Devoir Surveillé n° 3

Soignez au maximum la rédaction et la présentation. Encadrez vos résultats

Vous pouvez traiter les exercices dans le désordre, mais, à l'intérieur d'un exercice, vous devez traiter les questions dans l'ordre. **Toute question non numérotée ne sera pas notée!**Bon travail!

Exercice 1: Applications directes du cours

- 1. On pose $A=\begin{pmatrix} 2 & 1 \\ 1 & -1 \end{pmatrix}$. Déterminer si A est inversible et si oui, donner son inverse.
- 2. On pose $A=\begin{pmatrix}1&4&3\\0&2&-3\\0&0&\frac12\end{pmatrix}$. Déterminer si A est inversible et si oui, donner son inverse.
- 3. Effectuer la division euclidienne du polynôme $A=X^4-3X^2+X+1$ par $B=X^2+1$.
- 4. (a) Déterminer l'ordre de multiplicité de la racine 3 dans le polynôme $P(X) = X^4 5X^3 + 4X^2 + 3X + 9$.
 - (b) Factoriser dans $\mathbb{R}[X]$ le polynôme P.
- 5. Soit $n \in \mathbb{N}^*$. Montrer que X^2-1 divise $Q(X)=nX^{2n}-2X^{2n-1}+2X-n$.
- 6. (a) Calculer $\sum_{k=0}^{n} \binom{n}{k} \frac{1}{e^k}$.
 - (b) Soit $n\in\mathbb{N}.$ Montrer que $\sum_{k=0}^n \frac{2k(k+1)}{(n+1)(n+2)} = \frac{2n}{3}.$

Exercice 2

On considère les matrice $A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 0 & 1 \\ -4 & 2 & -1 \end{pmatrix}$ et $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

- 1. Calculer A^2 .
- 2. En déduire deux réels a et b tels que $A^2 = aA + bI$.
- 3. En déduire un polynôme annulateur de A.
- 4. Montrer que A est inversible et donner son inverse en fonction de A et de I.
- 5. Montrer qu'il existe deux suites de réels (a_n) et (b_n) telles que :

$$\forall n \in \mathbb{N}, \ A^n = a_n A + b_n I.$$

On vérifiera qu'on a $a_0 = 0$; $b_0 = 1$ et

$$\forall n \in \mathbb{N}, \quad \begin{cases} a_{n+1} = -a_n + b_n \\ b_{n+1} = 2a_n \end{cases}$$

- 6. Démontrer que (a_n) est une suite récurrente linéaire d'ordre 2. En déduire l'expression de (a_n) puis celle de (b_n) .
- 7. En déduire une expression de A^n en fonction de A et de I.

Exercice 3

Première partie : Calcul des puissance d'une matrice

On considère les matrices suivantes :

$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \; ; \; A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 2 & 0 & 1 \end{pmatrix} \; ; \; L = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \; \text{et} \; P = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

- 1. Calculer P^3 . Montrer alors que P est inversible et déterminer son inverse. On donnera aussi au passage un polynôme annulateur de P.
- 2. Montrer que $P^{-1}AP = L$. On donnera le détail des calculs.
- 3. Montrer que pour tout entier naturel n, $A^n = PL^nP^{-1}$.
- 4. On pose J = L I. Calculer J^3 .
- 5. En déduire, à l'aide de la formule du binôme de Newton que, pour tout entier $n \geq 2$:

$$L^{n} = I + nJ + \frac{n(n-1)}{2}J^{2}.$$

- 6. En déduire, pour $n \ge 2$, les neufs coefficients de L^n . Vérifiez que votre résultat reste vrai pour n = 0 et n = 1.
- 7. Déduire des questions précédentes que, pour tout $n\in\mathbb{N}$, $A^n=\begin{pmatrix} 1 & 0 & 0 \\ 2n(n-1) & 1 & 2n \\ 2n & 0 & 1 \end{pmatrix}$.

Deuxième partie : Etude de 3 suites conjointes.

On considère les trois suites (u_n) , (v_n) , et (w_n) définies par : $u_1 = 1$, $v_1 = 0$, $w_1 = 2$ et, pour tout entier $n \ge 1$:

$$\begin{cases} u_{n+1} = u_n, \\ v_{n+1} = v_n + 2w_n, \\ w_{n+1} = 2u_n + w_n. \end{cases}$$

- 8. Que pouvez-vous dire de la suite (u_n) ? Donner u_n pour tout entier $n \ge 1$.
- 9. Compléter la fonction Scilab suivante pour quelle affiche la valeur de v_n et de w_n pour la valeur de n entrée par l'utilisateur.

- 10. On pose, pour tout entier $n \geq 1$, $X_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$
 - (a) Montrer que : $\forall n \in \mathbb{N}^*, \quad X_{n+1} = AX_n$.
 - (b) En déduire, sans justifier, une expression de X_n en fonction de A et de X_1 .
 - (c) Déduire des questions précédentes que, pour tout entier $n \ge 1$:

$$v_n = 2n(n-1)$$
 et $w_n = 2n$.

Exercice 4 : une suite de Polynômes

- 1. Soit (P_n) la suite de polynômes définie par : $P_0(X) = 1$ et $P_{n+1}(X) = P'_n(X) 2XP_n(X)$.
 - (a) Donner les polynômes P_1 , P_2 et P_3 .
 - (b) Déterminer, sans le démontrer, le degré et le coefficient dominant de P_n .
- 2. On considère la fonction f définie sur $\mathbb R$ par $f(x)=e^{-x^2}.$ Comme pour les polynômes, on note :
 - f" la dérivée seconde d'une fonction,
 - $f^{(3)}$ sa dérivée 3ème,
 - ...,
 - $f^{(n)}$ sa dérivée n-ième.
 - etc.

On a en particulier : $f^{(n+1)} = (f^{(n)})'$.

- (a) Calculer f'(x), f''(x) et $f^{(3)}(x)$.
- (b) Démontrer par récurrence que pour tout $n \in \mathbb{N}$ et tout réel x :

$$f^{(n)}(x) = P_n(x)f(x).$$

(c) Démontrer par récurrence que pour tout $n \in \mathbb{N}^*$ et tout réel x :

$$f^{(n+1)}(x) = -2xf^{(n)}(x) - 2nf^{(n-1)}(x).$$

- (d) En déduire, pour $n \geq 1$, une relation entre P_{n+1} , P_n et P_{n-1} .
- (e) Montrer que $\forall n \in \mathbb{N}, \ P(-X) = (-1)^n P_n(X).$
- (f) En déduire la parité des polynômes P_n selon la valeur de n.

Question subsidiaire

Déterminer tout les polynômes $P \in \mathbb{R}[X]$ tels que : $(P')^2 = 4P$.

On pourra commencer par étudier le degré de P.