Feuille d'exercices n°13 - Intégration sur un segment

1 CALCULS DIRECTS DE PRIMITIVES ET D'INTEGRALES

Exercice 1 - Des primitives élémentaires (A Savoir Refaire Absolument)

Déterminer une primitive des fonctions suivantes. On notera systématiquement F cette primitive.

1.
$$f: x \mapsto 3x^4 - 5x + 2 + \frac{4}{x} - 3e^x - 4\cos x$$

2.
$$f: x \mapsto (4x+3)(x-1)$$

3.
$$f: x \mapsto (2x^2 - 3)^2$$

4.
$$f: x \mapsto \frac{1}{x^3}$$

5.
$$f: x \mapsto \frac{3}{x^5}$$

6.
$$f: x \mapsto \frac{1}{\sqrt{x}}$$

Exercice 2 - Des primitives « application directe du cours » (A Savoir Refaire Absolument)

Déterminer une primitive des fonctions suivantes. On notera systématiquement F cette primitive.

1.
$$f: x \mapsto e^{3x+1}$$

2.
$$f: x \mapsto xe^{x^2}$$

$$3. \quad f: x \mapsto \frac{e^{\frac{1}{x}}}{x^2}$$

4.
$$f: x \mapsto \frac{x}{(x^2+1)^2}$$

5.
$$f: x \mapsto \frac{1}{x^2+1}$$

6.
$$f: x \mapsto \tan x$$

7.
$$f: x \mapsto \sin x \cos x$$

8.
$$f: x \mapsto \frac{\sin x}{\cos^3 x}$$

$$9. \quad f: x \mapsto \cos\left(3x - \frac{\pi}{4}\right)$$

10.
$$f: x \mapsto \frac{\ln x}{x}$$

11.
$$f: x \mapsto \frac{1}{x \ln x}$$

12.
$$f: x \mapsto \frac{x-2}{\sqrt{x^2-4x+3}}$$

13. $f: x \mapsto \frac{e^{\arctan x}}{1+x^2}$

13.
$$f: x \mapsto \frac{e^{\arctan}}{1+x^2}$$

Exercice 3 - Primitive avec Linéarisation (A Savoir Refaire)

Déterminer une primitive F de $f: x \mapsto \sin^2 x \cos^2 x$

Exercice 4 – Des intégrales d'application directe du cours (ASRA)

Calculer les intégrales suivantes

$$1. \int_1^2 \frac{dt}{t^2}$$

$$4. \int_0^{\frac{\pi}{4}} \frac{\sin(t)}{\cos(t)} dt$$

7.
$$\int_1^2 \frac{x^2}{x^2+1} dx$$

2.
$$\int_0^1 \frac{dt}{1+t^2}$$

$$5. \int_1^2 \frac{x}{x+2} dx$$

8.
$$\int_{1}^{2} \frac{dx}{r(x+2)}$$

$$3. \int_{e}^{e^2} \frac{1}{t \ln(t)} dt$$

6.
$$\int_0^1 \frac{t}{t^2+1} dt$$

Exercice 5 - Des intégrales plus ou moins faciles (ASR)

Calculer les intégrales suivantes

1.
$$\int_0^1 \frac{t^2+2t-1}{t+1} dt$$

2.
$$\int_0^1 x(x^2+1)^5 dx$$

3.
$$\int_{-1}^{4} \frac{dt}{(2t+5)^3}$$

4.
$$\int_{-4}^{0} x \sqrt{x+4} dx$$

5.
$$\int_0^2 \frac{x}{\sqrt{2-x} + \sqrt{2+x}} dx$$

6.
$$\int_{2}^{4} \frac{dx}{x^{2}-1}$$

7.
$$\int_0^{\frac{\pi}{4}} \frac{\sin(t)}{\cos^3(t)} dt$$

8.
$$\int_0^{\frac{\pi}{2}} \sin^5(t) dt$$

Exercice 6- Des intégrales à « découper » (ASR)

1.

Calculer l'intégrale
$$\int_{-1}^{2} (|x-1| - |3x+2|) dx$$
.

2.

Calculer l'intégrale $\int_{2}^{5} |x| dx$.

