ECG 2 - Mathématiques appliquées Mathématiques DS n°3 - 13 décembre 2025
Corrigé Total sur 95 points - dont rédaction/présentation/clarté : 3 points

Dans tout le sujet, concernant les codes Python, on supposera les importations suivantes faites :

import numpy as np
import numpy.random as rd

Exercice 1 26 points

Partie I : réduction d’une matrice

-1 1 0
Soit A=1]2 -2 -1
0 2 -1

On note 2 la base canonique de Pespace vectoriel R3
On considére 'endomorphisme f de R? représenté par la matrice A suivant la base 2
On note id Uendomorphisme identité de R, et I la matrice identité de M3(R)

1. Comparer A(A—i—[)2 et (A—i—[)2 2 points
01 0 01 o0\fo 1 o0 2 -1 -1
A+I=12 -1 —1|donc(A+ID)*=|2 -1 —-1||2 -1 -1|=[-2 1 1
0 2 0 o2 o/\o 2 o 4 -2 -2
-1 1 0 2 -1 -1 -4 2 2 2 -1 -1
alors AA+T)* =2 —2 —1|]-2 1 1]|=|4 —2 —2|=-2|-2 1 1
0 2 -1/\4 -2 -2 -8 4 4 4 -2 -2

on trouve donc | A(A+1)? = —2(A+ I)?

2. En déduire les valeurs propres de A et une base de chaque sous-espace propre associé. 5 points

On en déduit que P(x) = z(x + 1)* + 2(z + 1)> = (z + 2)(z 4 1)? est un polynome annulateur de A
ses racines sont —2 et —1 donc Sp(A) C {—1,—2}
on résout le systéme linéaire AX = —2X & (A+2I)X =037 d’'inconnue X =" (21 2 x3) € #51(R) :

11 010 1 1 0|0 11 010
<2 0 -1|0 |<=] 0 -2 =110 Lo+ Ls—2L; < | 0 =2 —-110 <
02 110 0 2 110 0 0 010 Lg < L3+ Lo
1 + a2 4+ 0 =0 T = —T9 —9 ( -1
0 — 229 — 23 = 0 ©1 23 = 229 & XE 9 e ER Y=< x| 1 |,22 €R
o + 0 + 0 =0 0 = 0 —2x9 -2

\

donc | —2 est valeur propre (—2 € Sp(A)) et E_5(A) = Vect <t (_1 1 _2)) = Vect (t (1 -1 2)>

¢ <1 -1 2) est un vecteur non nul, il forme donc une famille libre, de plus génératice de E_o(A) par

définition du Vect, | c’est donc une base de E_o(A)

de méme, on résout AX = —X & (A+ )X =031 d’inconnue X =" (21 79 3)



0 1 010 2 = 0 1 1
1 2 -1 =110 | & 23 = 21y ©X¢€ 0 |x1eRy=qz1[0],71 €ER
0 2 010 zo = 0 2z 2
donc| —1 € Sp(A4) et E_1(A) = Vect ("(1 0 2)) | deméme| "(1 0 2)est une base de E_;(A)

3. La matrice A est-elle inversible ? si oui, calculer A~ en fonction de A%, A et I

0 ¢ Sp(A) donc A est inversible, de plus (A 4 21)(A +I)* = 03 donc (A +21)(A? +2A+1) =03,
donc A% +2A% + A+ 24 + 4A + 2T = 03 donc A® +4A% +5A + 21 =034

1
donc —A% —4A% —5A = 21 soit A —3 (A2 +4A+5]) = ] donc

ATl = —% (A? +4A +51)

1,5 points

1 point

4. On note u; = (1,0,2),us = (1,1,1) et ug = (1,—1,2)
a. Calculer f (uy) et f(u3)
On utilise I'écriture matricielle : A*(z1 z2 23) ="(y1 v2 y3) < f((x1,22,23)) = (y1,Y2,Y3)

grace a la question 2., on sait que *(1 0 2) € E_j(A) donc A'(1 0 2)=-%1 0 2)donc f(u1) =

