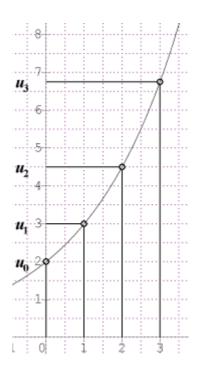
Suites géométriques

- I. Puissances entières d'un réel
 - 1. Définition, notation
 - 2. Propriétés
- II. Suites géométriques
 - 1. Définition
- **★** Exercice:

On considère la suite géométrique de premier terme $u_0=2$ et de raison b=1,5.

- 1. Calculer ses 4 premiers termes.
- 2. Placer les points dans un repère orthonormé.

Correction:


1.
$$u_0 = 2$$

$$u_1 = 1,5 \times u_0 = 1,5 \times 2 = 3$$

$$u_2 = 1,5 \times u_1 = 1,5 \times 3 = 4,5$$

$$u_3 = 1,5 \times u_2 = 1,5 \times 4,5 = 6,75$$

2.

E.C.P.1 – Jean PERRIN

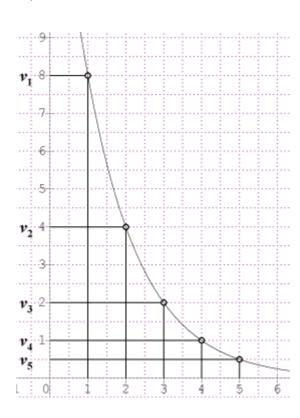
★ Exercice:

On considère la suite géométrique de premier terme $v_1 = 8$ et de raison $b = \frac{1}{2}$.

- 1. Calculer ses 5 premiers termes.
- 2. Placer les points dans un repère orthonormé.

Correction:

1.
$$v_1 = 8$$


$$v_2 = 0,5 \times v_1 = 0,5 \times 8 = 4$$

$$v_3 = 0,5 \times v_2 = 0,5 \times 4 = 2$$

$$v_4 = 0,5 \times v_3 = 0,5 \times 2 = 1$$

$$v_5 = 0,5 \times v_4 = 0,5 \times 1 = 0,5$$

2.

E.C.P.1 – Jean PERRIN

2. Calcul du terme de rang n

★ Exercice:

- 1. Calculer le $10^{\rm e}$ terme de la suite géométrique de premier terme $u_1 = 100$ et de raison 3.
- 2. Calculer le 11^{e} terme de la suite géométrique telle que $u_0 = 5$ et de raison -2.

Correction:

- **1.** $u_{10} = u_1 \times b^{n-1} = 100 \times 3^9 = 1968300$.
- **2.** $u_{10} = u_0 \times b^{10} = 5 \times (-2)^{10} = 5120$.
 - 3. Sens de variation
 - 4. Reconnaître une suite géométrique
 - 5. Une somme particulière