Exercice 7 Quelques intégrales d'application directe en plus (ASRA)

Justifier l'existence des intégrales suivantes, puis les calculer.

$$I_1 = \int_0^{\pi/2} \sin^2(t) dt$$

$$I_2 = \int_0^{\frac{\pi}{4}} \frac{\mathrm{d}t}{\cos^2(t)}$$

$$I_1 = \int_0^{\pi/2} \sin^2(t) dt$$
 $I_2 = \int_0^{\frac{\pi}{4}} \frac{dt}{\cos^2(t)}$ $I_3 = \int_0^1 \frac{\operatorname{Arctan}(t)}{t^2 + 1} dt$

2 INTEGRATION PAR PARTIE

Exercice 8 - IPP - (ASRA)

Calculer les intégrales suivantes :

1.
$$\int_0^1 t \cos(t) dt$$
; 2. $\int_0^{\frac{\pi}{4}} \frac{t}{\cos^2(t)} dt$; 3. $\int_0^x \operatorname{Arctan}(t) dt$ 4. $\int_1^x t^2 \ln(t) dt$

Exercice 9 - Double IPP - (ASRA)

1.
$$\int_0^1 t^2 \cos(t) dt$$
; 2. $\int_0^x e^{2t} \sin(t) dt$; 3. $\int_0^x (t^2 - 3t) e^{4t} dt$

Exercice 10 IPP ou double IPP - (ASR)

1.
$$\int_0^1 \ln(1+t^2)dt$$

2. $\int_1^e t^n \ln t \ dt$
3. $\int_0^1 3x^2 e^{-x}$
4. $\int_1^3 x \ln x \ dx$
5. $\int_1^3 x \ln x \ dx$
6. $\int_0^{\pi} e^x \cos(2x) \ dx$
7. $\int_0^{\pi} (x^2 + 1) \sin x \ dx$

3 CHANGEMENT DE VARIABLE

Exercice 11 (ASR)

Calculer les intégrales suivantes en effectuant le changement de variable indiqué.

1.
$$\int_{1}^{e} \frac{dt}{t + t(\ln(t))^{2}}$$
 avec $u = \ln(t)$

2. $\int_{1}^{e} \frac{dt}{t \sqrt{\ln(t) + 1}}$ avec $u = \ln(t)$.

3. $\int_{0}^{1} \frac{dt}{e^{t} + 1}$ avec $u = e^{t}$

4. $\int_{0}^{1} \sqrt{1 - t^{2}} dt$ avec $t = \sin(u)$

5. $\int_{0}^{1} t^{2} \sqrt{1 - t^{2}} dt$ avec $t = \sin(u)$

6. $\int_{1}^{2} \frac{\ln(t)}{\sqrt{t}} dt$ avec $u = \sqrt{t}$

Exercice 12 - Un classique!

1. A l'aide du changement de variable $u = \frac{\pi}{2} - t$, démontrer que :

$$\int_0^{\frac{\pi}{2}} \frac{\cos(t)}{\sin(t) + \cos(t)} dt = \int_0^{\frac{\pi}{2}} \frac{\sin(t)}{\sin(t) + \cos(t)} dt = \frac{\pi}{4}.$$

2. En déduire la valeur de l'intégrale suivante (on pourra effectuer le changement de variable $t = \sin x$).

$$\int_{0}^{1} \frac{dt}{\sqrt{1-t^2}+t}$$

4 DES SUITES ET DES FONCTIONS DEFINIES PAR DES INTEGRALES

Exercice 13 - (****) - pour approfondir.

Pour tout entier $n \geq 0$ et tout réel $x \geq 0$ on pose

$$I_n(x) = \int_0^n t^x \left(1 - \frac{t}{n}\right)^n dt$$
 et $J_n(x) = \int_0^1 s^x (1 - s)^n ds$.

- 1. Trouver, pour tout $n \in \mathbb{N}$ et pour tout $x \in \mathbb{R}_+$, une relation entre $I_n(x)$ et $J_n(x)$.
- 2. Pour tout $n \in \mathbb{N}$ et pour tout $x \in \mathbb{R}_+$, trouver une relation entre $J_n(x)$ et $J_{n-1}(x+1)$.
- 3. En déduire $J_n(x)$ et $I_n(x)$ pour tout $n \in \mathbb{N}$ et pour tout $x \in \mathbb{R}_+$.

Indication: pour la première question, on cherchera un changement de variable qui fait passer de $I_n(x)$ à $J_n(x)$.

