
ECG 2 - Mathématiques appliquées Mathématiques DS n°3 - 13 dé
embre 2025Corrigé Total sur 95 points - dont réda
tion/présentation/
larté : 3 pointsDans tout le sujet, 
on
ernant les 
odes Python, on supposera les importations suivantes faites :
import numpy as np

import numpy.random as rdExer
i
e 1 26 pointsPartie I : rédu
tion d'une matri
eSoit A =











−1 1 0

2 −2 −1

0 2 −1









On note B la base 
anonique de l'espa
e ve
toriel R3On 
onsidère l'endomorphisme f de R
3 représenté par la matri
e A suivant la base BOn note id l'endomorphisme identité de R

3, et I la matri
e identité de M3(R)1. Comparer A(A+ I)2 et (A+ I)2 2 points
A+ I =











0 1 0

2 −1 −1

0 2 0











don
 (A+ I)2 =











0 1 0

2 −1 −1

0 2 0





















0 1 0

2 −1 −1

0 2 0











=











2 −1 −1

−2 1 1

4 −2 −2









alors A(A+ I)2 =











−1 1 0

2 −2 −1

0 2 −1





















2 −1 −1

−2 1 1

4 −2 −2











=











−4 2 2

4 −2 −2

−8 4 4











= −2











2 −1 −1

−2 1 1

4 −2 −2









on trouve don
 A(A+ I)2 = −2(A+ I)22. En déduire les valeurs propres de A et une base de 
haque sous-espa
e propre asso
ié. 5 pointsOn en déduit que P (x) = x(x+ 1)2 + 2(x+ 1)2 = (x+ 2)(x+ 1)2 est un polyn�me annulateur de Ases ra
ines sont −2 et −1 don
 Sp(A) ⊂ {−1,−2}on résout le système linéaire AX = −2X ⇔ (A+ 2I)X = 03,1 d'in
onnue X = t (x1 x2 x3) ∈M3,1(R) :
⇔











1 1 0 0

2 0 −1 0

0 2 1 0











⇔











1 1 0 0

0 −2 −1 0

0 2 1 0











L2 ← L2 − 2L1 ⇔











1 1 0 0

0 −2 −1 0

0 0 0 0











L3 ← L3 + L2

⇔



















x1 + x2 + 0 = 0

0 − 2x2 − x3 = 0

0 + 0 + 0 = 0

⇔



















x1 = −x2

x3 = −2x2

0 = 0

⇔ X ∈





























−x2

x2

−2x2











, x2 ∈ R



















=



















x2











−1

1

−2











, x2 ∈ R

















don
 −2 est valeur propre (−2 ∈ Sp(A)) et E−2(A) = Vect
(

t
(

−1 1 −2
))

= Vect
(

t
(

1 −1 2
))

t
(

1 −1 2
) est un ve
teur non nul, il forme don
 une famille libre, de plus générati
e de E−2(A) pardé�nition du Vect, 
'est don
 une base de E−2(A)de même, on résout AX = −X ⇔ (A+ I)X = 03,1 d'in
onnue X = t (x1 x2 x3)1



⇔











0 1 0 0

2 −1 −1 0

0 2 0 0











⇔



















x2 = 0

x3 = 2x1

x2 = 0

⇔ X ∈





























x1

0

2x1











, x1 ∈ R



















=



















x1











1

0

2











, x1 ∈ R

















don
 −1 ∈ Sp(A) et E−1(A) = Vect
(

t(1 0 2)
) , de même t(1 0 2) est une base de E−1(A)3. La matri
e A est-elle inversible ? si oui, 
al
uler A−1 en fon
tion de A2, A et I 1,5 points

0 /∈ Sp(A) don
 A est inversible, de plus (A+ 2I)(A + I)2 = 03,1 don
 (A+ 2I)(A2 + 2A+ I) = 03,1don
 A3 + 2A2 +A+ 2A2 + 4A+ 2I = 03,1 don
 A3 + 4A2 + 5A+ 2I = 03,1don
 −A3 − 4A2 − 5A = 2I soit A [−1

2

(

A2 + 4A+ 5I
)

]

= I don
 A−1 = −
1

2

(

A2 + 4A+ 5I
)4. On note u1 = (1, 0, 2), u2 = (1, 1, 1) et u3 = (1,−1, 2)a. Cal
uler f (u1) et f (u3) 1 pointOn utilise l'é
riture matri
ielle : At(x1 x2 x3) =

t(y1 y2 y3)⇔ f((x1, x2, x3)) = (y1, y2, y3)grâ
e à la question 2., on sait que t(1 0 2) ∈ E−1(A) don
 At(1 0 2) = −t(1 0 2) don
 f(u1) =
−u1 et de même t(1 − 1 2) ∈ E−2(A) don
 At(1 − 1 2) = −2t(1 − 1 2) don
 f(u3) = −u3si on n'avait pas 
es résultats, on peut toujours 
al
uler :
A











1

0

2











=











−1 1 0

2 −2 −1

0 2 −1





















1

0

2











=











−1

0

−2











= −











1

0

2











don
 f (u1) = −u1

A











1

−1

2











=











−1 1 0

2 −2 −1

0 2 −1





















1

−1

2











=











−2

2

−4











= −2











1

−1

2











don
 f (u3) = −2u3b. Exprimer f (u2) 
omme 
ombinaison linéaire de u1 et de u2 1 point
A











1

1

1











=











−1 1 0

2 −2 −1

0 2 −1





















1

1

1











=











0

−1

1











=











1

0

2











−











1

1

1











don
 f (u2) = u1 − u2
. Montrer que U = (u1, u2, u3) est une base de R
3 1,5 pointsSoit λ1, λ2, λ3 trois réels tels que 3

∑

i=1

λiui = 0R3 ⇔ (λ1, 0, 2λ2) + (λ1, λ2, λ3) + (λ1,−λ2, 2λ3) = (0, 0, 0)

⇔











1 1 1 0

0 1 −1 0

2 1 2 0











⇔











1 1 1 0

0 1 −1 0

0 −1 0 0











L3 ← L3 − 2L1

⇔⇔











1 1 1 0

0 1 −1 0

0 0 −1 0











L3 ← L3 + L2don
 λ3 = 0 puis λ2 = 0 et λ1 = 0don
 U est une famille libre, de plus Card(U ) = 3 = dim(R3) don
 U est une base de R
3d. E
rire la matri
e de passage P de B vers U 1 pointPar dé�nition la matri
e de B vers U 
orrespond à la � le
ture � des ve
teurs de U dans la base Bdon
 P =











1 1 1

0 1 −1

2 1 2









 2



e. E
rire la matri
e T de f relative à la base U 1 pointPar dé�nition à nouveau, 
ette matri
e 
ontient pour la 
olonne i l'image de ui par f , dans la base Udon
 T =











