
ECG 2 - maths appli. Chapitre 5 - réduction des matrices Octobre 2025

Objectifs d’apprentissage - A la fin de ce chapitre, je sais :
• définir les termes valeur propre et vecteur propre �

• déterminer si un réel est valeur propre ou non d’une matrice �

• déterminer des sous-espaces propres �

• utiliser des familles de vecteurs propres �

• montrer qu’une matrice est diagonalisable et diagonaliser une matrice �

• interpréter les racines d’un polynôme annulateur d’une matrice �

La réduction (= diagonalisation pour nous) d’une matrice A consistera à trouver une matrice D

diagonale et P inversible telles que A = PDP−1

Valeurs propres, vecteurs propres, sous-espace propre

Définitions et propriétés Exemples

Définitions : soit M ∈ Mn(R)
s’il existe X ∈ Mn,1(R), X 6= 0n,1 et λ ∈ R

tel que MX = λX alors

X est appelé vecteur propre de la matrice M

et λ est appelé valeur propre de la matrice M

L’ensemble des valeurs propres de M est noté
Sp(M), appelé spectre de M

Exemple : avec M =





1 2

0 3



 et X =





2

2





alors MX = 3X donc





2

2



 est vecteur propre

de M est 3 est valeur propre

Propriété : soit M ∈ Mn(R)

λ ∈ R est valeur propre de M ⇔ M − λIn n’est
pas inversible.

Corollaire :

0 est valeur propre de M ⇔ M n’est pas inver-
sible.

Exemple : avec M ci-dessus

M − 3I2 =





−2 2

0 0



 qui n’est pas inversible

Remarque (et rappel) : une matrice carrée M n’est pas inversible lorsque le système homogène
associé admet des solutions non nulles (système non de Cramer). En particulier, toute matrice ayant
une ligne (ou une colonne) qui est combinaison linéaire des autres n’est pas inversible.

⊲ donc λ ∈ Sp(M) si, et seulement si le système MX = λX n’est pas de Cramer.

Sans autre information, trouver des valeurs propres et des vecteurs propres consiste donc à résoudre
(en partie) un système à paramètre (λ).

Définition : avec les notations précédentes, pour
λ ∈ Sp(M)
l’ensemble {X ∈ Mn,1(R),MX = λX} est ap-
pelé sous-espace propre de M associé à la va-
leur propre λ, et noté Eλ(M)

Propriété : Eλ(M) est un espace vectoriel

c’est l’ensemble des solutions du système linéaire
homogène (M − λIn)X = 0n,1 (d’inconnue X)

Exemple : toujours avec M plus haut

MX = 3X ⇔







2x+ 2y = 0

0 = 0
⇔ x = −y

E3(M) =











x

−x



 , x ∈ R







= Vect









1

−1








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Matrices diagonales et triangulaires

Propriété :

les valeurs propres d’une matrice diagonale ou
triangulaire sont les éléments sur sa diagonale.

≪ Démonstration ≫ :

si a est un coefficient diagonal, alors M−aIn est
triangulaire avec un coefficient diagonal nul, elle
n’est donc pas inversible, i.e. a est valeur propre.

Polynômes annulateurs

Définition : un polynôme P =

N
∑

k=0

akx
k est

dit annulateur d’une matrice M ∈ Mn(R) si :

P (M) =
N
∑

k=0

akM
k = 0n

Exemple : avec A =





0 1

1 0





A2 = I2 i.e. A2 − I2 = 02 donc x2 − 1 est un
polynôme annulateur de A

Propriété :

si P est un polynôme annulateur de M , alors
λ ∈ Sp(M) =⇒ P (λ) = 0

i.e. Sp(M) ⊂ { racines de P}

Exemple :

avec la matrice A ci-dessus, les seules valeurs
propres possibles sont −1 et 1 (mais reste à le
vérifier).

Donc : les valeurs propres de M sont à chercher parmi les racines d’un polynôme annulateur.

B la réciproque est fausse

En effet, avec l’exemple où x2 − 1 est annulateur de A, alors (x− 7)(x2 − 1) est aussi annulateur de
A puisque (A− 7I2)(A

2 − I2) = (A− 7I2)× 02 = 02

Propriétés sur les familles de vecteurs propres, sous-espaces propres

Propriété :

p vecteurs propres associés à p valeurs propres
deux-à-deux distinctes forment une famille libre.

Corollaire : une matrice d’ordre n admet au plus
n valeurs propres distinctes.

Exemple : avec la matrice M plus haut,




1

0



 et





1

1



 forment donc une famille libre, car

ce sont des vecteurs propres associés respective-
ment aux valeurs propres 1 et 3

Propriété : une concaténation de familles libres
de sous-espaces propres différents forme une fa-
mille libre (de vecteurs colonnes).

Exemple : avec A1 de l’exercice 1,
t
(

1 −1 0
)

, t
(

1 0 −1
)

, t
(

1 1 1
)

forment une famille libre

Propriété : la somme des dimensions des sous-
espaces propres est inférieure ou égale à l’ordre
de la matrice

Les vecteurs propres sont des éléments de
Mn,1(R) et une famille libre de cet espace vec-
toriel (de dimension n) a au plus n éléments.