—uy et de méme *(1  —1 2)€ E_5(A)donc A"(1 —1 2)=-2%1 -1 2)donc f(us) = —us
si on n’avait pas ces résultats, on peut toujours calculer :
1 -1 1 0 1 -1 1
Alol=]12 —2 —1||of=]0]|=—]0]donc| f(m)=—uw
2 0 2 -1 2 —2 2
1 -1 1 0 1 —2 1
Al -1 | =2 -2 -1 —1|l=| 2 |=-2| -1 | donc| f(u3)=—2us
2 0 2 -1/ \2 —4 2
b. Exprimer f (ug) comme combinaison linéaire de uj et de ug 1 point
1 ~1 1 0\ [1 0 1 1
Al1l=12 -2 —1||1|=]-1[=]0]|—]1]donc| f(uz2)=mu1—wug
1 0 2 -1 1 1 2 1
c. Montrer que % = (u1,us,us) est une base de R3 1,5 points
Soit A1, A2, A3 trois réels tels que Zg: A = Ops < (A1,0,2X2) 4+ (A1, A2, A3) + (A1, —A2,2A3) = (0,0,0)
i=1
1 1 1|0 1 1 110 1 1 1|0
<101 —-1]0 =] 0 1 =110 <=1 01 =10
21 210 0 =1 0|0 ) L3« Ly—204 00 —1|0 ) Ly« Ly+ Ly

donc A3=0puis \g =0et Ay =0

donc % est une famille libre, de plus Card(%) = 3 = dim(R?®) donc

U est une base de R?

d. Ecrire la matrice de passage P de & vers %

1 point

Par définition la matrice de % vers % correspond a la « lecture » des vecteurs de % dans la base &

1 1 1
doncP=10 1 -1
2 1 2



e. Ecrire la matrice T de f relative a la base % 1 point

Par définition & nouveau, cette matrice contient pour la colonne i I'image de u; par f, dans la base %
-1 1 0

doncT=1]10 -1 0 |car f(u1)=—u1, fluz)=u3 —uget flus)=—2us
0o 0 -2
f. Donner une relation entre T, A et P, en la justifiant soigneusement. 1 point

Par propriété de changement de base pour une application linéaire : My(f) = Pg_o My (f)Py— 2

donc par définition des matrices, et car par propriété Py _,z = P%?L%, on trouve| A= PTP~!

Partie II : une application, résolution d’un systéme différentiel linéaire

() = —z1(t) + 22(?)
On considere le systeme différentiel linéaire : % : ¢ 24 (t) = 2xq1(t) — 2x2(t) — 23(¢)
() = 2s(t) - walt
oil 21, T2, x5 sont des fonctions de classe €' sur R
1 (t) yi(t)
On posera, pour tout t € R, X(t) = | aq(t) | et Y(t) = PlX(t) = yo(t) | la matrice P étant celle obtenue
3(t) ys(t)

dans la partie I question 4.d.
On dira indifféeremment que x1, x2, x3 sont les inconnues du systéme . ou que X est I'inconnue du systéme .¥

1. Montrer que X est solution du systéme .7 si, et seulement si Y est solution du systéme : 1,5 points
S VteR, Y(t)=TY(t)
ou T est la matrice obtenue dans la partie I question 4.e..

Avec A la matrice définie a la partie I,

1 (t) + 22(t) 7 (1)
AX(t) = | 221(t) — 22a(t) — 25(t) | et on note X'(t) = | 24(t)
229 (t) — I3 (t) wg (t)

donc X solution de (S) & Vt € R, AX(t) = X'(t) &Vt € R,PTP ' X(t) = X'(t)

SYeR,TPIX(t) =P 'X'(t) | VteR,TY(t) =Y'(t)

i (t)
car P est inversible (on peut donc multiplier par P~1) et Vt € R, Y'(t) = P71 X'(t) on Y'(t) = yh(1)
Ys(t)
2. a. Justifier 'existence d’un réel A tel que y; soit solution de ’équation différentielle : 3 points
(Ey):VteR, o' (t)+y(t) ="
Si Y est solution du systéme .%, alors Vt € R, Y'(t) = TY (t) <
n(t) -1 1 0 (0 —y1(t) + y2(t) Yh (t) = —y1(t) + ya()
VEER Jyp(t) [ = 0 =1 0 | [5e)|= —y2(t) SVEER, § y5(t) = —pa2(t)
ys(t) 0 0 -2/ \ys(t) —2y3(t) ys(t) = —2ys3(t)



y1(t) = —y1(t) + ya(t) yi(t) + 1 (t) = Ae ™!
SVEER S pt)=Xefot AeER ©VEER Q yy(t)=Xe ' ou AER

ys(t) = pe " o p e R ys(t) = pe > ot p € R

donc si Y est solution de % alors| 1y est solution de Fy ou A € R est un paramétre de la fonction g9

Précision : il n’était pas nécessaire d’expliciter ys ici.
b. Trouver une solution particuliére de ( Ey ) de la forme ¢ > ayte " ot ay est un réel & déterminer. 1 pt

On définit la fonction f sur R par f(t) = axte " oit ay € R
alors Vt € R, f/(t) = axe "+ axt(—e ) = aye " —azte " = arxe ' — f(t)

donc si ay = X alors f est solution de Ey, i.e.| t+ Me ! est solution de E)

c. Résoudre (E)) 1 point
Comme pour yo, {t —+ ae ", a € R} est I'ensemble des solutions de ’équation homogene : y = —y <
/
y+y=0

donc, par superposition de ’ensemble des solutions de I’équation homogeéne et de la solution particuliére,