−1 1 0

0 −1 0

0 0 −2












ar f(u1) = −u1, f(u2) = u1 − u2 et f(u3) = −2u3f. Donner une relation entre T,A et P , en la justi�ant soigneusement. 1 pointPar propriété de 
hangement de base pour une appli
ation linéaire : MB(f) = PB→U MU (f)PU →Bdon
 par dé�nition des matri
es, et 
ar par propriété PU →B = P−1
B→U

, on trouve A = PTP−1Partie II : une appli
ation, résolution d'un système di�érentiel linéaireOn 
onsidère le système di�érentiel linéaire : S :



















x′1(t) = −x1(t) + x2(t)

x′2(t) = 2x1(t)− 2x2(t)− x3(t)

x′3(t) = 2x2(t)− x3(t)où x1, x2, x3 sont des fon
tions de 
lasse C
1 sur ROn posera, pour tout t ∈ R,X(t) =











x1(t)

x2(t)

x3(t)











et Y (t) = P−1X(t) =











y1(t)

y2(t)

y3(t)











la matri
e P étant 
elle obtenuedans la partie I question 4.d.On dira indi�éremment que x1, x2, x3 sont les in
onnues du système S ou que X est l'in
onnue du système S1. Montrer que X est solution du système S si, et seulement si Y est solution du système : 1,5 points
S

′ : ∀t ∈ R, Y ′(t) = TY (t)où T est la matri
e obtenue dans la partie I question 4.e..Ave
 A la matri
e dé�nie à la partie I,
AX(t) =











−x1(t) + 2x2(t)

2x1(t)− 2x2(t)− x3(t)

2x2(t)− x3(t)











et on note X ′(t) =











x′1(t)

x′2(t)

x′3(t)









don
 X solution de (S)⇔ ∀t ∈ R, AX(t) = X ′(t)⇔ ∀t ∈ R, PTP−1X(t) = X ′(t)

⇔ ∀t ∈ R, TP−1X(t) = P−1X ′(t)⇔ ∀t ∈ R, TY (t) = Y ′(t)
ar P est inversible (on peut don
 multiplier par P−1) et ∀t ∈ R, Y ′(t) = P−1X ′(t) où Y ′(t) =











y′1(t)

y′2(t)

y′3(t)









2. a. Justi�er l'existen
e d'un réel λ tel que y1 soit solution de l'équation di�érentielle : 3 points
(Eλ) : ∀t ∈ R, y′(t) + y(t) = λe−tSi Y est solution du système S

′, alors ∀t ∈ R, Y ′(t) = TY (t)⇔

∀t ∈ R,











y′1(t)

y′2(t)

y′3(t)











=











−1 1 0

0 −1 0

0 0 −2





















y1(t)

y2(t)

y3(t)











=











−y1(t) + y2(t)

−y2(t)

−2y3(t)











⇔ ∀t ∈ R,



















y′1(t) = −y1(t) + y2(t)

y′2(t) = −y2(t)

y′3(t) = −2y3(t)

3



⇔ ∀t ∈ R,



















y′1(t) = −y1(t) + y2(t)

y2(t) = λe−t où λ ∈ R

y3(t) = µe−2t où µ ∈ R

⇔ ∀t ∈ R,



















y′1(t) + y1(t) = λe−t

y2(t) = λe−t où λ ∈ R

y3(t) = µe−2t où µ ∈ Rdon
 si Y est solution de U alors y1 est solution de Eλ où λ ∈ R est un paramètre de la fon
tion y2Pré
ision : il n'était pas né
essaire d'expli
iter y3 i
i.b. Trouver une solution parti
ulière de ( Eλ ) de la forme t 7→ aλte
−t où aλ est un réel à déterminer. 1 ptOn dé�nit la fon
tion f sur R par f(t) = aλte

−t où aλ ∈ Ralors ∀t ∈ R, f ′(t) = aλe
−t + aλt(−e

−t) = aλe
−t − aλte

−t = aλe
−t − f(t)don
 si aλ = λ alors f est solution de Eλ, i.e. t 7→ λte−t est solution de Eλ
. Résoudre (Eλ) 1 pointComme pour y2, {t 7→ αe−t, α ∈ R} est l'ensemble des solutions de l'équation homogène : y′ = −y ⇔

y′ + y = 0don
, par superposition de l'ensemble des solutions de l'équation homogène et de la solution parti
ulière,l'ensemble des solutions de Eλ est {t 7→ αe−t + λte−t, α ∈ R}3. Résoudre S
′ puis S 2,5 pointsD'après les résultats des questions 1. et 2.
., Y solution de S

′ ⇔ ∀t ∈ R,



















y1(t) = αe−t + λte−t, α ∈ R

y2(t) = λe−t, λ ∈ R

y3(t) = µe−2t, µ ∈ Ralors d'après la question 1., X solution de S ⇔ Y solution de S
′ ave
 Y = P−1X

⇔ X = PY ave
 Y solution de S
′ ⇔ X(t) =











x1(t)

x2(t)

x3(t)











=











1 1 1

0 1 −1

2 1 2





















y1(t)

y2(t)

y3(t)











=











y1(t) + y2(t) + y3(t)

y2(t)− y3(t)

2y1(t) + y2(t) + 2y3(t)











⇔



















x1(t) = αe−t + λte−t + λe−t + µe−2t

x2(t) = λe−t − µe−2t

x3(t) = 2αe−t + 2λte−t + λe−t + 2µe−2t

où (α, λ, µ) ∈ R
34. Justi�er que toutes les 
omposantes de X ont la même limite en +∞ 1 point

lim
x→−∞

ex = 0 don
 par 
omposition lim
t→+∞

e−t = lim
t→+∞

e−2t = 0et par 
roissan
es 
omparées lim
t→+∞

te−t = lim
t→+∞

t

et
= 0 don
 par opérations de limites, quelles que soient lesvaleurs de α, λ et µ,

lim
t→+∞

x1(t) = lim
t→+∞

x2(t) = lim
t→+∞

x3(t) = 05. Quel est l'unique point d'équilibre de S ? Est-il stable ? (justi�er la réponse) 1 point
X∗ est un point (ou état) d'équilibre de S ⇔ AX∗ = 03,1or A est inversible don
 ⇔ AX∗ = 03,1 ⇔ X∗ = 03,1 
'est don
 l'unique point d'équilibre de Sil est stable 
ar d'après la question 4., toutes les traje
toires (des solutions) 
onvergent vers t(0, 0, 0)(les valeurs propres de A sont négatives mais i
i A n'est pas diagonalisable don
 on ne peut rigoureusementutiliser 
et argument). 4



Exer
i
e 2 - Edhe
 2018 32 pointsOn 
onsidère la fon
tion f qui à tout réel x asso
ie : f(x) = ∫ x

