
ECG 2 - maths appli. Devoir en temps libre n̊ 3 Pour le 7 novembre 2025

Corrigé Total sur 38 points

Exercice 1 - (Type : Ecricome) 17 points

Lorsque A et B sont deux événements d’un même espace probabilisé, on désignera par PB(A) la

probabilité conditionnelle de A sachant B , où B est un événement de probabilité non nulle : PB(A) =
P (A/B)
Dans cet exercice, N désigne un entier naturel supérieur ou égal à 2
Un joueur lance une pièce équilibrée indéfiniment. On note XN la variable aléatoire réelle discrète
égale au nombre de fois où , au cours des N premiers lancers, deux résultats successifs ont été
différents (on peut appeler XN le ≪ nombre de changements ≫ au cours des N premiers lancers).
Par exemple , si les 9 premiers lancers ont donné successivement :
Pile , Pile , Face , Pile , Face , Face , Face , Pile , Pile
alors la variable X9 aura pris la valeur 4 (quatre changements, aux 3ème, 4ème, 5ème et 8ème lancers).

1. Justifier que XN(Ω) = {0, · · · , N − 1} 1 point

On peut le justifier sommairement en disant que les cas extrêmes (avec N lancers) :
• on a réalisé Pile à chaque lancer, donc il n’y a eu aucun changement, donc dans ce cas XN = 0
• on a commencé par un Pile, puis chacun des N−1 lancers restants est différent du précédent,
donc XN = N − 1

entre les deux (k ∈ [[0, N−2]]), tous les cas intermédaires sont possibles, on commence par Pile,
puis on obtient k changements lors des k lancers suivants, puis plus aucun changement.

On considère que la justification précédente est suffisante, mais pour le démontrer rigoureuse-
ment, il faut faire une récurrence,
pour N ∈ N, N > 2, on pose P (N) : XN(Ω) = [[0, N − 1]]
Initialisation : P (2) est vraie ⇔ X2 = {0, 1}
ce qui est vrai car en deux lancers on ne peut obtenir que aucun ou un seul changement.

Hérédité : pour N ∈ N, N > 2, on suppose que P (N) est vraie
alors par hypothèse XN(Ω) = [[0, N − 1]] donc en effectuant un lancer de plus, on peut obtenir
un changement supplémentaire ou aucun changement donc XN+1(Ω) ⊂ [[0, N ]]
réciproquement, on montre l’autre inclusion (i.e. que toutes ces valeurs sont possibles pour
XN+1), pour k ∈ [[0, N ]], alors
dans le cas où k = 0, XN+1 = 0 est possible comme vu plus haut (on obtient le même résultat
au cours des N + 1 lancers)
dans le cas où k > 0, par hypothèse, k − 1 ∈ [[0, N − 1]] donc par hypothèse de récurrence,
k − 1 ∈ XN (Ω) donc XN = k − 1 est possible et donc XN+1 = k est possible (on obtient au
lancer N + 1 un résultat différent de celui obtenu au N ème, dans un des cas où XN = k − 1)
finalement [[0, N ]] ⊂ XN+1(Ω), l’autre inclusion est donc démontrée, et donc XN+1(Ω) = [[0, N ]]
i.e. P (N + 1) est vraie d’où l’hérédité
donc par théorème de récurrence, ∀N ∈ N, N > 2, P (N) est vraie

2. Déterminer la loi de X2 ainsi que son espérance. 2,5 points

Déterminer la loi de X3

D’après la question 1., X2(Ω) = {0, 1} et il n’y a que quatre possibilités pour 2 lancers :

P (X2 = 0) =
2

4
=

1

2
(on a obtenu, Pile, Pile ou Face, Face)

P (X2 = 1) =
2

4
=

1

2
(on a obtenu, Pile, Face ou Face, Pile)

finalement, X2 →֒ B

(

1

2

)

(ou X2 →֒ U ([[0, 1]]))
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donc par propriété de la loi de Bernoulli, E(X2) =
1

