Feuille d'exercices n° 3 - Éléments de logique et démonstrations par récurrence

Exercice 1. $(\star\star)$ Soit $x\in\mathbb{R}$ et $z\in\mathbb{C}$.

Compléter les propositions par les symboles \implies , \iff ou \iff :

1.
$$x = 3$$
 ... $x^2 = 9$

4.
$$x(x+2) = x(2x+3)$$
 ... $x = -1$

2.
$$x = 2\pi$$
 ... $e^{ix} = 1$

5.
$$x^2 > 9$$
 ... $x > 3$

3.
$$e^x = 1$$
 ... $x = 0$

6. Pour
$$x > 0$$
, $\ln(x^4) = 16$... $\ln(x) = 4$.

Exercice 2. $(\star\star\star)$ Soit f une fonction définie sur \mathbb{R} .

Traduire à l'aide de quantificateurs les propositions suivantes :

- $1. \ f$ est une fonction constante
- 6. f est périodique
- 2. f n'est pas une fonction constante
- 7. f est croissante sur \mathbb{R} .

3. f est une fonction affine

8. 2 possède un antécédent par f.

4. f est paire

9. Tout réel y possède un antécédent par f.

5. f est 3-périodique

Exercice 3. $(\star\star)$ Soit x un réel.

Traduire à l'aide de quantificateur les propositions suivantes :

1. x est un entier pair

3. x est un rationnel

2. x est un entier impair

4. x est un irrationnel

Exercice 4. (\star) Soit I un intervalle de $\mathbb R$ non vide et $f:I\to\mathbb R$ une fonction à valeurs réelles définie sur I. Exprimer les négations des propositions suivantes :

- 1. $\forall x \in I, f(x) \neq 0$
- 2. $\forall y \in \mathbb{R}, \exists x \in I, f(x) = y$
- 3. $\exists M \in \mathbb{R}, \forall x \in I, |f(x)| \leq M$
- 4. $\forall x, y \in I, x \leq y \implies f(x) \leq f(y)$
- 5. $\forall x, y \in I, f(x) = f(y) \implies x = y$
- 6. $\forall x \in I, f(x) > 0 \implies x < 0$.

Exercice 5. (\Leftrightarrow) On considère la suite (u_n) définie par :

$$\forall n \in \mathbb{N}, u_{n+1} = 2u_n - 3$$
 et $u_0 = 7$.

Démontrer par récurrence que :

$$\forall n \in \mathbb{N}, u_n = 2^{n+2} + 3.$$

Exercice 6. (\star) On considère la suite (u_n) définie par :

$$\forall n \in \mathbb{N}, u_{n+1} = u_n + 3n(n+1) + 1 \text{ et } u_0 = 0.$$

1. Conjecturer l'expression de u_n pour tout $n \in \mathbb{N}$.

2. Démontrez votre conjecture par récurrence.

Exercice 7. (★)

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=5$ et $\forall n\geq 1,\ u_n=\left(1+\frac{2}{n}\right)u_{n-1}+\frac{6}{n}.$

Démontrer que pour tout entier naturel n, on a : $u_n = 4n^2 + 12n + 5$.

Exercice 8. (★)

Démonter par récurrence que pour tout entier naturel n, $3^n \ge 1 + 2n$

Exercice 9. (★★)

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=\frac{1}{2}$ et $\forall n\in\mathbb{N},\ u_{n+1}=\frac{1}{2}\left(u_n+\frac{2}{u_n}\right)$.

Démontrer que pour tout entier $n \ge 1$, $u_n \ge \sqrt{2}$

Exercice 10. (*) Une suite récurrente linéaire d'ordre 2

Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=2,\ u_1=3$ et $\forall n\in\mathbb{N},\ u_{n+2}=3u_{n+1}-2u_n$.

Montrer que, pour tout $n \in \mathbb{N}, u_n = 1 + 2^n$.

Exercice 11. (★★) Suite de Fibonacci

Soit $(v_n)_{n\in\mathbb{N}}$ la suite définie par $v_0=0,\ v_1=1$ et $\forall n\in\mathbb{N}, v_{n+2}=v_{n+1}+v_n$.

Montrer que, $\forall n \geq 1, \ v_n \leq 2^{n-1}$.

Exercice 12. $(\star\star)$

Soit $(w_n)_{n\in\mathbb{N}}$ la suite définie par $w_0=w_1=1$ et $\forall n\in\mathbb{N}, w_{n+2}=(n+1)(w_{n+1}+w_n)$.

Montrer que, $\forall n \in \mathbb{N}, \ w_n = n!$.

On rappelle que $n! = 1 \times 2 \times 2 \times \cdots \times n$ et que 0! = 1.

Exercice 13. (★★★) Identité de Cassini

On note $(F_n)_{n\in\mathbb{N}}$ la suite définie par $F_0=0$, $F_1=1$ et $\forall n\in\mathbb{N}, F_{n+2}=F_{n+1}+F_n$ (suite de Fibonacci).

Montrer que que $\forall n \in \mathbb{N}, F_n F_{n+2} - F_{n+1}^2 = (-1)^{n+1}$.