0
ln
(

1 + t2
)

dtLes deux parties de 
e problème peuvent être traitées indépendamment l'une de l'autre.Partie I : étude de f1. a. Déterminer le signe de f(x) selon le signe de x 1 pointOn va utiliser la positivité de l'intégrale, en utilisant que ∀t ∈ R, ln(1 + t2) > 0 et
1er 
as : si x > 0 (i.e. les bornes sont dans l'ordre 
roissant) alors, par positivité de l'intégrale,
f(x) =

∫ x

0
ln(1 + t2)dt > 0

2ème 
as si x 6 0, alors pour les mêmes raisons,
∫ 0

x

ln(1 + t2)dt > 0 don
 f(x) =

∫ x

0
ln(1 + t2)dt = −

∫ 0

x

ln(1 + t2)dt 6 0�nalement, f est positive sur [0,+∞[ et négative sur ]−∞, 0]b. Justi�er que f est de 
lasse C
1 sur R et 
al
uler f ′(x) pour tout réel x 1 pointD'après le théorème fondamental de l'intégration, f est une primitive de t 7→ ln(1 + t2), don
 f estdérivable et ∀x ∈ R, f ′(x) = ln(1 + x2)or, t 7→ ln(1+t2) est 
ontinue sur R, en tant que 
omposition de fon
tions 
ontinues (ln et un polyn�me)don
 f est C

1 sur R et ∀x ∈ R, f ′(x) = ln(1 + x2)
. En déduire les variations de f sur R (on ne 
her
hera pas à 
al
uler les limites de f ). 1 point
∀x ∈ R, x2 > 0 don
 1 + x2 > 1 et don
 par 
roissan
e du logarithme ln(1 + x2) > ln(1) i.e. f ′(x) > 0ainsi, f est 
roissante sur R2. a. Montrer que f est impaire. 1,5 points
f est dé�nie sur R qui est symétrique par rapport à 0 et pour x ∈ R, f(−x) =

∫

−x

0
ln(1 + t2)dton fait alors le 
hangement de variable u = −t, du = −dt et on obtient :

f(−x) =

∫ x

0
ln(1 + (−u)2)(−du) = −

∫ x

0
ln(1 + u2)du = −f(x) ainsi, f est impaire .b. Etudier la 
onvexité de f et donner les 
oordonnées des éventuels points d'in�exion de la 
ourbe repré-sentative de f dans un repère orthonormé. 1,5 points

t 7→ ln(1 + t2) est de 
lasse C
1 sur R don
 f est de 
lasse C

2 sur R et ∀x ∈ R, f ′′(x) =
2x

1 + x2
omme le dénominateur est toujours positif, f ′′(x) est du signe de x et don
 ∀x ∈ R−, f
′′(x) 6 0 et

∀x ∈ R+, f
′′(x) > 0 et f ′′(x) s'annule en 0 en 
hangeant de signedon
 f est 
on
ave sur ]−∞; 0] et 
onvexe sur [0;+∞[ et elle admet un point d'in�exion au pointd'abs
isse 0, i.e. le point (0, 0) , 
ar f(0) = ∫ 0

0
ln(1 + t2)dt = 03. a. Déterminer les réels a et b tels que : ∀t ∈ R,

t2

1 + t2
= a+

b

1 + t2
1,5 pointsSoit a et b deux réels tels que : ∀t ∈ R,

t2

1 + t2
= a+

b

1 + t2
⇔ ∀t ∈ R,

t2

1 + t2
=

at2 + (a+ b)

1 + t25



⇔ ∀t ∈ R, t2 = at2 + a+ b (
ar 1 + t2 6= 0)ainsi, par identi�
ation, on doit avoir :


a = 1

a+ b = 0
⇔







a = 1

b = −1
don
 ∀t ∈ R,

t2

1 + t2
= 1−

1

1 + t2Nota bene : le raisonnement par équivalen
e n'est pas né
essaire pour trouver que a = 1 et b = −1fon
tionne mais il l'est pour montrer que 
'est l'unique solution, 
e qui semble être demandé par l'énon
é.b. En déduire, grâ
e à une intégration par parties, que, pour tout réel x, on a : 2 points
f(x) = x

(

ln(1 + x2)− 2
)

+ 2

∫ x

0

1

1 + t2
dt

∀x ∈ R, f(x) =

∫ x

0
ln(1 + t2)dt, on pose alors :

u′(t) = 1 et u(t) = t et v(t) = ln(1 + t2) et don
 v′(t) =
2t

1 + t2

u et v sont de 
lasse C
1 sur R don
 à l'aide d'une intégration par parties,

f(x) =
[

t ln(1 + t2)
]x

0
−

∫ x

0

2t2

1 + t2
dt = x ln(1 + x2)− 2

∫ x

0

t2

1 + t2
dt.or d'après la question pré
édente,

∫ x

0

t2

1 + t2
dt =

∫ x

0

(

1−
1

1 + t2

)

dt =

∫ x

0
1−

∫ x

0

1

1 + t2
dt = x−

∫ x

0

1

1 + t2
dtAinsi, f(x) = x ln(1 + x2)− 2

(

x−

∫ x

0

1

1 + t2
dt

) soit f(x) = x(ln(1 + x2)− 2) + 2

∫ x

0

1

1 + t2
dt4. Re
her
he d'un équivalent de f(x) au voisinage de +∞a. Montrer que ∫ +∞

0

1

1 + t2
dt est une intégrale 
onvergente. 1,5 points

1

t2
∼
+∞

1

1 + t2

ar 1

t2

1
1+t2

=
t2 + 1

t2
= 1 +

1

t2
→
+∞

1de plus t 7→ 1

1 + t2
et t 7→ 1

t2
sont positives sur [1;+∞[et ∫ +∞

1

1

t2
dt est 
onvergente (intégrale de Riemann ave
 α > 1) don
, d'après les 
ritères de 
omparaisondes intégrales de fon
tions positives, ∫ +∞

1

1

1 + t2
dt est 
onvergentedon
, par relation de Chasles, ∫ +∞

0

1

1 + t2
dt est 
onvergenteb. En déduire que f(x) ∼

+∞

x ln
(

1 + x2
) 2 pointsNous avons démontré à la question 3.b. que f(x) = x(ln(1 + x2)− 2) + 2

∫ x

0

1

1 + t2
dtdon
 pour x > 0, f(x) = x ln(1+x2)−2x+2

∫ x

0

1

1 + t2
dt = x ln(1+x2)

(

1−
2x

x ln(1 + x2)
+

a(x)

x ln(1 + x2)