2
d’après la question 1. X3(Ω) = {0, 1, 2}
et ((X2 = 0), (X2 = 1)) forme un système complet d’événements
donc pour i ∈ {0, 1, 2}, P (X3 = i) = P (X2 = 0)P[X2=0]P (X3 = i) + P (X2 = 1)P[X2=1](X3 = i)

or P[X2=0]P (X3 = 0) = P[X2=0]P (X3 = 1) =
1

2
(ce sont les cas où on a d’abord obtenu 2 lancers

identiques, puis il y a une chance sur deux que le troisième soit identique ou différent, sachant
le résultat des deux premiers)

de même P[X2=1]P (X3 = 1) = P[X2=1]P (X3 = 2) =
1

2
et P[X2=0]P (X3 = 2) = P[X2=1]P (X3 = 0) = 0 (il n’est pas possible d’obtenir 2 changements
en trois lancers si on n’en a obtenu que 2 lors des deux premiers lancers, et d’obtenir aucun
changement en trois lancers s’il y en a déjà eu un au cours des deux premiers)

donc P (X3 = 0) =
1

2
× 1

2
+ 0 =

1

4
et P (X3 = 1) =

1

2
× 1

2
+

1

2
× 1

2
=

1

2

et P (X3 = 2) = 0 +
1

2
× 1

2
=

1

4
(on aurait pu déduire la troisième valeur des deux premières,

= 1− . . . )

finalement on remarque que X3 →֒ B

(

2,
1

2

)

mais il n’était pas forcément évident de le deviner

(on peut comprendre qu’il y a une chance sur deux que deux lancers consécutifs donnent un
changement et il y a deux couples de lancers consécutifs).

3. Montrer que P (XN = 0) =

(

1

2

)N−1

et P (XN = 1) = 2(N − 1)

(

1

2

)N

2 points

On peut le montrer par récurrence ou écrire (XN = 0 signifie que des Pile ou que des Face) :

(XN = 0) =

(

N
⋂

k=1

P

)

⋃

(

N
⋂

k=1

F

)

donc par indépendance mutuelle des lancers et comme les deux événement

N
⋂

k=1

P et

N
⋂

k=1

F sont

incompatibles P (XN = 0) =
N
∏

k=1

P (P ) +
N
∏

k=1

P (F ) =

(

1

2

)N

+

(

1

2

)N

= 2×
(

1

2

)N

=

(

1

2

)N−1

Pour le cas P (XN = 1), comme il n’y a qu’un seul changement, cela correspond à une série
de Pile puis une série de Face ou vice versa. La question revient à trouver la position du
changement et il y a N − 1 possibilités à chaque fois (du lancer 2 au lancer N).
Pour le montrer rigoureusement, on peut faire une récurrence,

pour N ∈ N, N > 2, on pose P (N) : P (XN = 1) = 2(N − 1)

(

1

2

)N

Initialisation : P (2) est vraie ⇔ P (X2 = 1) = 2(2− 1)×
(

1

2

)2

⇔ P (X2 = 1) =
1

2
ce qui est vrai d’après 2. donc P (2) est vraie

Hérédité : pour N ∈ N, N > 2, on suppose que P (N) est vraie
alors comme ([XN = k])k∈[[0,N−1]] forme un système complet d’événements, d’après la formule

des probabilités totales, P (XN+1 = 1) =
N−1
∑

k=0

P (XN = k)P[XN=k](XN+1 = 1)

or si k > 1, P[XN=k](XN+1 = 1) = 0 (si il y a déjà eu strictement plus d’un changement au
cours des N premiers lancers, il n’est pas possible d’en n’obtenir qu’un seul au cours des N +1
premiers lancers)
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donc P (XN+1 = 1) = P (XN = 0)P[XN=0](XN+1 = 1) + P (XN = 1)P[XN=1](XN+1 = 1) or

P (XN = 0) =

(

1

2

)N−1

comme vu plus haut et P[XN=0](XN+1 = 1) = P[XN=1](XN+1 = 1) =
1

2
(une chance sur deux qu’il y ait un changement ou non entre les instants N et N + 1) ; enfin

par hypothèse de récurrence P (XN = 1) = 2(N − 1)