'ensemble des solutions de Ey est {t — ae™ + Me™',a € R}

3. Résoudre .’ puis .7 2,5 points
y1(t) =ae P+ MeFa€R
D’aprés les résultats des questions 1. et 2.c., Y solution de .’ < Vt € R, yo(t) = et AeR
ys(t) = pe >, p € R
alors d’apreés la question 1., X solution de . < Y solution de ./ avec Y = P71 X
z1(t) 11 yi(t) yi(t) +y2(t) + ys(t)
& X = PY avec Y solution de . < X(t) = )| =10 1 -1 y(t) | = ya(t) — y3(t)
3(t) 2 1 2 ) \ws(t) 2y1(t) + ya(t) + 2ys(t)
z1(t) = et + Me T 4+ et 4 pe
S Q0 xo(t) = et — pe ot (o, A\, 1) € R3

x3(t) = 20e™t + 2Xte ™! + N7t 4 2ue™H

4. Justifier que toutes les composantes de X ont la méme limite en +oo 1 point
lim e® =0 donc par composition lim e ' = lim e 2 =0
T——00 t—+o0 t——+o0
. . _ . t L .. .
et par croissances comparées lim te” ! = lim — = 0 donc par opérations de limites, quelles que soient les
t—+oo t—+oo el

valeurs de a, \ et u,

lim z;(t) = lim z3(t) = lim z3(t) =0

t——o0 t——+o0 t—+o0

5. Quel est 'unique point d’équilibre de . 7 Est-il stable ? (justifier la réponse) 1 point
X™ est un point (ou état) d’équilibre de . < AX™ =03

or A est inversible donc < AX™ =031 < | X* =03, c’est donc I'unique point d’équilibre de .7

il est | stable |car d’aprés la question 4., toutes les trajectoires (des solutions) convergent vers *(0,0,0)

(les valeurs propres de A sont négatives mais ici A n’est pas diagonalisable donc on ne peut rigoureusement
utiliser cet argument).



Exercice 2 - Edhec 2018 32 points

xT
On consideére la fonction f qui a tout réel x associe : f(z) = / In (1 + t2) dt
0

Les deux parties de ce probléme peuvent étre traitées indépendamment l’'une de [’autre.

Partie I : étude de f

1.

a.

Déterminer le signe de f(x) selon le signe de x 1 point

On va utiliser la positivite de Pintégrale, en utilisant que Vt € R,In(1 +¢2) > 0 et
1%" cas : si > 0 (i.e. les bornes sont dans 'ordre croissant) alors, par positivité de I'intégrale,

f(z) = /Ox In(1 +t?)dt > 0

2°M¢ cas si & < 0, alors pour les mémes raisons,

0 T 0
/ In(1 +t?)dt > 0 donc f(x) = / In(1 + t?)dt = —/ In(1 +t?)dt <0
T 0 T

finalement, | f est positive sur [0, 400 et négative sur | — oo, 0]

. Justifier que f est de classe €' sur R et calculer f'(z) pour tout réel x 1 point
D’aprés le théoréeme fondamental de l'intégration, f est une primitive de ¢t — In(1 + tQ), donc f est
dérivable et Vz € R, f/(z) = In(1 + z?)
or, t+— In(1 +t2) est continue sur R, en tant que composition de fonctions continues (In et un polynome)
donc| fest €' sur Ret Vo € R, f/(z) = In(1 + z?)

. En déduire les variations de f sur R (on ne cherchera pas a calculer les limites de f). 1 point

Ve € R,2® > 0 donc 14 2% > 1 et donc par croissance du logarithme In(1 4 2%) > In(1) i.e. f/(z) >0

ainsi, | f est croissante sur R

Montrer que f est impaire. 1,5 points

—X
f est définie sur R qui est symétrique par rapport a 0 et pour x € R, f(—x) = / In(1 + t%)dt
0

on fait alors le changement de variable u = —t, du = —dt et on obtient :

fl—x) = /Ox In(1 4 (—u)?)(—du) = — /Ox In(1 4 u?)du = —f(z) ainsi, | f est impaire

. Etudier la convexité de f et donner les coordonnées des éventuels points d’inflexion de la courbe repré-

sentative de f dans un repére orthonormé. 1,5 points
2
t = In(1 + %) est de classe €' sur R donc f est de classe €2 sur R et Va € R, f”(z) = : _:U 5
x
comme le dénominateur est toujours positif, f”(z) est du signe de x et donc Vo € R_, f”(z) < 0 et