On définit, pour tout $n \in \mathbb{N}$, les intégrales suivantes :

$$I_n = \int_0^1 x^n \ln(1+x^2) dx \ J_n = \int_0^1 \frac{x^n}{1+x^2} dx.$$

- **1.** Montrer que (I_n) est décroissante. Puis encadrer I_n pour montrer que (I_n) tend vers 0. *Indication : on pourra encadrer* $\ln(1+x^2)$.
- **2.** Montrer de même que (J_n) est décroissante et tend vers 0.
- **3.** A l'aide d'une intégration par partie, trouver pour tout $n \in \mathbb{N}$ une relation entre I_n et J_{n+2} .

Exercice 15 - pour s'entrainer en autonomie

Pour tout $n \in \mathbb{N}$, on pose $u_n = \int_1^e (\ln(t))^n dt$.

- 1. Montrer que la suite $(u_n)_{n\geq 0}$ est décroissante et en déduire que la suite $(u_n)_{n\geq 0}$ converge.
- 2. A l'aide d'une intégration par parties, déterminer, pour tout $n \in \mathbb{N}^*$, une relation entre u_n et u_{n-1} .
- 3. En déduire que : $\forall n \in \mathbb{N}^*, 0 \leq u_n \leq \frac{e}{n+1}$ puis donner la limite de $(u_n)_{n \geq 0}$.

Exercice 16

1. On considère la fonction f définie sur]1,3[par $f(x) = \frac{1}{x^2 - 4x + 3}$. Déterminer $(a, b) \in \mathbb{R}^2$ tels que :

$$\forall x \in]1,3[, \ f(x) = \frac{a}{x-1} + \frac{b}{x-3}.$$

En déduire $\int_{\frac{3}{2}}^{2} f(t) dt$.

2. On considère la fonction g définie sur $]-\infty,1[$ par $g(x)=\frac{2x+1}{x^2-4x+3}.$ Déterminer $(a,b)\in\mathbb{R}^2$ tels que :

$$\forall x \in]-\infty, 1[, \ g(x) = \frac{a}{x-1} + \frac{b}{x-3}.$$

En déduire $\int_{-2}^{-2} g(t) dt$.

- 3. Factoriser, pour $x \in \mathbb{R}$, $4x^2 4x + 1$. En déduire $\int_1^2 \frac{1}{4x^2 4x + 1} \, dx$ et $\int_1^2 \frac{x}{4x^2 4x + 1} \, dx$.
- 4. Déterminer $\int_0^x \frac{1}{t^2+4} dt$, en commençant par factoriser le dénominateur par 4.
- 5. Déterminer $\int_0^1 \frac{1}{x^2 + 4x + 5} dx$, en commençant par mettre sous forme canonique le trinôme $x^2 + 4x + 5$ (*ie.* sous la forme $a(x \alpha)^2 + \beta$).

Exercice 17

On considère, pour tout $n \in \mathbb{N}$, $I_n = \int_0^1 x^n \sqrt{1-x} \, dx$.

- 1. Calculer I_0 .
- 2. À l'aide d'une intégration par parties, montrer que, pour tout $n \in \mathbb{N}^*$, $I_n = \frac{2n}{2n+3}I_{n-1}$.
- 3. Calculer alors I_1 et I_2 .

Exercice 18

Pour tout $n \in \mathbb{N}$, on pose $I_n = \int_0^1 \frac{\mathrm{d}x}{(x^2 + 1)^n}$.

- 1. Calculer I_0 et I_1 .
- 2. À l'aide d'une intégration par parties, déterminer une relation de récurrence pour la suite (I_n) .
- 3. Calculer alors I_2 et I_3 .

Pour tout entier naturel n, on pose :

$$I_n = \int_0^2 \frac{t^n}{1 + t^n} dt$$

1. Encadrer $\int_0^1 \frac{t^n}{1+t^n} dt$ puis montrer que :

$$\lim_{n \to +\infty} \int_{0}^{1} \frac{t^n}{1+t^n} dt = 0$$

- **2.** Démontrer que pour tout $t \in [1,2]$, $1 \frac{1}{t^n} \le \frac{t^n}{1+t^n} \le 1$. En déduire la limite de $\int_1^2 \frac{t^n}{1+t^n} dt$ quand $n \to +\infty$.
- **3.** Conclure quant à la limite de (I_n)

Exercice 20

- 1. Montrer que la fonction $G: x \mapsto \int_x^{2x} \frac{e^t}{t} dt$ est bien définie et dérivable sur \mathbb{R}_+^* . Calculer sa fonction dérivée.
- 2. Déterminer la limite de G en 0.