(

1

2

)N

donc P (XN+1 = 1) =
1

2

(

1

2

)N−1

+
1

2
× 2(N − 1)

(

1

2

)N

=

(

1

2

)N

+ 2(N − 1)

(

1

2

)N+1

donc P (XN+1 = 1) = 2

(

1

2

)N+1

+ 2(N − 1)

(

1

2

)N+1

= 2N

(

1

2

)N+1

i.e. P (N + 1) est vraie d’où l’hérédité
donc par théorème de récurrence, ∀N ∈ N, N > 2, P (N) est vraie

4. a. Justifier que pour tout entier k de {0, ..., N − 1} : PXN=k(XN+1 = k) =
1

2
0,5 point

(C’est à dire P (XN+1 = k/XN = k) =
1

2
)

Comme vu à plusieurs reprises, il y a une chance sur deux qu’un nouveau lancer apporte
un changement supplémentaire ou n’apporte aucun changement (c’est ce dernier cas que

l’on cherche ici), donc PXN=k(XN+1 = k) =
1

2

b. En déduire que pour tout entier k de {0, ..., N − 1} : 1 point

P (XN+1 −XN = 0 ∩XN = k) =
1

2
P (XN = k)

Remarquons d’abord que (XN+1 −XN = 0 ∩XN = k) = (XN+1 = k) ∩ (XN = k)
et par définition des probabilités conditionnelles,

P ((XN+1 = k) ∩ (XN = k)) = P (XN = k)P[XN=k](XN+1 = k) = P (XN = k) × 1

2
d’après

4.a. donc P (XN+1 −XN = 0 ∩XN = k) = P (XN = k)× 1

2

c. En sommant cette relation de k = 0 à N − 1 , montrer que P (XN+1 −XN = 0) =
1

2
Comme vu plus haut, ([XN = k])k∈[[0,N−1]] forme un système complet d’événements 2 pts

donc d’après la formule des probabilités totales :

P (XN+1 −XN = 0) =
N−1
∑

k=0

P (XN = k)P (XN+1 −XN = 0 ∩XN = k)

P (XN+1 −XN = 0) =

N−1
∑

k=0

P (XN = k)× 1

2
d’après la question précédente

P (XN+1 − XN = 0) =
1

2

N−1
∑

k=0

P (XN = k) =
1

2
car

N−1
∑

k=0

P (XN = k) = 1 puisque ([XN =

k])k∈[[0,N−1]] est un système complet d’événements

d. Montrer que la variable XN+1 −XN suit une loi de Bernoulli de paramètre
1

2
2 points

En déduire la relation E(XN+1) =
1

2
+ E(XN), puis donner E(XN) en fonction de N

Les seules valeurs possibles pour XN+1 − XN sont 0 ou 1 (aucun ou un changement
supplémentaire)

de plus comme nous venons de le voir, P (XN+1 −XN) =
1

2
donc XN+1 −XN →֒ B

(

1

2

)
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donc comme plus haut E(XN+1 −XN) =
1

2
,

donc par linéarité E(XN+1)− E(XN) =
1

2
et donc E(XN+1) =

1

2
+ E(XN )

donc (E(XN ))N>2 est une suite arithmétique (on peut poser uN = E(XN) pour s’en
convaincre)

donc ∀N > 2, E(XN) = (N − 2)× 1

2
+E(X2) = (N − 2)× 1

2
+

1

2
= (N − 1)× 1

2
=

N − 1

2

5. a. Montrer grâce aux résultats 4.b. et 4.c. que les variablesXN+1−XN etXN sont indépendantes.