)où a(x) = 2

∫ x

0

1

1 + t2
dt et don
 f(x)

x ln(1 + x2)
= 1−

2

ln(1 + x2)
+

a(x)

x ln(1 + x2)or, lim
x→+∞

1 + x2 = +∞ et lim
X→+∞

ln(X) = +∞ don
 par 
omposition lim
x→+∞

ln(1 + x2) = +∞et lim
x→+∞

∫ x

0

1

1 + t2
dt =

∫ +∞

0
=

1

1 + t2
dt est un nombre �ni et par produit lim

x→+∞

x ln(1 + x2) = +∞don
 par quotients de limites lim
x→+∞

1−
2

ln(1 + x2)
+

a(x)

x ln(1 + x2)
= 1− 0 + 0 = 1soit lim

x→+∞

f(x)

x ln(1 + x2)
= 1 i.e. f(x) ∼

+∞

x ln
(

1 + x2
)6




. Véri�er que, pour tout réel x stri
tement positif, on a : ln(1 + x2) = 2 ln(x) + ln

(

1 +
1

x2

), puis établirl'équivalent suivant : f(x) ∼
+∞

2x ln(x) 2 pointsSoit x > 0, alors 2 ln(x) + ln

(

1 +
1

x2

)

= ln(x2) + ln

(

1

x2
+ 1

)

= ln

(

x2
(

1

x2
+ 1

))

= ln(1 + x2)or, lim
x→+∞

2 ln(x) = +∞ et lim
x→+∞

ln

(

1 +
1

x2

)

= 0 don
 ln

(

1 +
1

x2

)

=
+∞

o(2 ln(x))don
 ln(1 + x2) =
+∞

2 ln(x) + o(2 ln(x)) don
 par propriété ln(1 + x2) ∼
+∞

2 ln(x)don
 par produit d'équivalents x ln(1 + x2) ∼
+∞

2x ln(x)or f(x) ∼
+∞

x ln
(

1 + x2
) don
 f(x) ∼

+∞

2x ln(x)
ar lim
x→+∞

f(x)

2x ln(x)
= lim

x→+∞

f(x)

x ln (1 + x2)
×

x ln
(

1 + x2
)

2x ln(x)
= 1× 1 = 1 d'après les équivalentsd. Donner sans 
al
ul un équivalent de f(x) lorsque x est au voisinage de −∞ 1 pointComme f est impaire, on 
omprend que l'équivalent en −∞ sera l'opposé de l'équivalent pré
édentmais on doit le modi�er 
ar il n'est pas dé�ni pour x 6 0, on utilise 2 ln(x) = ln(x2) et alors

f(x) ∼
−∞

x ln(x2) que l'on pourrait aussi é
rire f(x) ∼
−∞

2x ln(|x|) (on a bien l'opposé 
ar x < 0)5. Re
her
he d'un équivalent de f(x) au voisinage de 0a. Montrer que f est de 
lasse C
3 sur R 1 pointPour les mêmes raisons que plus haut f ′ est une 
omposée de fon
tions C

2 (et même C
∞) don
 f ′ est

C
2 (et même C

∞) et don
 f est C
3 (et même C

∞)On admet la formule de Taylor-Young à l'ordre 3 au voisinage de 0 pour la fon
tion f , 
'est-à-dire :
f(x) = f(0) +

x1

1!
f ′(0) +

x2

2!
f ′′(0) +

x3

3!
f (3)(0) + o(x3)b. Déterminer f(0), f ′(0), f ′′(0) et f (3)(0) 1 point

f(0) =

∫ 0

0
ln(1 + t2)dt = 0 et d'après les 
al
uls pré
édents, pour x ∈ R,

f ′(x) = ln(1 + x2) et f ′′(x) =
2x

1 + x2
don
 f ′(0) = 0, f ′′(0) = 0en�n ∀x ∈ R, f (3)(x) =

2(1 + x2)− 4x2

(1 + x2)2
don
 f (3)(0) = 2 et f(0) = f ′(0) = f ′′(0) = 0
. En déduire alors un équivalent de f(x) au voisinage de 0 1 pointL'énon
é original était généreux sur 
ette question !Ainsi, d'après la formule proposée (de Taylor-Young à l'ordre 3 au voisinage de 0) :

f(x) =
0

x3

3!
× 2 + o(x3) =

0

2x3

6
+ o(x3) =

0

x3

3
+ o(x3) don
 par propriété f(x) ∼

0

x3

3Partie II : étude d'une suiteOn pose u0 = 1, et pour tout entier naturel n non nul, un =

∫ 1

0

(

ln(1 + t2)
)n

dt1. a. La valeur donnée à u0 est-elle 
ohérente ave
 l'expression générale de un ? 0,5 pointSi on 
onsidère l'expression générale de un,∫ 1

0

(

ln(1 + t2)
)0

dt =

∫ 1

0
1dt = 1 = u0 
e qui est don
 
ohérentave
 la valeur de u0 donnée et on utilisera don
 la formule ave
 l'intégrale pour tout n ∈ N par la suite.7



b. Exprimer u1 à l'aide de la fon
tion f 0,5 pointPar dé�nition, u1 = ∫ 1

0
ln(1 + t2)dt don
 u1 = f(1) par dé�nition de f2. a. Montrer que la suite (un)n∈N est dé
roissante. 2 pointsSoit n ∈ N et t ∈ [0; 1], alors 0 6 t 6 1 et don
 0 6 t2 6 1 par 
roissan
e de la fon
tion 
arré sur R+don
 1 6 1 + t2 6 2 6 e et don
 0 6 ln(1 + t2) 6 ln(2) 6 1 par 
roissan
e de lndon
 (ln(1 + t2)

)n
> 0 et don
 en multipliant l'inégalité pré
édente par (ln(1 + t2)

)n on trouve
(

ln(1 + t2)
)n+1

6
(

ln(1 + t2)
)n et don
 par 
roissan
e de l'intégrale (
ar 0 6 1) :

∫ 1

0

(

ln(1 + t2)
)n+1

dt 6

∫ 1

0

(

ln(1 + t2)
)n

dti.e. un+1 6 un et don
 (un)n∈N est dé
roissanteb. Montrer que la suite (un)n∈N est minorée par 0. En déduire qu'elle 
onverge. 1 pointSoit n ∈ N, 
omme vu à la question pré
édente ∀t ∈ [0; 1],
(

ln(1 + t2)
)n

> 0 don
 par positivité del'intégrale, ∫ 1

0

(

ln(1 + t2)
)n

dt > 0 i.e. un > 0 et don
 (un)n∈N est minorée par 0�nalement, (un)n∈N est dé
roissante et minorée par 0don
 d'après le théorème de la limite monotone, (un)n∈N 
onverge.3. a. Etablir l'en
adrement suivant : 0 6 un 6 (ln 2)n 1,5 pointsOn a montré à la question 2.a. que ∀n ∈ N,∀t ∈ [0; 1], ln(1 + t2) 6 ln(2)don
 ln(1 + t2)n 6 (ln(2))n par 
roissan
e des fon
tions puissan
es sur R+don
 par 
roissan
e de l'intégrale (0 6 1) :
∫ 1

