- **1.** (u_n) est la suite définie par $u_n = \frac{\sqrt{3n+11}}{\sqrt{n^2+1}}$. Que vaut u_7 ?
- **2.** $(u_n)_{n\in\mathbb{N}}$ est une suite définie par $u_n=\sum_{k=0}^n\binom{n}{k}$. Que vaut u_6 ?
- **3.** (u_n) est une suite arithmétique de raison non nulle. (u_n) est-elle être bornée?

□ oui □ non

□ cela dépend du premier terme

4. Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_n=-n^2-6n+5$, quel est le sens de variations de $(u_n)_{n\in\mathbb{N}}$?

 \square croissante

□ décroissante

 \square non monotone

5. (u_n) est une suite définie par $u_{n+1}=u_n^2$, alors (u_n) est

 \square croissante

□ décroissante

 \Box ça dépend

6. Une suite croissante n'est jamais bornée.

 \square vrai

 \square faux

7. (u_n) est bornée si et seulement si $(|u_n|)$ est majorée.

□ vrai

 \square faux

- **8.** Que vaut $S = \sum_{k=1}^{9} 6k$?
- **9.** (u_n) est une suite géométrique de premier terme 2 et de raison 3. Que vaut $S = \sum_{k=0}^{24} u_k$?

 $\square \ 2 \times 3^{24}$

 $\Box 3^{25} - 1$

 $\square \ 2 \times 3^{\frac{24 \times 25}{2}}$

 $\Box \frac{1-3^{25}}{2}$

10. (u_n) est une suite définie par $u_{n+1} = e^{-\sqrt{n^3+4}}$, alors (u_n) est

Plusieurs réponses sont possibles (évidemment!).

□ minorée

□ majorée

□ bornée

 \square rien de tout cela