Soit k ∈ [[2, N − 1]], alors d’après la question 4.b., 2 points

P (XN+1 −XN = 0 ∩XN = k) =
1

2
P (XN = k)

et comme (XN+1 − XN)(Ω) = {0, 1} d’après la (petite) formule des probabilités totales
P (XN = k) = P (XN+1 −XN = 0 ∩XN = k) + P (XN+1 −XN = 1 ∩XN = k)

on en déduit P (XN+1−XN = 1∩XN = k) = P (XN = k)− 1

2
P (XN = k) =

1

2
P (XN = k)

finalement : d’après la question 4.d P (XN+1 −XN = 0) = P (XN+1 −XN = 1) =
1

2
et

P (XN+1 −XN = 0 ∩XN = k) =
1

2
P (XN = k) et

P (XN+1 −XN = 1 ∩XN = k) =
1

2
P (XN = k)

i.e. P (XN+1 −XN = 0 ∩XN = k) = P (XN+1 −XN = 0)P (XN = k)
et P (XN+1 −XN = 1 ∩XN = k) = P (XN+1 −XN = 1)P (XN = k)
ce qui constitue tous les couples de valeurs possibles pour XN+1 −XN et XN

donc par définition XN+1 −XN et XN sont indépendantes.

b. En déduire par récurrence sur N que XN suit une loi binomiale B

(

N − 1,
1

2

)

4 points

En déduire la variance V (XN)

On s’exécute, pour N ∈ N, N > 2, on pose P (N) : XN →֒ B

(

N − 1,
1

2

)

Initialisation : P (2) est vraie ⇔ X2 →֒ B

(

1,
1

2

)

⇔ X2 →֒ B

(

1

2

)

ce qui est vrai d’après la question 2. donc P (2) est vraie

Hérédité : pour N ∈ N, N > 2, on suppose que P (N) est vraie

alors d’après 1. XN+1(Ω) = [[0, N ]] et par hypothèse XN →֒ B

(

N − 1,
1

2

)

donc ∀k ∈ [[0, N − 1]], P (XN = k) =

(

N − 1

k

)(

1

2

)N−1

Nota bene : ceci correspond à la loi binomiale car p = q =
1

2
ici et donc pkqN−1−k = pN−1

soit k ∈ [[0, N ]], alors d’après la formule des probabilités totales (toujours le système com-
plet d’événements ([XN = i])i∈[[0,N−1]])

P (XN+1 = k) =

N−1
∑

i=0

P (XN = i)P[XN=i](XN+1 = k)

1er cas : k = 0 alors P (XN+1 = 0) =

(

1

2

)N

d’après 3.

2ème cas : k > 0
alors puisque ∀i 6= k− 1 et i 6= k, P[XN=i](XN+1 = k) = 0 (il ne peut y avoir que i ou i+1
changements en N + 1 lancers s’il y en a eu i en N lancers, donc
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P (XN+1 = k) = P (XN = k − 1)P[XN=k−1](XN+1 = k) + P (XN = k)P[XN=k](XN+1 = k)

=

(

N − 1

k − 1

)(

1

2

)N−1

× 1

2
+

(

N − 1

k

)(

1

2

)N−1

× 1

2
par hypothèse de

récurrence et car PXN=k−1(XN+1 = k) = PXN=k(XN+1 = k) =
1

2
(une chance sur deux

dans chacun de ces deux cas)

donc P (XN+1 = k) =

((

N − 1

k − 1

)

+

(

N − 1

k

))(

1

2

)N

=

(

N

k

)(

1

2

)N

d’après la formule

du binôme de Pascal

finalement XN+1(Ω) = [[0, N ]] et ∀k ∈ [[0, N ]], P (XN+1 = k) =

(

N

k

)(

1

2

)N

donc XN−1 →֒ B

(

N,
1

2

)

i.e. P (N + 1) est vraie d’où l’hérédité

donc par théorème de récurrence, ∀N ∈ N, N > 2, P (N) est vraie i.e.XN →֒ B

(

N − 1,
1

2

)

et donc par propriété V (XN) = (N − 1)× 1

2
× 1

2
=

N − 1

4
Nota bene : on retrouve également le résultat de la question 4.d. pour l’espérance.

Remarque : l’idée de l’énoncé est sans doute plutôt d’utiliser dans l’hérédité,

(XN+1 = k) = ([XN = k] ∩ [XN+1 −XN = 0])
⋃

([XN = k − 1] ∩ [XN+1 −XN = 1])