0
ln(1 + t2)ndt 6

∫ 1

0
(ln(2))n dt i.e. un 6 (ln(2))n par dé�nition de un et 
ar

∫ 1

0
(ln(2))n dt = (ln(2))n (1− 0) = (ln(2))n (puisque (ln(2))n ne dépend pas de t)de plus un > 0 d'où ∀n ∈ N, 0 6 un 6 (ln(2))nb. Que peut-on en déduire sur la suite (un)n∈N ? Sur la série de terme général un ? 2 pointsComme vu plus haut 1 < 2 < e⇒ 0 6 ln(2) < 1 par stri
te 
roissante de lndon
 (ln(2))n → 0 (forme qn ave
 |q| = ln(2) < 1)don
 d'après le théorème des gendarmes, on en déduit que un → 0de plus la série de terme général (ln(2))n 
onverge 
ar il s'agit d'une série géométrique ave
 |q| < 1don
 par théorème de 
omparaison sur les séries à termes positifs (un > 0),

0 6 un 6 (ln(2))n ⇒ la série de terme général un 
onverge.4. a. Montrer que : 0 6

∫ 1

0

(

ln(1 + t2)
)n

1− ln(1 + t2)
dt 6

un
1− ln 2

2 pointsOn 
omprend qu'il faut travailler sur le dénominateur :
omme vu pré
édemment, pour t ∈ [0; 1], ln(1 + t2) 6 ln(2) < 1⇒ 0 < 1− ln(2) 6 1− ln(1 + t2)don
 en appli
ant la fon
tion inverse, dé
roissante sur ]0,+∞[,
0 6

1

1− ln(1 + t2)
6

1

1− ln(2)
⇒ 0 6

(ln(1 + t2))n

1− ln(1 + t2)
6

(ln(1 + t2))n

1− ln(2)

ar (ln(1 + t2))n > 0 don
 par
roissan
e et positivité de l'intégrale (0 < 1) : 0 6

∫ 1

0

(ln(1 + t2))n

1− ln(1 + t2)
dt 6

∫ 1

0

(ln(1 + t2))n

1− ln(2)
dt et en�n parlinéarité ( 1

1− ln(2)
ne dépend pas de t),

∫ 1

0

(ln(1 + t2))n

1− ln(2)
dt =

1

1− ln(2)

∫ 1

0
(ln(1 + t2))ndt =

un
1− ln(2)8



d'où 0 6

∫ 1

0

(

ln(1 + t2)
)n

1− ln(1 + t2)
dt 6

un
1− ln 2b. En déduire la valeur de lim

n→+∞

∫ 1

0

(

ln(1 + t2)
)n

1− ln(1 + t2)
dt 0,5 pointD'après la question pré
édente,

0 6

∫ 1

0

(

ln(1 + t2)
)n

1− ln(1 + t2)
dt 6

un
1− ln 2

et lim
n→+∞

un = 0 don
 par opération lim
n→+∞

un
1− ln 2

= 0et don
 d'après le théorème des gendarmes, lim
n→+∞

∫ 1

0

(

ln(1 + t2)
)n

1− ln(1 + t2)
dt = 0
. Justi�er que, pour tout entier naturel n non nul, on a : n−1

∑

k=0

uk =

∫ 1

0

1−
(

ln(1 + t2)
)n

1− ln(1 + t2)
dt 1,5 pointsSoit n un entier naturel non nul, alors :

n−1
∑

k=0

uk =

n−1
∑

k=0

∫ 1

0

(

ln(1 + t2)
)k

dt =

∫ 1

0

(

n−1
∑

k=0

(ln(1 + t2))k

)

dt par linéarité de l'intégraledon
, par somme des termes d'une suite géométrique, n−1
∑

k=0

uk =

∫ 1

0

1−
(

ln(1 + t2)
)n

1− ln(1 + t2)
dtd. En déduire que l'on a : +∞

∑

k=0

uk =

∫ 1

0

1

1− ln(1 + t2)
dt 1,5 pointsAinsi,

n−1
∑

k=0

uk =

∫ 1

0

1−
(

ln(1 + t2)
)n

1− ln(1 + t2)
dt =

∫ 1

0

1

1− ln(1 + t2)
dt−

∫ 1

0

(

ln(1 + t2)
)n

1− ln(1 + t2)
dt par linéaritéor d'après la question 4.b., lim

n→+∞

∫ 1

0

(

ln(1 + t2)
)n

1− ln(1 + t2)
dt = 0don
 lim

n→+∞

n−1
∑

k=0

uk =

∫ 1

0

1

1− ln(1 + t2)
dt (
ar 
ette dernière expression ne dépend pas de n)soit +∞

∑

k=0

uk =

∫ 1

0

1

1− ln(1 + t2)
dt

9



Exer
i
e 3 - E
ri
ome 2022 34 pointsOn dispose de trois urnes U1, U2 et U3, et d'une in�nité de jetons numérotés 1, 2, 3, 4, . . .On répartit un par un les jetons dans les urnes : pour 
haque jeton, on 
hoisit au hasard et ave
 équiprobabilitéune des trois urnes dans laquelle on pla
e le jeton. Le pla
ement de 
haque jeton est indépendant de tous les autresjetons, et la 
apa
ité des urnes en nombre de jetons n'est pas limitée.Pour tout entier naturel n non nul, on note Xn (respe
tivement Yn, Zn) le nombre de jetons présents dans l'urne
1 (respe
tivement l'urne 2, l'urne 3) après avoir réparti les n premiers jetons.Partie IPour tout entier naturel n non nul, on note Vn l'événement : � Après la répartition des n premiers jetons, au moinsune urne reste vide �.1. Soit n ∈ N

∗a. Justi�er que Xn, Yn et Zn suivent la même loi binomiale dont on pré
isera les paramètres. 1 pointEn interprétant 
omme su

ès � le jeton est pla
é dans l'urne 1 � (respe
tivement dans l'urne 2, dansl'urne 3) dont la probabilité est égale à 1

