Programme de colle n° 19 Semaine du 15/03/2021 Espaces Vectoriels et Comparaison de suites

Le programme de colle de cette semaine porte sur l'ensemble des chapitres 15 et 16.

Questions de cours

Toutes les questions de cours doivent être maîtrisées cette semaine

Espaces vectoriels

- 1. Qu'appelle-t-on une famille génératrice d'un espace vectoriel E?
- 2. Soit (u_1, \ldots, u_n) une famille de vecteurs d'un espace vectoriel E. Donner la définition d'une combinaison linéaire de (u_1, \ldots, u_n) .
- 3. Soit (u_1, \ldots, u_n) une famille de vecteurs d'un espace vectoriel E. Qu'appelle-t-on $\mathrm{Vect}(u_1, \ldots, u_n)$ et que peut-on en dire?
- 4. Traduire $v \in Vect(u_1, \ldots, u_n)$.
- 5. Traduire « (u_1, \ldots, u_n) est une famille génératrice de E » à l'aide de Vect.
- 6. (a) Donner la définition d'une famille libre, d'une famille liée.
 - (b) Une famille de un vecteur peut-elle être libre? liée?
 - (c) Comment cela se traduit-il pour une famille de deux vecteurs?
- 7. Donner la caractérisation d'une famille liée.
- 8. Que peut-on dire d'une sur-famille d'une famille génératrice et d'une sous-famille d'une famille libre?
- 9. A quelle condition peut-on enlever un vecteur d'une famille génératrice de sorte que la famille obtenue soit encore génératrice (proposition 6 réduction d'une famille génératrice)?
- 10. Donner la liste des opérations que l'on peut faire sur les vecteurs d'un Vect sans le modifier (proposition 7 du cours).
- 11. Donner la définition d'une base d'un espace vectoriel.
- 12. Donner la caractérisation d'une base par l'existence et l'unicité de la décompostion.
- 13. Soit (u_1, \ldots, u_n) une base d'un espace vectoriel E. Qu'appelle-t-on coordonnées d'un vecteur $x \in E$ dans la base (u_1, \ldots, u_n) ?
- 14. Donner la base canonique de \mathbb{R}^2 , \mathbb{R}^3 , \mathbb{R}^n , de $\mathbb{R}_n[X]$ et de $\mathcal{M}_n(\mathbb{R})$.

Comparaison entre suites

- 15. Donner la définition et la notation du fait :
 - (a) qu'une suite (u_n) est négligeable devant une suite (v_n) ,
 - (b) qu'une suite (u_n) est équivalente devant une suite (v_n) .
- 16. Donner la caractérisation de l'équivalence avec les "petit o".
- 17. Donner les équivalents usuels.

Démonstrations (pour le groupe A')

Membres du groupe A':

Yusef

• Dan

Mylanh

Anis

Hafsa

Lina

Maxime

Ismail

Cédric

Yacine

Après la question de cours vous devrez faire l'une des démonstrations suivantes :

- 1. Soit (u_1, \ldots, u_n) une famille de vecteurs de E. Prouver que $\operatorname{Vect}(u_1, \ldots, u_n)$ est un sous-espace vectoriel de E (voir démonstration à la fin de ce programme de colle).
- 2. Démontrer la proposition 6 (réduction d'une famille génératrice démonstration faite en classe).
- 3. Démontrer la proposition 8 (voir démonstration à la fin de ce programme de colle) Voir la démonstration

Méthodes à connaître pour les exercices

- Connaître toutes les méthodes du chapitre 15 et savoir refaire tous les exercices faits en classe.
- Savoir refaire les exercices faits en classe su chapitre 16, notamment les exercices 1 et 2.

Démonstrations

1. $Vect(u_1, ..., u_n)$ est un sous-espace vectoriel de E.

On va procéder comme d'habitude, en appliquant la méthode 1 : pour cela, on pose $F=\mathrm{Vect}(u_1,\ldots,u_n)$. F est donc l'ensemble des combinaisons linéaires de u_1,\ldots,u_n .

- u_1, \ldots, u_n étant dans E, toute combinaison linéaire de ces vecteurs et dans E donc $F \subset E$.
- $\sum_{i=1}^{n} 0u_i = 0_E$ donc $0_E \in F$ donc $F \neq \emptyset$.
- Soient $(u,v) \in F^2$ et $(a,b) \in \mathbb{K}^2$. Montrons que $au+bv \in E$.

$$u \in F \text{ donc } \exists (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n, \ u = \sum_{i=1}^n \lambda_i u_i.$$

$$v \in F$$
 donc $\exists (\lambda_1', \dots, \lambda_n') \in \mathbb{K}^n, \ v = \sum_{i=1}^n \lambda_i' u_i$. Alors :

$$au + bv = a\sum_{i=1}^{n} \lambda_i u_i + b\sum_{i=1}^{n} \lambda_i' u_i$$

$$=\sum_{i=1}^n a\lambda_i u_i + b\lambda_i' u_i$$
 par linéarité de la somme

$$= \sum_{i=1}^{n} (a\lambda_i + b\lambda_i')u_i$$

Donc au+bv et une combinaison linéaire de u_1,\ldots,u_n : on a bien $au+bv\in F$. Donc F est s.e.v. de E.

2. On doit montrer qu'une famille (u_1, \ldots, u_n) est liée si et seulement si l'un de ses vecteurs est combinaison linéaire des autres.

• Sens direct :

Montrons que si la famille (u_1, \dots, u_n) est liée alors l'un de ses vecteurs est combinaison linéaire des autres.

Si (u_1,\ldots,u_n) et liée, il existe une combinaison linéaire nulle à coefficients non tous nuls.

Il existe donc n scalaires non tous nuls $\lambda_1, \ldots, \lambda_n$ tels que $\sum_{i=1}^n \lambda_i u_i = 0$.

Quitte à renuméroter les u_i , on peut supposer que $\lambda_n \neq 0$. On a alors:

$$\begin{split} \sum_{i=1}^n \lambda_i u_i &= 0 \iff \sum_{i=1}^{n-1} \lambda_i u_i + \lambda_n u_n = 0 \\ &\iff \lambda_n u_n = -\sum_{i=1}^{n-1} \lambda_i u_i \iff u_n = \frac{1}{\lambda_n} \sum_{i=1}^{n-1} -\lambda_i u_i \quad \text{car } \lambda_n \neq 0. \\ &\iff u_n = \sum_{i=1}^{n-1} -\frac{\lambda_i}{\lambda_n} u_i. \end{split}$$

• Réciproque :

Montrons que si l'un de ses vecteurs est combinaison linéaire des autres alors la famille (u_1, \ldots, u_n) est liée .

Quitte à renuméroter les u_i , on peut supposer que c'est u_n qui est combinaison linéaire des autres. On a alors $u_n = \sum_{i=1}^{n-1} \lambda_i u_i$ où $(\lambda_1, \cdots, \lambda_{n-1}) \in \mathbb{K}^{n-1}$. Ce qui équivaut à $\sum_{i=1}^{n-1} \lambda_i u_i - u_n = 0$. $\sum_{i=1}^{n-1} \lambda_i u_i - u_n$ est donn une combinaison linéaire nulle des u_i à coefficients non tous nuls. Donc la

famille (u_1, \ldots, u_n) est liée.