puis par indépendance et incompatibilité, P (XN+1 = k) = P (XN = k)P (XN+1 − XN =
0) + P (XN = k − 1)P (XN+1 −XN = 1)

donc P (XN+1 = k) = P (XN = k)
1

2
+P (XN = k−1)1

2
puis avec l’hypothèse de récurrence,

on retrouve la formule de Pascal

Rectificatif : en fait voici ce qui était attendu pour l’hérédité (beaucoup plus simple)

Hérédité : pour N ∈ N, N > 2, on suppose que P (N) est vraie

alors par hypothèse, XN →֒ B

(

N − 1,
1

2

)

or d’après 4.d., XN+1 −XN →֒ B

(

1

2

)

= B

(

1,
1

2

)

de plus, d’après 5.a., XN et XN+1 −XN sont indépendantes
donc par stabilité des lois binomiales pour l’addition (N.B. : le paramètre p est le même

pour les deux variables) : XN+XN+1−XN →֒ B

(

N − 1 + 1,
1

2

)

i.e. XN+1 →֒ B

(

N,
1

2

)

d’où l’hérédité.
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Exercice 2 21 points

On considère la matrice carrée d’ordre trois suivante : A =











0 1/2 1/2

1/2 0 1/2

1/2 1/2 0











1. Montrer, sans calcul, que A est diagonalisable. 0,25 points

A est symétrique donc diagonalisable.

2. Calculer 4A3 − 3A. En déduire un polynôme P annulateur de A 2,25 points

A2 =
1

2











0 1 1

1 0 1

1 1 0











1

2











0 1 1

1 0 1

1 1 0











=
1

4











2 1 1

1 2 1

1 1 2











donc A3 =
1

2











0 1 1

1 0 1

1 1 0











1

4











2 1 1

1 2 1

1 1 2











=
1

8











2 3 3

3 2 3

3 3 2











donc 4A3 − 3A =
1

2











2 3 3

3 2 3

3 3 2











− 1

2











0 3 3

3 0 3

3 3 0











=
1

2











2 0 0

0 2 0

0 0 2











= I3

donc 4A3 − 3A− I3 = 0 donc 4x3 − 3x− 1 est un polynôme annulateur de A

3. Calculer P (1). En déduire une racine de P puis, les autres racines de P 2 points

P (1) = 4 − 3 − 1 = 0 donc 1 est une racine de P et donc P peut s’écrire P (x) = (x − 1)Q(x)
où Q est un polynôme de degré 2
donc ∃(a, b, c) ∈ R

3, P (x) = ax2 + bx+ c
alors (x− 1)Q(x) = ax3 + bx2 + cx− ax2 − bx− c = ax3 + (b− a)x2 + (c− b)x− c
donc par identification a = 4,−c = −1 et b− a = 0 donc b = a = 4 et c = 1
donc Q(x) = 4x2 + 4x+ 1 = (2x+ 1)2

donc P (x) = (x− 1)(2x+ 1)2 et donc les racines de P sont −1
2
et 1

4. Déterminer une matrice diagonale D et une matrice inversible et symétrique P , de première

ligne
(

1 1 1
)

et de deuxième ligne
(

1 −1 0
)

, telles que A = PDP−1

Calculer P−1 7 points

Il faut donc diagonaliser A. D’après la question précédente, on sait que Sp{A} ⊂
{

−1
2
, 1

}

, on

va donc tester ces deux valeurs propres potentielles et déterminer le cas échéant les sous-espaces
propres associés
AX = X ⇔ (A− I3)X = 03,1 ⇔ (2A− 2I3)X = 03,1