3
, alors Xn (respe
tivement Yn, Zn) détermine le nombre lesu

ès à l'issue de la réalisation des n épreuves identiques et indépendantes de Bernoulli.On peut don
 
on
lure que Xn, Yn et Zn suivent toutes trois la loi binomiale B

(

n,
1

3

)b. Expli
iter P (Xn = 0) et P (Xn = n) 0,5 pointD'après le 
ours, P (Xn = 0) =

(

n

0

)(

1

3

)0(2

3

)n

=

(

2

3

)n et P (Xn = n) =

(

n

n

)(

1

3

)n(2

3

)0

=

(

1

3

)n
. Justi�er que (Yn = 0) ∩ (Zn = 0) = (Xn = n) 0,5 point
[(Yn = 0)∩ (Zn = 0)] signi�e qu'après avoir pla
é les n premiers jetons, les urnes 2 et 3 n'en 
ontiennentau
un : on a don
 pla
é tous les jetons (au nombre de n) dans l'urne 1, 
'est-à-dire que (Xn = n)On a bien l'égalité voulue (Yn = 0) ∩ (Zn = 0) = (Xn = n)Nota bene : on peut aussi raisonner à l'aide de Xn + Yn + Zn = n (et Xn, Yn, Zn > 0)d. Exprimer l'événement Vn à l'aide des événements (Xn = 0), (Yn = 0) et (Zn = 0) 0,5 pointLa dé�nition littérale de Vn est synonyme de � Xn = 0 ou Yn = 0 ou Zn = 0 � 
e qui s'é
rit :
Vn = (Xn = 0) ∪ (Yn = 0) ∪ (Zn = 0)e. En déduire que : P (Vn) = 3

(

2

3

)n

− 3

(

1

3

)n 2 pointsIl s'agit i
i d'appliquer à l'égalité pré
édente, la formule du 
rible, ave
 trois événements (
f. plus bas) :
P (Vn) = P (Xn = 0) + P (Yn = 0) + P (Zn = 0) − P ([Xn = 0] ∩ [Yn = 0]) − P ([Yn = 0] ∩ [Zn =
0]) − P ([Zn = 0] ∩ [Xn = 0]) + P ([Xn = 0] ∩ [Yn = 0] ∩ [Zn = 0])or, les trois urnes ne peuvent pas être simultanément vides après avoir pla
é n jetons don

P ([Xn = 0] ∩ [Yn = 0] ∩ [Zn = 0]) = 0et par 
e qui pré
ède (en reproduisant le raisonnement 
ar les r�les de Xn, Yn et Zn sont symétriques) :
P ([Xn = 0] ∩ [Yn = 0]) = P ([Yn = 0] ∩ [Zn = 0]) = P ([Zn = 0] ∩ [Xn = 0]) = P (Xn = n) =

(

1

3

)nd'où P (Vn) = 3

(

2

3

)n

− 3

(

1

3

)n 
omme demandéRemarque : nous n'avons pas abordé 
ette formule du 
rible en 
ours. Pour la démontrer, on utilise laformule du 
rible ave
 deux événements : 10



P (A ∪B ∪ C) = P (A ∪ (B ∪ C)) = P (A) + P (B ∪ C)− P (A ∩ (B ∪ C))or P (B ∪ C) = P (B) + P (C)− P (B ∪C) d'après la formule du 
rible en
oreet A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩B) don
 à nouveau ave
 la formule :
P (A∩ (B ∪C)) = P (A∩B)+P (A∩B)−P ((A∩B)∩ (B ∩C) = P (A∩B)+P (A∩C)−P (A∩B ∩C)
ar (A ∩B) ∩ (B ∩C) = A ∩B ∩ Cdon
 en inje
tant dans la première égalité :
P (A∪B∪C) = P (A∪(B∪C)) = P (A)+P (B)+P (C)−P (B∪C)−(P (A∩B)+P (A∩C)−P (A∩B∩C))

P (A ∪B ∪ C) = P (A) + P (B) + P (C)− P (B ∪ C)− P (A ∩B)− P (A ∩ C) + P (A ∩B ∩ C)2. On note V l'événement : � Au moins l'une des trois urnes reste toujours vide �. 2 pointsExprimer l'événement V à l'aide des événements Vn, puis démontrer que P (V ) = 0On peut é
rire V =

+∞
⋂

n=1

Vn 
ar pour qu'au moins une des urnes reste vide, il faut qu'elle reste vide à l'issuedu premier tour, du deuxième tour, et du nème tour pour tout n ∈ N
∗ (il s'agit don
 d'un � et � d'oùl'interse
tion).don
 ∀n ∈ N

∗, V ⊂ Vn (
ar A ⊂ A ∩B)don
 P (V ) 6 P (Vn) don
 0 6 P (V ) 6 3

(

2

3

)n

− 3

(

1

3

)n et 
e ∀n ∈ N
∗don
 en faisant tendre n vers +∞, puisque (2

3

)n

→ 0 et (2

3

)n

→ 0 (forme qn ave
 |q| < 1)don
 d'après le théorème des gendarmes lim
n→+∞

P (V ) = P (V ) = 03. Soit T la variable aléatoire égale au nombre de jetons né
essaires pour que, pour la première fois, 
haqueurne 
ontienne au moins un jeton.a. On rappelle qu'en Python la 
ommande rd.randint(a,b+1) renvoie un nombre aléatoire qui est laréalisation d'une variable aléatoire suivant une loi uniforme sur l'intervalle [[a, b]]Compléter la fon
tion Python 
i-dessous pour qu'elle simule le pla
ement des jetons jusqu'au moment où
haque urne 
ontient au moins un jeton, et pour qu'elle renvoie la valeur prise par la variable aléatoire
T 1 point
def T():

X = 0 , Y = 0 , Z = 0 , n = 0

liste = np. array ([X,Y,Z])

while --------:

i = rd. randint (1 ,4) # choix d’un entier entre 1 et 3

liste[i -1] = liste[i -1] + 1 # l’urne i reçoit un jeton de plus

n=n+1

t=----

return tPour 
ompléter 
e programme : on va 
ontinuer à ajouter des jetons tant qu' il y a au moins un zéro dansla liste 
orrespondant au nombre de jetons par urne, d'où while 0 in liste (on peut aussi faire ave
 des� ou � : while liste[0]==0 or ... : ou en
ore ave
 un produit while liste[0]*liste[1]*liste[2]==0 :.Il faut en�n utiliser le 
ompteur de tours, 
omme l'in
rémentation s'arrête au moment où un jeton aété pla
é dans la dernière urne restée vide, il faut renvoyer n don
 t=n.b. E
rire un s
ript Python qui simule 10 000 fois la variable aléatoire T et qui renvoie une valeur appro
héede son espéran
e (en supposant que 
ette espéran
e existe). 1,5 pointsOn peut obtenir une valeur appro
hée de l'espéran
e d'une variable (quand 
elle-
i existe) à l'aide de lamoyenne empirique d'un n−é
hantillon de 
ette variable, ave
 n aussi grand que possible. I
i, le sujetpropose n = 10000. On sto
ke don
 10000 réalisations de la variable T simulée ave
 la fon
tion 
i-avantet on en fait la moyenne.
est =np.mean ([T() for k in range (10000) ])

