\square faux

- **1.** Soit $(u_n)_{n\in\mathbb{N}}$ une suite définie par $u_n=\frac{1}{n^2+1}-1$. Que vaut u_{12} ?
- **2.** (u_n) désigne une suite géométrique de raison 3 et de premier terme $u_0 = 5$, que vaut u_4 ?
- **3.** (u_n) désigne une suite géométrique. Sachant que $u_0 = 1$ et $u_{2773} = -1$, que vaut la raison?
- **4.** Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_n=n^2-999n-1000$, quel est le sens de variations de $(u_n)_{n\in\mathbb{N}}$? \square croissante \square décroissante \square non monotone
- 5. (u_n) désigne une suite géométrique de raison strictement négative et de premier terme non nul, quel est le sens de variations de $(u_n)_{n\in\mathbb{N}}$?

 \square croissante \square décroissante \square non monotone

6. L'opposée d'une suite arithmétique est arithmétique.

7. $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont deux suites telles que $\forall n\in\mathbb{N}, u_n\leqslant v_n$. Si $(u_n)_{n\in\mathbb{N}}$ est croissante alors $(v_n)_{n\in\mathbb{N}}$ est croissante.

□ vrai □ faux

8. Que vaut $\sum_{k=1}^{7} 3k$?

□ vrai

- 9. A partir d'un salaire annuel de 20 000 €, on vous propose deux types d'évolution annuelle :
 - **a.** une augmentation de $800 \in$.
 - **b.** une augmentation de 3,5%

Parmi les suivantes, quelle formule représente l'augmentation annuelle de 3,5%?

 $\square u_{n+1} = 1,35u_n$ $\square u_{n+1} = u_n + 800$ $\square u_{n+1} = 1,035u_n$ $\square u_{n+1} = u_n + \frac{3,5}{100} \times 20\,000$

10. Au bout de 5 ans, quelle formule est la plus rémunératrice? (calculatrice autorisée)

 \Box formule b)