⇔











−2 1 1 0

1 −2 1 0

1 1 −2 0











⇔











1 1 −2 0

−2 1 1 0

1 −2 1 0











L1 ↔ L3

L1 ↔ L3
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⇔











1 1 −2 0

0 3 −3 0

0 −3 3 0











L2 ← L2 + 2L1

L3 ← L3 − L1

⇔











1 1 −2 0

0 3 −3 0

0 0 0 0











L2 ← 1/3L2

L3 ← L3 + L2

⇔







x+ y − 2z = 0

y − z = 0
⇔







x = z

y = z

donc 1 est valeur propre (il existe des solutions non nulles à AX = X)

et E1(A) =





























z

z

z











, z ∈ R



















=



















z











1

1

1











, z ∈ R



















= Vect





















1

1

1





















de même AX = −1
2
X ⇔

(

A+
1

2
I3

)

X = 03,1 ⇔ (2A+ I3)X = 03,1

⇔











1 1 1 0

1 1 1 0

1 1 1 0











⇔











1 1 1 0

0 0 0 0

0 0 0 0











L2 ← L2 − L1

L3 ← L3 − L1

⇔
{

x+ y + z = 0 ⇔
{

x = −y − z donc, de même, −1
2
est valeur propre

et E
−

1

2

(A) =





























−y − z

y

z











, (y, z) ∈ R
2



















=





























−y
y

0











+











−z
0

z











, (y, z) ∈ R
2



















E
−

1

2

(A) =



















y











−1
1

0











+ z











−1
0

1











, (y, z) ∈ R
2



















= Vect





















−1
1

0











,











−1
0

1





















= Vect





















1

−1
0











,











1

0

−1





















car le Vect reste identique en changeant des vecteurs générateurs par des vecteurs proportion-
nels non nuls. On fait ceci pour se conformer à la demande de l’énoncé sur la matrice P

on pose donc P =











1 1 1

1 −1 0

1 0 −1











(qui est bien symétrique) et D =













1 0 0

0 −1
2

0

0 0 −1
2













alors AP =
1

2











0 1 1

1 0 1

1 1 0





















1 1 1

1 −1 0

1 0 −1











=
1

2











2 −1 −1
2 1 0

2 0 1











et PD =











1 1 1

1 −1 0

1 0 −1























1 0 0

0 −1
2

0

0 0 −1
2













=













1 −1
2
−1
2

1
1

2
0

1 0
1

2













donc AP = PD et de l’inversibilité de P , on déduira A = PDP−1

comme on nous demande P−1 ici, c’est ce qui justifiera l’inversibilité (sinon cf. remarque)
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









1 1 1 1 0 0

1 −1 0 0 1 0

1 0 −1 0 0 1











⇔











1 1 1 1 0 0

0 −2 −1 −1 1 0

0 −1 −2 −1 0 1











L2 ← L2 − L1

L3 ← L3 − L1

⇔











1 1 1 1 0 0

0 −1 −2 −1 0 1

0 −2 −1 −1 1 0











L2 ↔ L3

L2 ↔ L3

⇔











1 1 1 1 0 0

0 −1 −2 −1 0 1

0 0 3 1 1 −2











L3 ← L3 − 2L2

⇔











1 1 1 1 0 0

0 −1 −2 −1 0 1

0 0 1
1

3

1

3
−2
3











L3 ←
1

3
L3 − 2L2

⇔













1 1 0
2

3
−1
3

2

3

0 −1 0 −1
3

2

3
−1
3

0 0 1
1

3

1

3
−2
3













L1 ← L1 − L3

L2 ← L2 + 2L3

⇔













1 0 0
1

3

1

3

1

3

0 1 0
1

3
−2
3

1

3

0 0 1
1

3

1

3
−2
3













L1 ← L1 + L2

L2 ← −L2 donc P est inversible et P−1 =













1

3

1

3

1

3
1

3
−2
3

1

3
1

3

1

3
−2
3













Remarque : si P−1 n’est pas demandée, l’argumentaire ci-dessous suffit à justifier que P est

inversible et donc à passer de AP = PD à A = PDP−1

alors





















1

−1
0





















est une famille libre (car composée d’un vecteur non nul), ainsi que





















1

−1
0











,











1

0

−1





















(car composée de deux vecteurs non proportionnels)

donc





















1

−1
0











,











1

−1
0











,











1

0

−1





















est une famille libre car il s’agit d’une concaténation de fa-

milles libres de sous-espaces propres distincts, c’est donc une base de M3,1(R) car elle est
composée de 3 éléments, ce qui est égal à la dimension de l’espace.
donc la matrice P composée de ces vecteurs est inversible

