Lois de probabilités discrètes Exercices

Lois de probabilités

★ Exercice 10.1

On lance une pièce de monnaie. Soit *X* la variable aléatoire qui, à chaque lancer effectué associe le nombre 0 si on obtient pile et le nombre 1 si on obtient face.

- 1. Quelles sont les valeurs prises par X ? (c'est-à-dire, donner $X(\Omega)$)
- **2.** Déterminer la loi de probabilité de *X*.

★ Exercice 10.2

On lance un dé à six faces bien équilibré. Soit X la variable aléatoire qui, à chaque lancer effectué associe le numéro de la face supérieur.

- **1.** Donner $X(\Omega)$.
- **2.** Déterminer la loi de probabilité de *X*.

★ Exercice 10.3

On considère la variable aléatoire *X* de loi de probabilité :

X_i	0	1	2	3
p_{i}	0,1	0,3	0,4	0,2

- **1.** Parcours vert : Calculer $P(X \le 2, 4)$.
- **2.** Calculer $P(0, 2 < X \le 2, 8)$.

Espérance

★ Exercice 10.4

On considère la variable aléatoire *X* de loi de probabilité :

X_i	1	2 3		4
p_{i}	0,3	0,4	0,2	0,1

Calculer l'espérance de X.

★ Exercice 10.5

Calculer l'espérance de la loi de probabilité de l'exercice 3

★ Exercice 10.6

Soit *X* la variable aléatoire dont la loi est donnée par le tableau :

X_i	-5	-2	0	1	3	6
p_{i}	1/6	1 / 12	1 / 4	1/4	1 / 12	1/6

Calculer son espérance.

★ Exercice 10.7

Un joueur lance une fois un dé bien équilibré.

Il gagne $10 \in \text{si}$ le dé marque 1. Il gagne $1 \in \text{si}$ le dé marque 2 ou 4. Il ne gagne rien dans les autres cas. Soit X la variable aléatoire égale au gain algébrique du joueur.

- **1.** Déterminer la loi de probabilité de *X*.
- **2.** Calculer l'espérance de *X*.

★ Exercice 10.8

La roue d'une loterie comporte dix secteurs identiques dont quatre rapportent $1 \in$, cinq rapportent $3 \in$ et un rapporte $10 \in$. Le joueur doit miser $3 \in$ avant de lancer la roue.

- 1. Le jeu est-il favorable au joueur?
- 2. Déterminer le montant de la mise pour que le jeu soit équitable.

★ Exercice 10.9

Une urne contient n jetons : 5 jetons rouges et (n-5) jetons noirs, numérotés de 1 à n, $n \ge 5$.

Un joueur tire au hasard, successivement et sans remise, deux jetons de l'urne. On note p_n la probabilité de l'événement A : « les deux jetons sont de couleur différentes ». On admet que 10n-50

$$p_n = \frac{10n - 50}{n^2 - n}$$
. Le joueur gagne 2 € si A est réalisé et perd 1 € sinon.

Soit *X* la variable aléatoire égale au gain algébrique du joueur.

- 1. Donner la loi de probabilité de X et vérifier que $E(X) = \frac{-n^2 + 31n 150}{n^2 n}$.
- 2. Déterminer la composition de l'urne pour que le jeu soit équitable.

E.C.P.1 – Jean PERRIN

Propriétés de l'espérance

★ Exercice 10.10

Soit X la variable aléatoire égale à la valeur de la face supérieure lors du lancer d'un dé bien équilibré. On rappelle que l'espérance E(X) est égale à $\frac{7}{2}$. Un joueur lance quatre dés. Soit Z la variable aléatoire égale à la somme des quatre valeurs obtenues sur les faces supérieures lors du lancer des dés. Sans calculer la loi de probabilité de Z, déterminer l'espérance E(Z).

★ Exercice 10.11

- 1. Calculer la moyenne théorique de la variable aléatoire indiquant la face obtenue en lançant un dé à 12 faces numérotées de 1 à 12.
- **2.** On lance simultanément 2 dés à 6 faces numérotées de 1 à 6 et trois dés à 12 faces numérotées de 1 à 12.
 - Quelle est la moyenne théorique de la variable aléatoire obtenue en faisant la somme des points indiqués par chaque dé ?