Activité : Limites de fonctions usuelles

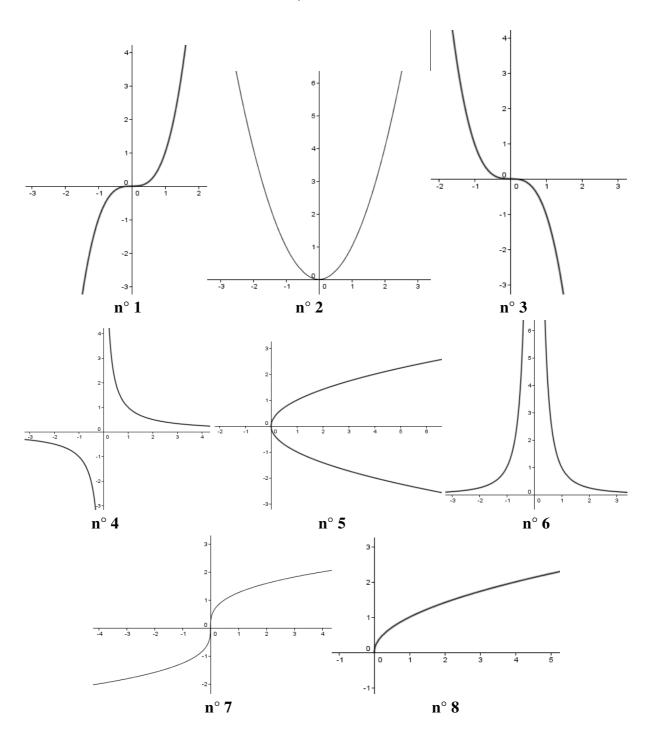
Voici 8 représentations graphiques. Reconnaître celles qui correspondent aux fonctions suivantes :

La courbe de la fonction $x \mapsto x^2$ est la courbe n° 2

La courbe de la fonction $x \mapsto x^3$ est la courbe n° 1

La courbe de la fonction $x \mapsto \frac{1}{x}$ est la courbe n° 4

La courbe de la fonction $x \mapsto \sqrt{x}$ est la courbe n° 8



E.C.P.1 – Jean PERRIN

En utilisant les graphiques précédents, indiquer les limites des fonctions usuelles citées.

$$\lim_{x \to +\infty} x^2 = +\infty$$

$$\lim_{x \to -\infty} x^2 = +\infty$$

$$\lim_{x \to +\infty} x^3 = +\infty$$

$$\lim_{x \to -\infty} x^3 = -\infty$$

$$\lim_{x \to +\infty} \frac{1}{x} = 0$$

$$\lim_{x \to -\infty} \frac{1}{x} = 0$$

$$\lim_{x \to 0^+} \frac{1}{x} = +\infty$$

$$\lim_{x \to 0^{-}} \frac{1}{x} = -\infty$$

$$\lim_{x \to +\infty} \sqrt{x} = +\infty$$

Dérivation

I. Dérivabilité

II. Dérivées des fonctions polynômes

La dérivée de $x \rightarrow 1$ sur \mathbb{R} est : $x \rightarrow 1$.

La dérivée de $x \rightarrow x$ sur \mathbb{R} est : $x \rightarrow 1$.

La dérivée de $x \to x^2$ sur \mathbb{R} est : $x \to 2x$.

La dérivée de $x \to x^3$ sur \mathbb{R} est : $x \to 3x^2$.

La dérivée de $x \to x^n$ sur \mathbb{R} est : $x \to nx^{n-1}$.

La dérivée de $x \to x+1$ sur \mathbb{R} est : $x \to 1$.

La dérivée de $x \to x^2 + x + 1$ sur \mathbb{R} est : $x \to 2x + 1$.

La dérivée de $x \to x^3 + x^2 + 7x + 5$ sur \mathbb{R} est : $x \to 3x^2 + 2x + 7$.

La dérivée de $x \to 2x^3 + 3x^2$ sur \mathbb{R} est : $x \to 6x^2 + 6x$.

La dérivée de $x \to 2x^3 - x^2 + 7$ sur \mathbb{R} est : $x \to 6x^2 - 2x$.

III. Application importante : dérivée et variation

Exemples:

- **1.** Étude des variations de la fonction f définie sur \mathbb{R} par : $f(x) = x^2 3x + 5$.
- **2.** Étude des variations de la fonction g définie sur \mathbb{R} par : $g(x) = x^3 4x^2 3x + 2$.

Correction:

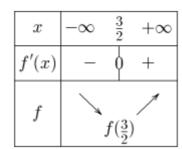
- 1. ① Calcul de la dérivée : f(x) = 2x 3
 - ② Signe de la dérivée, et ③ tableau des variations de la fonction

$$2x-3 \ge 0$$

$$\Leftrightarrow$$
 $2x \ge 3$

$$\Leftrightarrow x \ge \frac{3}{2}$$

On en déduit :



- 2. ① Calcul de la dérivée : $g'(x) = 3x^2 8x 3$
 - ② Signe de la dérivée, et ③ tableau des variations de la fonction a=3, b=-8 et c=-3.

$$\Delta = b^2 - 4ac = (-8)^2 - 4 \times 3 \times (-3) = 64 + 36 = 100 = 10^2 > 0$$
.

Il y a deux racines:

$$\frac{-b-\sqrt{\Delta}}{2a} = \frac{8-10}{2\times 3} = \frac{-2}{6} = -\frac{1}{3} \text{ et } \frac{-b+\sqrt{\Delta}}{2a} = \frac{8+10}{2\times 3} = \frac{18}{6} = 3.$$

g'(x) est du signe de a = 3 à l'extérieur des racines.

x	$-\infty$	$-\frac{1}{3}$		3	$+\infty$
g'(x)	+	Ó	_	þ	+
g	1	$g(-\frac{1}{3})$	_	g(3)	1

★ Exercice:

- **1.** Étudier les variations de la fonction f définie sur \mathbb{R} par : $f(x) = x^5 + 2x$.
- 2. Démontrer que l'équation $x^5 + 2x = 1$ possède une unique solution dans l'intervalle [0; 1]

Correction:

- 1. ① Calcul de la dérivée : $f'(x) = 5x^4 + 2$
 - ② Signe de la dérivée, et ③ tableau des variations de la fonction $f'(x) \ge 0$ comme somme de deux termes positifs.

On en déduit :

x	$-\infty$ $+\infty$
f'(x)	+
f	/

E.C.P.1 – Jean PERRIN

2. Considérons le tableau des variations de f sur l'intervalle [0;1].

$$f(0) = 0^5 + 2 \times 0 = 0$$
 et $f(1) = 1^5 + 2 \times 1 = 1 + 2 = 3$.

x	0 1
f'(x)	+
f	0 3

L'équation s'écrit f(x)=1.

Les conditions d'application du théorème de la bijection sont réunies.

- f est continue sur [0;1].
- f est strictement croissante sur [0;1].
- f([0,1]) = [0,3], donc $1 \in f([0,1])$.

D'après le théorème de la bijection, l'équation $x^5 + 2x = 1$ possède une unique solution dans l'intervalle [0;1].