Exercice 21

Soit $f: \mathbb{R}_+ \to \mathbb{R}$ une application continue telle que f(0) = 0. On définit $F: \mathbb{R}_+ \to \mathbb{R}$ par F(0) = 0 et pour tout x > 0,

$$F(x) = \frac{1}{x} \int_0^x f(t)dt.$$

- 1. Montrer que F est continue en 0.
- 2. Montrer que F est dérivable sur \mathbb{R}_+^* et calculer F'(x) pour tout x > 0.

Exercice 22 - Calculer les limites suivantes.

1.
$$\lim_{n \to \infty} \sum_{k=0}^{n-1} \frac{n}{n^2 + k^2}$$
;

$$2. \lim_{n \to \infty} \sum_{k=1}^{n} \sqrt{k(n-k)};$$

Exercice 23 – Exercice supplémentaire d'entrainement

Calculer, à l'aide d'un changement de variable, les intégrales suivantes :

1.
$$\int_{1}^{x} \frac{1}{t^{2}} \left(1 + \frac{1}{t}\right)^{4} dt \ (x > 0)$$
 en posant $u = \frac{1}{t}$;

2.
$$\int_0^1 \frac{dt}{(1+t^2)^{3/2}}$$
, en posant $t = \tan(u)$;

3.
$$\int_0^1 \frac{\mathrm{d}x}{\mathrm{e}^x + \mathrm{e}^{-x}}, \text{ en posant } y = \mathrm{e}^x;$$

4.
$$\int_0^{\frac{\pi}{2}} \frac{\sin^3(x)}{1 + \cos^2(x)} dx$$
, en posant $t = \cos(x)$;

5.
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{dt}{\cos^2(t)\sin^2(t)}$$
, en posant $u = \tan(t)$;

6.
$$\int_0^1 \sqrt{e^x - 1} \, dx$$
, en posant $u = \sqrt{e^x - 1}$.

On pose, pour tout entier $n \ge 0$:

$$u_n = \int\limits_0^1 t^n e^{1-t} dt$$

- **1.** Calculer I_0 .
- **2.** Démontrer que (u_n) est décroissante.
- **3.** Démontrer que pour tout $n \ge 0$:

$$u_{n+1} = -1 + (n+1)u_n$$

- **4.** Démontrer que pour tout $n \ge 0$, $0 \le u_n \le \frac{e}{n+1}$. En déduire la limite de (u_n) .
- 5. On dit que deux suite (u_n) et (v_n) sont dites équivalentes si $\lim_{n\to +\infty} \frac{u_n}{v_n} = 1$. On note alors $u_n \sim v_n$. Montrer que $u_n \sim \frac{1}{n}$.

Exercice 25

On considère les suite (I_n) et (J_n) définies pour tout entier naturel n par :

$$I_n = \int_0^1 \frac{e^{-nx}}{1+x} dx$$
 ; $J_n = \int_0^1 \frac{e^{-nx}}{(1+x)^2} dx$

- **1.** Démontrer que la suite (I_n) est décroissante.
- 2.
- **a.** Démontrer que pour tout entier naturel n:

$$0 < J_n \le I_n \le \frac{1}{n}$$

- **b.** En déduire que (I_n) et (J_n) convergent et donner leur limite.
- **3.** Démontrer que pour tout entier $n \ge 1$

$$I_n = \frac{1}{n} \left(1 - \frac{e^{-n}}{2} - J_n \right)$$

4. On dit que deux suite (u_n) et (v_n) sont dites équivalentes si $\lim_{n \to +\infty} \frac{u_n}{v_n} = 1$. On note alors $u_n \sim v_n$. Montrer que $I_n \sim \frac{1}{n}$.

Exercice 26 (Exercice 12 revisité)

Le but est de retrouver les valeurs obtenues à l'exercice 12. On ne pourra donc pas utiliser les résultats de l'exercice 12 ici.

On pose

$$I = \int_0^{\frac{\pi}{2}} \frac{\cos x}{\cos x + \sin x} \, dx \; ; \; J = \int_0^{\frac{\pi}{2}} \frac{\sin x}{\cos x + \sin x} \, dx$$

- **1.** Calculer I + J et I J.
- **2.** En déduire la valeur de I et J.

