Devoir à rendre en binôme, obligatoirement.

Exercice 1

- 1. a. Montrer que, pour tout entier naturel n, l'intégrale $\int_0^{+\infty} t^n e^{-t} dt$ est convergente. On note pour tout entier naturel n, $I_n = \int_0^{+\infty} t^n e^{-t} dt$
 - **b.** Calculer I_0 et I_1
- 2. Montrer que, pour tout réel x positif, l'intégrale $\int_0^{+\infty} \frac{\mathrm{e}^{-t}}{1+xt} \mathrm{d}t$ est convergente. On considère la fonction F définie sur $[0, +\infty[$ par :

$$\forall x \in [0, +\infty[, F(x)] = \int_{0}^{+\infty} \frac{e^{-t}}{1+xt} dt$$

- **3.** Expliciter la valeur de F(0)
- **4.** Soit x et y deux réels positifs tels que $x \leq y$ Montrer que $F(y) \leq F(x)$ Que peut-on en déduire sur la fonction F?
- 5. a. Pour tout réel x positif, calculer l'intégrale $\int_0^1 \frac{1}{1+xt} dt$ On distinguera le cas x=0 et le cas x>0
 - **b.** Montrer que, pour tout réel x positif :

$$0 \leqslant \int_0^1 \frac{e^{-t}}{1+xt} dt \leqslant \int_0^1 \frac{1}{1+xt} dt$$

c. Montrer que, pour tout réel x strictement positif :

$$0 \leqslant \int_{1}^{+\infty} \frac{e^{-t}}{1+xt} dt \leqslant \frac{1}{x} \int_{1}^{+\infty} e^{-t} dt$$

- **d.** A l'aide des questions précédentes, déerminer la limite de F(x) lorsque x tend vers $+\infty$
- **6.** Soit x un réel positif. On admet que l'intégrale $\int_0^{+\infty} \frac{t^2 e^{-t}}{1+xt} dt$ est convergente.
 - **a.** Montrer que :

$$F(x) - \int_0^{+\infty} e^{-t} (1 - xt) dt = x^2 \int_0^{+\infty} \frac{t^2 e^{-t}}{1 + xt} dt$$

b. En déduire que :

$$0 \leqslant F(x) - I_0 + xI_1 \leqslant x^2 I_2$$

7. a. En déduire que la fonction F admet le développement limité à l'ordre 1 suivant au voisinage de 0 :

$$F\left(x\right) \underset{x\to 0}{=} 1 - x + o\left(x\right)$$

- **b.** Montrer que F est dérivable en 0 et déterminer F'(0)
- 8. On admet que la fonction F est continue sur $[0, +\infty[$ En tenant compte des propriétés démontrées dans cet exercice, tracer l'allure de la courbe représentative de F. On fera figurer sa tangente au point d'abscisse 0