthogonal par une courbe appelée parabole.

Cette parabole admet un sommet S d'abscisse $-\frac{b}{2a}$, un axe de symétrie d'équation $x = -\frac{b}{2a}$ et admet en ce sommet une tangente horizontale.

Soit P la fonction trinôme du second degré définie sur \mathbb{R} par : $P(x) = ax^2 + bx + c$, avec $a \neq 0$. Le sens de variation de la fonction P dépend du signe de a : Tableaux de variation...

2. Signe d'un trinôme de second degré

Soit P la fonction trinôme du second degré définie sur \mathbb{R} par : $P(x) = ax^2 + bx + c$, où a, b et c sont des réels, $a \neq 0$ et $\Delta = b^2 - 4ac$ le discriminant de P.

- Lorsque $\Delta > 0$, x_1 et x_2 désignant les deux racines de P, avec $x_1 < x_2 : P(x)$ est du signe de a à l'extérieur des racines, c'est-à-dire si et seulement si x appartient à $]-\infty$; $x_1[\cup]x_2$; $+\infty[$.
- Lorsque $\Delta = 0$, P(x) est du signe de a pour tout réel x différent de $\frac{-b}{2a}$.
- Lorsque $\Delta < 0$, P(x) est du signe de *a* pour tout réel *x*.

Voir exercices 5 & 6

E.C.P.1 – Jean PERRIN

Tableau récapitulatif:

$$\Delta = b^2 - 4ac$$

	Résolution de	Factorisation de	Signe et représentation graphique	
	l'équation	$ax^2 + bx + c$	<i>a</i> > 0	a < 0
Δ<0	Pas de solution	Pas de factorisation.		
			$ax^2 + bx + c$ est du signe de a	
$\Delta = 0$	Une racine double: $x_0 = \frac{-b}{2a}$	$a(x-x_0)^2$		
			$ax^2 + bx + c$ est du signe de a	
Δ>0	Deux racines distinctes: $x_1 = \frac{-b - \sqrt{\Delta}}{2a}$	$a(x-x_1)(x-x_2)$		
	$x_2 = \frac{-b + \sqrt{\Delta}}{2a}$		ax²+bx+c est du signe de a à l'extérieur des racines et du signe de -a à l'intérieur des racines	

Soit $P(x) = ax^2 + bx + c$ avec $a \neq 0 \dots$

Ce qu'il faut savoir faire :

- ① Résoudre P(x) = 0 (départ : calcul de Δ)
- ② Factoriser P(x) (départ : calcul de Δ)
- 3 Déterminer les variations de P (départ : signe de a)
- **4** Déterminer le signe de P(x) (départ : calcul de Δ)

Trois cas où on peut ne pas passer par le calcul de Δ :

- ightharpoonup c = 0: factorisation par x (0 est donc une des deux racines)
- \rightarrow b=0: soit P(x) est du type $a^2-b^2=(a-b)(a+b)$, soit la factorisation est impossible
- ightharpoonup P(x) est du type $a^2 \pm 2ab + b^2 = (a \pm b)^2$