Feuille d'exercices n° 1 - Généralités sur les Fonctions

1 Généralités sur les fonctions

Exercice 1. Domaines de définition

Déterminer le domaine de définition des fonctions suivantes :

1.
$$f: x \mapsto x^2 - 5x$$

4.
$$i: x \mapsto \sqrt{\frac{2x+6}{3x-1}}$$

2.
$$g: x \mapsto \frac{\ln x}{x^2 + 2x - 8}$$

3.
$$h: x \mapsto \sqrt{\ln x}$$

5.
$$j: x \mapsto \sqrt{x^2 + (n-1)x - n}$$
 où n est un entier naturel.

2 Continuité, suites implicites

Exercice 2. suite implicite - 1

On définit, pour tout $n \in \mathbb{N}$, la fonction f_n par : $f_n(x) = x^5 + nx - 1$.

- 1. Dresser le tableau de variations complet f_n (nb : "complet" signifie "avec les limites").
- 2. Montrer que pour tout $n \in \mathbb{N}$, il existe une unique solution u_n à l'équation $f_n(x) = 0$. Montrer ensuite que $u_n > 0$.
- 3. Démontrer que pour tout $n \in \mathbb{N}$, $f_{n+1}(u_n) > f_{n+1}(u_{n+1})$. En déduire que la suite (u_n) est décroissante
- 4. En déduire que la suite (u_n) converge vers une limite $\ell \geq 0$.
- 5. En raisonnant par l'absurde, démontrer que $\ell=0$.
- 6. Démontrer que pour tout $n \ge 1$, $\frac{1}{1+n} < u_n < \frac{1}{n}$.
- 7. En déduire que $\lim_{n \to +\infty} \frac{u_n}{\frac{1}{n}} = 1$

Exercice 3. suite implicite - 2

On définit, pour tout $n \in \mathbb{N}^*$, la fonction f_n par : $f_n(x) = x^n + x - 1$.

- 1. Soit $n \in \mathbb{N}^*$. Démontrer que l'équation $f_n(x) = 0$ admet une unique solution $x_n \in]0,1[$. Calculer x_1 et x_2 .
- 2. Démontrer que pour tout n > 0, $f_{n+1}(x_n) < f_{n+1}(x_{n+1})$. En déduire le sens de variation de la suite (x_n) .
- 3. Démontrer que la suite (x_n) converge vers une limite $\ell \in [0,1]$.
- 4. En raisonnant par l'absurde, démontrer que $\ell=1$.

Exercice 4. suite implicite - 3

Pour tout $n \in \mathbb{N}$, on considère, la fonction f_n définie sur \mathbb{R}_+ par :

$$\forall x \in \mathbb{R}_+, \quad f_n(x) = e^x + nx^2 - 3.$$

- 1. Soit $n \in \mathbb{N}$. Démontrer que l'équation $f_n(x) = 0$ admet une unique solution α_n . Puis prouver que si n > 0 alors $\alpha_n \in]0,1[$.
- 2. Soit $n \geq 0$. Démontrer que pour tout $x \in \mathbb{R}_+$, $f_{n+1}(x) > f_n(x)$.

- 3. En déduire que la suite (α_n) est décroissante.
- 4. Démontrer que la suite (α_n) converge vers une limite $\ell \geq 0$.
- 5. On suppose que $\ell > 0$. En déduire une contradiction.
- 6. Donner la valeur de ℓ .

3 Dérivation et limites

Exercice 5.

Dans chaque cas suivant :

- ullet Donner le domaine de définition et de dérivabilité de f sans justifier.
- Déterminer la dérivée de f. Vous la factoriserez au maximum.
- (Bonus) : Dresser le tableau de variations de f.

1.
$$f: x \mapsto x \ln x$$

$$2. \ f: x \mapsto e^{x^2}$$

3.
$$f: x \mapsto (x^2 + 3x - 2)e^{-x}$$
.

4.
$$f: x \mapsto \ln(x^2 + 1)$$

5.
$$f: x \mapsto \frac{x}{\ln x}$$

$$6. \ f: x \mapsto \sqrt{e^x - 2}$$

7.
$$f: x \mapsto \ln(x^2 - 1) - \ln(x^2 + 1)$$
.