Remarque : dans la pratique, on cherchera souvent à connaitre cette somme des dimensions des
sous-espaces propres. Si elle vaut n (cf. plus bas), la matrice sera diagonalisable.
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Matrices diagonalisables

Définition : deux matrices carrées A et B sont
dites semblables s’il existe une matrice P in-
versible telle que A = PBP−1

Définition : une matrice carrée M est diagonali-
sable si elle est semblable à une matrice diagonale

autrement dit, M diagonalisable si

M = PDP−1 ⇔ P−1MP = D ⇔ MP = PD

Exemple :

avec M vue plus haut, M est diagonalisable car

M =





1 1

0 1









1 0

0 3









1 −1

0 1





Remarque : comme on le voit sur l’exemple, (C1, . . . , Cn) les colonnes de la matrice P forment une
base de Mn,1(R) constituée de vecteurs propres de M

Dans la pratique, comment fait-on pour diagonaliser une matrice ?

L’exemple ci-dessus (facile) nous donne globalement la méthode.

1. On trouve les valeurs propres.

2. On trouve une base de vecteurs propres, plus précisément une concaténation de bases des sous-
espaces propres.
⊲ cela donne la matrice P dont chacune des colonnes est un vecteur propre de cette base ;
⊲ puis on écrit la matrice D qui contient en diagonale les valeurs propres associées à chaque
vecteur propre (et rangées dans le même ordre que les vecteurs propres dans la matrice P ).

3. on conclut, en faisant les calculs matriciels : MP d’un coté, PD de l’autre ; et l’égalité nous per-
met d’affirmer que M est diagonalisable.

Remarque : à l’étape 2 si ≪ le compte est bon ≫, i.e. la somme des dimensions des sous-espaces propres
est égale à l’ordre de la matrice, nous savons que cela va fonctionner.

Le résultat sous-jacent (hors programme) est que : ≪ M ∈ Mn(R) est diagonalisable si, et seulement
s’il existe une base de Mn,1(R) formée de vecteurs propres de M ≫.

Corollaire (de ce résultat hors-programme et donc hors-programme aussi) : si la somme des dimensions
des sous-espaces propres n’est pas égale à l’ordre de la matrice (la somme est alors inférieure), alors
la matrice n’est pas diagonalisable. Nous ne savons donc pas vraiment montrer qu’une matrice n’est
pas diagonalisable, sauf dans un cas particulier que nous verrons en exercice.

Matrices symétriques

Propriété : une matrice de Mn(R) symétrique est
diagonalisable

Exemple :





0 5

5 −7



 est diagonalisable car

symétrique

Cas particulier des matrices carrées de taille 2

Dans ce cas, le déterminant nous permet de trouver plus rapidement les valeurs propres :

Propriété : avec M ∈ M2(R) et λ ∈ R

λ valeur propre ⇔ det(A− λI2) = 0

Exemple : les valeurs propres de M =





1 3

−1 5





sont 2 et 4 car det(M − λI2) = (λ− 2)(λ− 4)
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Méthode : comment procéder dans les cas suivants ?

• Montrer qu’un vecteur X (non nul) est vecteur propre de A :
⊲ on calcule AX et on doit trouver un résultat de type λX qui montre que λ est valeur propre et
X est vecteur propre

• Montrer qu’un réel λ donné est valeur propre de A :
⊲ si A ∈ M2(R), alors les valeurs propres sont les racines de det(A − λI2) (qui est un polynôme
de degré 2, l’inconnue est λ)

⊲ on montre que A−λIn n’est pas inversible, en faisant des opérations élémentaires, et on poursuit
généralement la résolution du système pour déterminer les vecteurs propres associés.

• Déterminer une ou les valeur(s) propre(s) de A :
⊲ si on dispose d’un polynôme annulateur de A, les valeurs propres sont à chercher parmi les
racines du polynôme.

⊲ dans les cas évidents de matrices diagonales ou triangulaires, les valeurs propres sont les coeffi-
cients diagonaux

⊲ sinon (hors programme normalement), on montre que A−λIn n’est pas inversible, il s’agit d’un
système à paramètre.

Un cas classique d’application de la réduction à l’étude de suites récurrentes

Ce type d’exercice a déjà été abordé en première année. La nouveauté est de pouvoir parler de valeurs
propres, vecteurs propres et parfois de pouvoir diagonaliser ≪ la ≫ matrice (dans le cas ci-dessous, la
matrice C n’est pas diagonalisable).

Exercice 8 - tous concours

On considère la matrice C définie par :

C =











0 1 0

0 0 1

1 −3 3











1. Vérifier que : (C − I3)
3 = 0M3(R). En déduire que C admet une et une seule valeur propre λ que

l’on déterminera, et que son sous-espace propre associé est de dimension 1

2. C est-elle diagonalisable ?

3. Soit N = C − I3. Justifier que Nn = 0M3(R) pour tout entier n > 3 et en déduire deux suites
(an)n∈N et (bn)n∈N vérifiant :

∀n ∈ N, Cn = I3 + anN + bnN
2

En déduire que :

∀n ∈ N, Cn =
(n− 1)(n− 2)

2
I3 + n(2− n)C +

n(n− 1)

2
C2

4. On considère la suite réelle (xn)n∈N définie par : x0, x1 et x2 donnés et, pour tout n ∈ N :

xn+3 = 3xn+2 − 3xn+1 + xn

On pose, pour n ∈ N, Xn = t(xn, xn+1, xn+2) (vecteur colonne).

a. Vérifier que : ∀n ∈ N, Xn+1 = CXn

b. En déduire, pour n ∈ N, une expression de Xn en fonction de x0, x1 et x2 et de n
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