Remarque : l’objectif pour nous était de diagonaliser comme ci-dessus, mais on peut en fait le
faire plus rapidement.
Grâce à l’énoncé, du fait de sa symétrie et de la donnée de ses deux premières lignes, on sait

que P =











1 1 1

1 −1 0

1 0 α











où α ∈ R est le seul coefficient qui reste à déterminer. Comme on

sait que P contient en colonne des vecteurs propres, avec U la troisième colonne, il suffit de
tester AU = λU (sans préjuger de la valeur propre λ) pour trouver que α vaut forcément 1 (et
λ = −1/2). En testant les colonnes, on devine alors que D = Diag(1,−1/2,−1/2) et il suffit
de montrer AP = PD (puis de déterminer P−1)

5. Déterminer, pour tout n ∈ N
∗, la matrice An par ses éléments. 3 points

Au préalable, on montre par récurrence An = PDnP−1,
pour n ∈ N, on définit l’assertion P (n) : An = PDnP−1
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Initialisation : P (0) est vraie ⇔ A0 = PD0P−1 ⇔ I3 = PI3P
−1

ce qui est le cas car PI3P
−1 = PP−1 = I3 donc P (0) est vraie

Hérédité : soit n ∈ N, supposons P (n) vraie donc par hypothèse An = PDnP−1

on commence par inverser la formule qui définit D : D = P−1AP ⇒ PD = PP−1AP ⇒
PD = I3AP ⇒ PD = AP ⇒ PDP−1 = APP−1⇒ PDP−1 = AI3 = A
donc An+1 = An×A = PDnP−1PDP−1 = PDnI3DP−1 = PDnDP−1 = PDn+1P−1 i.e. P (n+

1) est vraie donc par théorème de récurrence, ∀n ∈ N, P (n) est vraie, i.e. An = PDnP−1

reste à expliciter An, en calculant, avec la propriété sur les matrices diagonales qui nous donne
Dn, donc pour n ∈ N

∗ (et même dans N) :

An = PDnP−1 =
1

3
P

















1 0 0

0

(−1
2

)n

0

0 0

(−1
2

)n



























1 1 1

1 −2 1

1 1 −2











=
1

3











1 1 1

1 −1 0

1 0 −1



























1 1 1
(−1

2

)n

−2
(−1

2

)n (−1
2

)n

(−1
2

)n (−1
2

)n

−2
(−1

2

)n

















donc An =
1

3



















1 + 2

(−1
2

)n

1−
(−1

2

)n

1−
(−1

2

)n

1−
(−1

2

)n

1 + 2

(−1
2

)n

1−
(−1

2

)n

1−
(−1

2

)n

1−
(−1

2

)n

1 + 2

(−1
2

)n



















(bien valable pour n = 0)

6. Soient u0, v0, w0 trois nombres réels positifs ou nuls tels que u0 + v0 + w0 = 1
On note

X0 =











u0

v0

w0











, et ∀n ∈ N
∗, Xn =











un

vn

wn











la matrice colonne définie par la relation de récurrence : Xn = AXn−1

a. Montrer, pour tout n ∈ N : Xn = AnX0 1 point

On procède par récurrence, pour n ∈ N, on définit P (n) : Xn = AnX0

Initialisation : P (0) est vraie ⇔ X0 = A0X0 ⇔ X0 = X0

ce qui est vrai donc P (0) est vraie

Hérédité : soit n ∈ N, on suppose que P (n) est vraie
alors par définition, Xn+1 = AXn (car ∀n ∈ N