8.
$$f: x \mapsto (x^2 + 3x - 2)e^{-x}$$
.

9.
$$f: x \mapsto x + 1 + \ln\left(\frac{x+2}{x+1}\right)$$
.

10. (**)
$$f: x \mapsto e^x \ln(\sin x)$$
.

Exercice 6. Justifier proprement qu'une fonction est dérivable

- 1. Montrer que la fonction $f: x \mapsto e^{-x} x^2$ est dérivable sur \mathbb{R} , puis calculer f'(x) pour tout $x \in \mathbb{R}$.
- 2. Montrer que la fonction $f: t \mapsto -\frac{t}{\ln(1-t)}$ est dérivable sur $]-\infty,0[$ et sur]0,1[, puis calculer f'(x) pour tout $x \in]-\infty,0[\cup]0,1[$.
- 3. Montrer que la fonction $f: x \mapsto \ln\left(\sqrt{1-x}\right)$ est dérivable sur $]-\infty,1[$, puis calculer f'(x) pour tout $x \in]-\infty,1[$.
- 4. Montrer que la fonction $f: t \mapsto \frac{t}{1-t}e^{-\frac{1}{t}}$ est dérivable sur]0,1[, puis calculer f'(t) pour tout $t \in]0,1[$.
- 5. Montrer que la fonction $f: x \mapsto x^x$ est dérivable sur \mathbb{R}_+^* , puis calculer f'(x) pour tout $x \in \mathbb{R}_+^*$.

Exercice 7. Limites

Déterminer les limites suivantes :

$$1. \lim_{x \to +\infty} 3x^2 - e^x$$

$$2. \lim_{x \to -\infty} 3x^2 - e^x$$

3.
$$\lim_{x\to 0^+} x^2 \ln x + x^3$$

4.
$$\lim_{x \to +\infty} x^2 \ln x + x^3$$

$$5. \lim_{x \to +\infty} x^{\frac{1}{x}}$$

6.
$$\lim_{x \to +\infty} \frac{1}{x} e^{x^2}$$

7. (*) (inspiré de HEC 2020) Déterminer la limite à droite et à gauche en 0 de la fonction u définie par $u(t) = te^{-\frac{1}{t}}$.

Exercice 8. Composée

- 1. Soit $f: x \mapsto x^2 3x + 5$ et $g: x \mapsto e^x$
 - (a) Donner l'expression de $f \circ g$ et de $g \circ f$
 - (b) Donner l'expression de $f \circ f$ et $g \circ g$.
- 2. Soit $f: x \mapsto \frac{x+1}{x-1}$. Vérifier que pour tout $x \in \mathbb{R} \setminus \{1\}$, $f \circ f(x) = x$. En déduire $f \circ f \circ f(x)$.

Exercice 9. Parité

- 1. Démontrer que la fonction $f:x\mapsto \frac{e^x-1}{e^x+1}$ est impaire.
- 2. Étudier la parité des fonctions $f:x\mapsto \frac{1}{e^x+e^{-x}}$ et $g:x\mapsto \frac{1}{\left(e^x-e^{-x}\right)^2}$
- 3. Démontrer que la fonction $f: x \mapsto \frac{e^x}{\left(e^x+1\right)^2}$ est paire.

Exercice 10. Fonctions périodiques

- 1. Démontrer que la fonction $u:x\mapsto\cos\left(\frac{4\pi x}{7}\right)$ est $\frac{7}{2}$ -périodique.
- 2. Soit $\phi \in \mathbb{R}_+^*$.
 - (a) Démontrer que la fonction $v:t\mapsto\cos\left(\frac{2t}{\phi}\right)$ est ϕ -périodique.
 - (b) En déduire une fonction $\frac{1}{440}$ -périodique.
- 3. Démontrer que la fonction $f: x \mapsto \frac{\cos(\pi x)}{\sin(\pi x)}$ est périodique de période 1.
- 4. Soit f une fonction définie sur $\mathbb R$ telle que, pour tout réel x, f(x+1)=-f(x). Démontrer que f est 2-périodique.