print(est) 11



4. Déterminer T (Ω) 0,5 pointIl faut au moins pla
er 3 jetons si on veut espérer remplir les 3 urnes, mais on peut atteindre n'importe quelrang k > 3, en remplissant uniquement les deux premières urnes, jusqu'au kème tirage où on pla
e un jetondans la troisième. On a don
 
lairement T (Ω) = [[3;+∞[[5. Démontrer que : ∀n ∈ T (Ω) , P (T = n) = P (Vn−1)− P (Vn) 1,5 pointsSoit n ∈ N, n > 3, observons que [T = n] ∪ Vn = Vn−1En e�et, si au moins une urne est vide après n− 1 jetons pla
és, il y a deux situations (in
ompatibles) pourle pla
ement suivant (du nème jeton) : ou bien il reste en
ore au moins une urne vide (
'est-à-dire Vn) oubien, on remplit toutes les urnes pour la première fois ave
 le nème jeton (
'est-à-dire [T = n])l'in
ompatibilité donne bien P (T = n) + P (Vn) = P (Vn−1) et don
 P (T = n) = P (Vn−1)− P (Vn)Option B : on peut aussi é
rire [T = n] = Vn−1 ∩ V̄ndon
 par dé�nition des probabilités 
onditionnelles (pour des événements possibles)
P (T = N) = P (Vn−1)PVn−1

(V̄n) = P (Vn−1)(1 − PVn−1
(Vn) = P (Vn−1)− P (Vn−1)PVn−1

(Vn)
= P (Vn−1)− P (Vn−1 ∩ Vn) = P (Vn−1)− P (Vn) 
ar Vn−1 ∩ Vn = Vn6. Démontrer que la variable aléatoire T admet une espéran
e, et 
al
uler 
ette espéran
e. 3 pointsOn doit 
ommen
er par expli
iter la loi de T . D'après les questions pré
édentes, on a, pour n > 3,

P (T = n) = 3

(

2

3

)n−1

− 3

(

1

3

)n−1

− 3

(

2

3

)n

+ 3

(

1

3

)n

= 3

[

(

2

3

)n−1(

1−
2

3

)

+

(

1

3

)n−1(1

3
− 1

)

]

=

(

2

3

)n−1

− 2

(

1

3

)n−1alors par dé�nition, T admet une espéran
e si :
∑

n>3

nP (T = n) =
∑

n>3

n

[

(

2

3

)n−1

− 2

(

1

3

)n−1
] 
onverge (absolument)or∑

n>3

n

[

(

2

3

)n−1

− 2

(

1

3

)n−1
]

=
∑

n>3

n

(

2

3

)n−1

−2
∑

n>3

n

(

1

3

)n−1 et on re
onnait une 
ombinaison linéairede termes généraux de séries géométriques dérivées 
onvergentes (de raisons respe
tives 2/3 et 1/3)don
 T admet une espéran
e et
E (T ) =

+∞
∑

n=3

n

(

2

3

)n−1

− 2

+∞
∑

n=3

n

(

1

3

)n−1

=

+∞
∑

n=3

n

(

2

3

)n−1

− 1−
4

3
−

(

2

+∞
∑

n=3

n

(

1

3

)n−1

− 1−
2

3

)

E (T ) =
1

(

1− 2
3

)2 − 1−
4

3
− 2

(

1

(1− 1
3)

2
− 1−

2

3

)

= 9− 1−
4

3
− 2×

9

4
+ 2 +

4

3
don
 E(T ) =

11

2Partie IIPour tout entier naturel n non nul, on note Wn la variable aléatoire égale au nombre d'urne(s) en
ore vide(s) aprèsle pla
ement des n premiers jetons.7. a. Donner la loi du 
ouple (X2,W2) 3 pointsCommençons par observer qu'après avoir pla
é 2 jetons on a entre 1 et 2 urnes vides,don
 W2(Ω) = {1; 2}On introduit aussi Ni la variable qui renvoie le numéro de l'urne dans laquelle on pla
e le jeton i. D'aprèsles hypothèses, les variables Ni sont indépendantes et suivent toutes des lois uniformes sur [[1; 3]]
P (X2 = 0 ∩W2 = 1) = P ([N1 = 2 ∩N2 = 3] ∪ [N1 = 3 ∩N2 = 2]) =

1

3
×

1

3
+

1

3
×

1

3
=

2

9

P (X2 = 0 ∩W2 = 2) = P ([N1 = 2 ∩N2 = 2] ∪ [N1 = 3 ∩N2 = 3]) =
1

3
×

1

3
+

1

3
×

1

3
=

2

9
P (X2 = 1 ∩W2 = 1) = P ([N1 = 1 ∩N2 = 2] ∪ [N1 = 1 ∩N2 = 3] ∪ [N1 = 2∩N2 = 1] ∪ [N1 = 3 ∩N2 =

1]) =
1

3
×

1

3
+

1

3
×

1

3
+

1

3
×

1

3
+

1

3
×

1

3
=

4
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P (X2 = 1 ∩W2 = 2) = 0 (un jeton dans l'urne 1 et deux urnes vides, 
'est impossible)
P (X2 = 2 ∩W2 = 1) = 0 (deux jetons dans l'urne 1 et une urne vide, 
'est impossible)
P (X2 = 2 ∩W2 = 2) = P ([N1 = 1 ∩N2 = 1]) =

1

3
×

1

3
=

1

9Ce qui donne le tableau :
X2\W2 1 2

0 2/9 2/9

1 4/9 0

2 0 1/9b. En déduire la loi de W2 et 
al
uler son espéran
e. 1,5 pointsOn en déduit, en sommant les termes de 
haque 
olonne (formule des probabilités totales ave
 le système
omplet d'événements {[X2 = i] : i ∈ [[0; 2]]}), la loi de W2 :
j 1 2

P (W2 = j) 2/3 1/3
don
 E(W2) = 1×

2

3
+ 2×

1

3
=

4

3
. Cal
uler la 
ovarian
e de X2 et W2 1,5 pointsLa 
ovarian
e de W2 et X2 se 
al
ule ave
 la formule cov(X2,W2) = E(X2W2)− E(X2)E(W2)le tableau de la loi 
onjointe donne E(X2W2) = 1×
4