∗, Xn = AXn−1 ⇔ ∀n ∈ N, Xn+1 = AXn)
et par hypothèse de récurrence Xn = ANX0

donc Xn+1 = AAnX0 = An+1X0, i.e. P (n+ 1) est vraie, d’où l’hérédité

donc par théorème de récurrence, ∀n ∈ N, P (n) est vraie, i.e. Xn = AnX0
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b. En déduire, pour tout n ∈ N,































un =
1

3
+

(

u0 −
1

3

)(

−1
2

)n

vn =
1

3
+

(

v0 −
1

3

)(

−1
2

)n

wn =
1

3
+

(

w0 −
1

3

)(

−1
2

)n

2 points

On a donc pour tout n ∈ N (la formule de An étant également vraie pour n = 0)











un

vn

wn











=
1

3



















1 + 2

(−1
2

)n

1−
(−1

2

)n

1−
(−1

2

)n

1−
(−1

2

)n

1 + 2

(−1
2

)n

1−
(−1

2

)n

1−
(−1

2

)n

1−
(−1

2

)n

1 + 2

(−1
2

)n





























u0

v0

w0











=
1

3



















(

1−
(−1

2

)n)

(u0 + v0 + w0) + 3

(−1
2

)n

u0

(

1−
(−1

2

)n)

(u0 + v0 + w0) + 3

(−1
2

)n

v0
(

1−
(−1

2

)n)

(u0 + v0 + w0) + 3

(−1
2

)n

w0



















=
1

3



















1−
(−1

2

)n

+ 3

(−1
2

)n

u0

1−
(−1

2

)n

+ 3

(−1
2

)n

v0

1−
(−1

2

)n

+ 3

(−1
2

)n

w0



















et donc



































un =
1

3
+

(

u0 −
1

3

)(

−1
2

)n

vn =
1

3
+

(

v0 −
1

3

)(

−1
2

)n

wn =
1

3
+

(

w0 −
1

3

)(

−1
2

)n

c. Déterminer les limites respectives u, v, w de un, vn, wn lorsque le nombre entier n tend vers
l’infini. 0,5 point

Comme

∣

∣

∣

∣

−1
2

∣

∣

∣

∣

< 1 alors

(

−1
2

)n

→ 0 et un, vn, et wn tendent vers
1

3
quand n→ +∞

donc u = v = w =
1

3

On note, pour tout n ∈ N, dn =

√

(un − u)2 + (vn − v)2 + (wn − w)2

d. Montrer, pour tout n ∈ N : dn 6
1

2n−1
2 points

On a d2n =

[(

u0 −
1

3

)(

−1
2

)n]2

+

[(

v0 −
1

3

)(

−1
2

)n]2

+

[(

v0 −
1

3

)(

−1
2

)n]2

=

(

−1
2

)2n
[

(

u0 −
1

3

)2

+

(

v0 −
1

3

)2

+

(

v0 −
1

3

)2
]

et comme u0, v0, w0 sont trois nombres réels positifs ou nuls tels que u0 + v0 + w0 = 1

alors 0 6 u0 = 1− (v0 + w0) 6 1 et
−2
3

6
−1
3

6 u0 −
1

3
6

2

3

donc

(

u0 −
1

3

)2

6
4

9
et de même pour

(

v0 −
1

3

)2

et

(

v0 −
1

3

)2

donc

(

u0 −
1

3

)2

+

(

v0 −
1

3

)2

+

(

v0 −
1

3

)2

6
4

3
6 4
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finalement d2n 6

(

1

2

)2n

4 et donc
√

d2n 6

√

(

1

2

)2n

4 par croissance de x 7→
√
x

or
√

d2n = |dn| = dn car dn > 0 et

√

(

1

2

)2n

4 =

√

(

1

2

)2n√
4 =

(

1

2

)n

× 2 =

(

1

2

)n−1

donc pour tout n ∈ N : dn 6
1

2n−1

e. Déterminer un entier naturel n tel que : dn 6 10−2 1 point

Comme 27 = 128 alors pour n = 8 on a 2n−1 = 128 et d8 6 10−2

donc pour n = 8 on a bien d8 6 10−2
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