1.	Soit P un polynôme et Q une fonction définie par $Q(x) = P(x+1)$. Alors Q est un polynôme?			
	□ Oui			\square Non
2.	. Soit P la fonction définie par $P(x)=(\sqrt{11})x^7+\sqrt{3}$. Quel est l'ensemble de définition de P			
	$\square[0;+\infty[$	$\square]0;+\infty[$	$\square \mathbb{R}$	$\square \mathbb{R}^*$
3.	Soit P un polynôme qui s'écrit $P(x) = (x - a)Q(x)$ où Q est un polynôme. Que vaut $P(a)$?			
4.	4. Soit P la fonction définie par $P(x) = -x^{2020} + x^{2021} + 2$ Alors P peut s'écrire (Q est un polynôme)			
	$\Box P(x) = (x-1)Q(x)$	$\Box P(x) = (x+1)Q(x)$	$\Box P(x) = (x-2)Q(x)$	$\Box P(x) = x^{2020}Q(x)$
5.	Soit P un polynôme de degré 3 qui s'écrit sous la forme $P(x)=(x^2+11x-9)Q(x)$ où Q est un polynôme. Quel est le degré de Q ?			
6.	Soit P la fonction définie par $P(x) = (x^3 - x^2)^7$. Quel est le degré de P ?			
7.	P est un polynôme de degré 8. On pose $Q(x) = x^2 P(x)$. Quel est le degré de Q' , le polynôme dérivé de Q ?			
8.	Soit P un polynôme de degré n . Si P peut s'écrire comme produit de polynômes de degré 1 alors			
	\square P admet n racines \square P admet au plus n racines	cines		P admet $n+1$ racines admet aucune racine
9.	Soit P un polynôme. Soit Q le polynôme défini par $Q(x) = xP(x)$. Si P peut s'écrire comm produit de polynômes de degré 1, alors Q peut s'écrire comme produit de polynômes de degr 1 .			
	□ Vrai			\Box Faux
10.	Soit P un polynôme de degré au moins 1. Si P peut s'écrire comme produit de polynômes de degré 1, alors P admet au moins une racine.			
	□ Vrai			□ Faux