5 POUR APPROFONDIR

Exercice 27 - Oral ESCP (**** à partir de la question 3)

On note E l'ensemble des fonctions continues sur [0,1], à valeurs réelles positives. Pour tout $f \in E$, on définit la fonction $\varphi(f)$ par :

$$\forall x \in [0,1], \ \varphi(f)(x) = \int_0^x \sqrt{f(t)} \ \mathrm{d}t.$$

On note f_0 la fonction constante égale à 1, puis, pour tout $n \in \mathbb{N}$, on pose $f_{n+1} = \varphi(f_n)$.

- 2. a) Montrer que pour tout $n \in \mathbb{N}$, la fonction f_n est de la forme $x \mapsto \alpha_n x^{\beta_n}$, avec α_n et β_n réels.
- b) Donner des relations de récurrence vérifiées par les suites $(\alpha_n)_{n\geqslant 0}$ et $(\beta_n)_{n\geqslant 0}$.
- c) En déduire que pour tout $n \in \mathbb{N}$, on a $\beta_n = 2 2^{1-n}$.
- 3.a) Pour tout $n \in \mathbb{N}$, comparer $\frac{\alpha_{n+2}}{\alpha_{n+1}}$ et $\sqrt{\frac{\alpha_{n+1}}{\alpha_n}}$.
- b) En déduire que la suite $(\alpha_n)_{n\geqslant 0}$ converge et déterminer sa limite.
- 4. Pour tout $n \in \mathbb{N}$, justifier l'existence de $M_n = \max_{x \in [0,1]} \left| f_n(x) \frac{1}{4}x^2 \right|$, puis montrer que $\lim_{n \to +\infty} M_n = 0$.

6 EXERCICES SUPPLEMENTAIRES

Exercice 28

On définit la fonction f sur $\mathbb R$ par :

$$\forall x \in \mathbb{R}, \quad f(x) = \int_{x}^{2x} \frac{1}{\sqrt{1+t^2}} dt$$

- **1.** Montrer que f est impaire.
- 2.
- **a.** Montrer que $f \in \mathcal{C}^1(\mathbb{R})$ et déterminer f'(x).
- **b.** Donner le tableau de variations de f.
- 3.
- **a.** En utilisant la relation $t^2 \le 1 + t^2 \le 1 + 2t + t^2$, valable pour tout réel t positif, montrer que :

$$\forall x \ge 0$$
, $\ln(2x+1) - \ln(x+1) \le f(x) \le \ln 2$

- **b.** En déduire la limite de f(x) lorsque $x \to +\infty$.
- **4.** Résoudre l'équation f(x) = 0.

Exercice 29 - Calcul de
$$\lim_{n \to +\infty} 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots + \frac{(-1)^n}{n+1}$$

On pose, pour tout entier $n \in \mathbb{N}$:

$$S_n = \sum_{k=0}^{n} \frac{(-1)^k}{k+1}$$

1. Calculer, pour tout entier $k \ge 0$:

$$\int_0^1 (-t)^k dt$$

2. En déduire que, pour tout $n \in \mathbb{N}$:

$$S_n = \ln 2 - \int_0^1 \frac{(-t)^{n+1}}{1+t} dt$$

3. Montrer que, pour tout $n \in \mathbb{N}$:

$$\left| \int_{0}^{1} \frac{(-t)^{n+1}}{1+t} dt \right| \le \frac{1}{n+2}$$

4. En déduire que $\lim_{n \to +\infty} S_n = \ln 2$

Si a et b sont deux réels, max(a, b) et min(a, b) désignent respectivement le maximum et le minimum de a et b.

1. Calculer les intégrales suivantes :

$$I = \int_0^2 \max\left(x, \frac{1}{2}\right) dx$$
$$J = \int_0^1 \min(x, 1 - x) dx$$

- **2.** Tracer l'allure des fonctions f et g définies par $f(x) = \max\left(x, \frac{1}{2}\right)$ et $g(x) = \min(x, 1 x)$. Puis vérifier graphiquement les valeurs de intégrales I et J.
- **3.** Exprimer max(a, b) et min(a, b) à l'aide de |a b|.

Exercice 31

Calculer les intégrales suivantes :

$$I_{1} = \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{e^{\sin x} - e^{-\sin x}}{\ln(2 + \tan^{2} x)} dx \quad ; \quad I_{2} = \int_{-1}^{1} e^{-|x|} dx \quad ; \quad I_{3} = \int_{-3}^{4} \frac{|x - 1|}{|x| + 1} dx \quad ; \quad I_{4} = \int_{4/e}^{2e} \frac{|y|}{y} dy$$