9
+ 4×

1

9
=

8

9par ailleurs X2 →֒ B

(

2,
1

3

) don
 E(X2) =
2

3
et d'après la question pré
édente, on a E(W2) =

4

3don
 on trouve �nalement cov(X2,W2) =
8

9
−

2

3
×

4

3
= 0d. Les variables aléatoires X2 et W2 sont-elles indépendantes ? 1 point

X2 et W2 ne sont pas indépendantes 
ar P (X2 = 1 ∩W2 = 2) = 0 6= P (X2 = 1)P (W2 = 2)Nota bene : il s'agit d'un 
as où la 
ovarian
e des deux variables est nulle, mais pour autant les variablesne sont indépendantes. Par ailleurs, quand un zéro apparait dans le tableau de la loi de 
ouple, lesvariables ne sont pas indépendantes.Soit n un entier naturel supérieur ou égal à 38. Déterminer Wn (Ω) 1 pointComme n > 3, on pla
e au moins 3 jetons. On peut avoir pla
é tous les jetons dans la même urne (auquel
as Wn = 2), ou dans deux urnes di�érentes (auquel 
as Wn = 1) ou dans les trois (
e qui donne Wn = 0).On a don
 Wn(Ω) = [[0, 2]]9. Pour i ∈ [[1, 3]], on note Wn,i la variable aléatoire égale à 1 si l'urne i est en
ore vide après le pla
ement des
n premiers jetons, et qui vaut 0 sinon.a. Montrer que : ∀i ∈ [[1, 3]], E (Wn,i) =

(

2

3

)n 1 point
Wn,i est une variable de Bernoulli, son espéran
e est don
 égale à son paramètre. L'urne 1 (resp. 2, 3)est vide si Xn = 0 (resp. Yn = 0, Zn = 0)
es trois événements ont la même probabilité on a, pour tout i ∈ {1, 2, 3}
E(Wn,i) = P (Wn,i = 1) = P (Xn = 0) =

(

2

3

)nb. Exprimer la variable aléatoire Wn en fon
tion des variables aléatoires Wn,1, Wn,2 et Wn,3 1 point13



Par dé�nitinon de Wn qui est le � 
ompteur � d'urnes vides et des Wn,i qui vaut 1 si l'urne i est vide,
Wn = Wn,1 +Wn,2 +Wn,3
. Exprimer alors E (Wn) en fon
tion de n 1 pointPar linéarité de l'espéran
e, et puisque les Wn,i suivent des lois de Bernoulli,on a don
 E(Wn) = E(Wn,1) + E(Wn,2) + E(Wn,3) = 3

(

2

3

)n10. Démontrer que : P( (Xn = n) ∩ (Wn = 2)
)

=

(

1

3

)n 1,5 pointsPour k ∈ [[1, n − 1]], quelle est la valeur de P
(

(Xn = k) ∩ (Wn = 2)
) ?Comme [Xn = n] = [Xn = n] ∩ [Wn = 2], on a P ([Xn = n] ∩ [Wn = 2]) = P (Xn = n) =

(

1

3

)nd'autre part, si Wn = 2 alors tous les jetons sont pla
és dans la même urne et il n'est pas possible d'avoir ;
haque urne 
ontient don
 0 ou n jetons et don
 P ([Xn = k] ∩ [Wn = 2]) = 0 , k ∈ [[1, n − 1]]11. Démontrer que : ∀k ∈ [[1, n − 1]], P( (Xn = k) ∩ (Wn = 1)
)

=
2
(

n
k

)

3n
2 pointsQue vaut P( (Xn = n) ∩ (Wn = 1)

) ?On s'intéresse à l'événement [Xn = k] ∩ [Wn = 1] pour k ∈ [[1, n − 1]]
et événement signi�e qu'on a pla
é k des n jetons dans l'urne 1 et les n − k jetons restants dans une (etmême) autre urne.Par exemple, si la deuxième urne à re
evoir des jetons est l'urne 2, il y a (n
k

) façons de 
hoisir les k jetonsparmi les n que l'on va mettre dans l'urne 1, les autres étant automatiquement pla
és dans l'urne 2. Pour
ha
une de 
es possibilités, la probabilité est (1/3)nil en va de même si la deuxkième urne à re
evoir des jetons est l'urne 3don
 P ([Xn = k] ∩ [Wn = 1]) = 2×

(

n

k

)(

1

3

)npar ailleurs, si [Xn = n] tous les jetons sont pla
és dans la même urne et il y en a deux qui restent vides ;ainsi
P (Xn = n ∩Wn = 1) = 012. Démontrer que : E (XnWn) = 2nP

(

(Xn = n) ∩ (Wn = 2)
)

+

n−1
∑

k=1

kP
(

(Xn = k) ∩ (Wn = 1)
) 2 pointsD'après le théorème de transfert

E(XnWn) =

n
∑

k=0

2
∑

i=0

kiP (Xn = k ∩Wn = i) =

n
∑

k=1

2
∑

i=1

kiP (Xn = k ∩Wn = i)

=

n
∑

k=1

kP (Xn = k ∩Wn = 1) +

n−1
∑

k=1

2kP (Xn = k ∩Wn = 2) + 2nP (Xn = n ∩Wn = 2)

= 2nP (Xn = n ∩Wn = 2) +

n−1
∑

k=1

kP (Xn = k ∩Wn = 1)

E(XnWn) = 2n

(

1

3

)n

+

n−1
∑

k=1

kP (Xn = k ∩Wn = 1) d'où le résultat d'après la question 10.14



13. Montrer alors que E (XnWn) = n

(

2

3

)n, puis 
al
uler la 
ovarian
e de Xn et Wn 3 pointsOn poursuit le 
al
ul en ajoutant le résultat obtenu plus haut. On va aussi utiliser la formule 
lassique maishors programme (on peut la démontrer ave
 la formule des 
oe�
ients binomiaux) : k(n
k

)

= n

(

n− 1

k − 1

)

E(XnWn) = 2n

(

1

3

)n

+

n−1
∑

k=1

kP (Xn = k ∩Wn = 1)

= 2n

(

1

3

)n

+
n−1
∑

k=1

k2

(

n

k

)(

1

3

)n

= 2n

(

1

3

)n

+ 2n

(

1

3

)n n−1
∑

k=1

(

n− 1

k − 1

)

= 2n

(

1

3

)n n
∑

k=1

(

n− 1

k − 1

)

= 2n

(

1

3

)n n−1
∑

j=0

(

n− 1

j

)

= 2n

(

1

3

)n

2n−1 (formule du bin�me)
E(XnWn) = n

(

2

3

)n 
omme demandé.on 
al
ule ensuite la 
ovarian
e ave
 la même formule que plus haut, 
omme Xn →֒ B

(

n,
1

3

)on a E (Xn) =
n

3
d'où cov(Xn,Wn) = E(XnWn)− E (Xn)E(Wn) = n

(

2

3

)n

−
n

3
× 3

(

2

3

)n

= 014. Interpréter le résultat obtenu à la question pré
édente. 0,5 pointLa 
ovarian
e pré
édente est nulle, pourtant (tout 
omme pré
édemment pour n = 2) les variables Xn et
Wn ne sont pas indépendantes fournissant un nouveau 
ontre-exemple à la ré
iproque du résultat du 
oursa�rmant que si deux variables aléatoires sont indépendantes, leur 
ovarian
e est nulle.
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