Vo € Ry, f’(x) > 0 et f”(x) s’annule en 0 en changeant de signe

donc | f est concave sur | — 0o; 0] et convexe sur [0; +00[ et elle admet un point d’inflexion | au point

0
d’abscisse 0, i.e. | le point (0,0) |, car f(0) = / In(1 +t?)dt = 0
0

2
Déterminer les réels a et b tels que : Vi € R, e =a+ T2 1,5 points
t2 b t2 t2 b
Soit a et b deux réels tels que : Vi € R, e :a+m SVt eR, e a4 f—lfat; )



evteR 2 =at’ +a+b (car 1 +1> #0)

o S a=1 a=1 t? 1
ainsi, par identification, on doit avoir : = doncf Vi€eR, ——s=1-—2>
a+b=0 b=-1 L+t L+t
Nota bene : le raisonnement par équivalence n’est pas nécessaire pour trouver que a = 1 et b = —1

fonctionne mais il I’est pour montrer que ¢’est I'unique solution, ce qui semble étre demandé par ’énoncé.

b. En déduire, grace a une intégration par parties, que, pour tout réel z, on a : 2 points
xT
1
)=z (In(1+2%) —2) +2 —=dt
f( ) ( ( + ) ) + /0 1+ t2

€T
Ve e R, f(x)= / In(1 + t?)dt, on pose alors :
0

2t
u'(t) =1 et u(t) =t et v(t) = In(1 + t2) et donc v/(t) = T
u et v sont de classe €1 sur R donc a 'aide d’une intégration par parties,
T2 T 42
_ 2\1% _ 2

or d’aprés la question précédente,
vt v 1 v v v
[t [ (oY [ [ e [
0 1 —|—t 0 1 —|—t 0 0 1 —|—t 0 1 +t
xr

Ainsi, f(z) = zln(1 + 2?) — 2 <x - / Ldt) soit | f(z) = z(In(1 + 2?) — 2) + 2 /gC 112 itht
0 0

1+t

4. Recherche d’'un équivalent de f(z) au voisinage de +oo

“+00
a. Montrer que /0 mdt est une intégrale convergente. 1,5 points
1 2
1 1 = t°+1 1
R D) car t12 = —; =1+ ) — 1

de plus t — ! tt— ! t positi [1; +oo]
(§] us —F € — Son ositives sur |1; +00
p 1 —|—t2 t2 p 9

“+o00
et / t_th est convergente (intégrale de Riemann avec a > 1) donc, d’apres les critéres de comparaison
1

+o0o
des intégrales de fonctions positives, / mdt est convergente
1

+o0o
donc, par relation de Chasles, / mdt est convergente
0

b. En déduire que f(z) o~ zln (1+ 2?) 2 points
oo

x
1
Nous avons démontré & la question 3.b. que f(z) = z(In(1 + z?) — 2) + 2/ mdt
0

2x a(x)
1+ 22) * xIn(1 —|—£C2)>

o1
donc pour z > 0, f(x) = xln(1+x2)—2x—|—2/0 mdt = zln(1+2?) (1 ~ 2

T f(x) 2 a(x)
) =2 dt et donc ———+—=1-—
ot a(z) /0 142 v aone xIn(1 4 22?) In(1 + 22) * xIn(1 + x2)
or, lim 1+2z?=+4coet lim In(X)=4oo donc par composition lim In(1+ z%) = 400
T—+00 X—400 T—+00
T 1 +00 1
et lim ——dt = / — ——dt est un nombre fini et par produit lim zIn(1+ z?) = 40
z—+oo o 1+ 12 0 1+ t2 T—+-00
. - . 2 a(x)
donc par quotients de limites lim 1 — =1-04+0=1

z—+oo  In(1+22)  xln(l+ 22)

N f(z) : 2
so1t xEr—fr—loo m =11.e. f(.’E) —i:;o 3711'1 (1 +x )




1
c. Verifier que, pour tout réel z strictement positif, on a : In(1 +z?) = 2In(z) +1In <1 + —2>, puis établir
T

I’équivalent suivant : f(x) o 2z In(z) 2 points
o

Soitx>0,alorsan(m)—i—ln(l—i—%):ln( )+1n< ) n< ( +1>>:ln(1+m2)

1
or, lim 2In(z) =+occet lim In (1 + —) = 0 donc In ( + > o(2In(x))

T—+400 T—r+400

donc In(1 + z?) = 21In(x) 4 o(21In(z)) donc par propriété In(1 4 22) ~ 21n (x)
o0
donc par produit d’équivalents xIn(1 + z?) -~ 2z In(x)
o0

or f(x ) ~ ﬂ:ln(1+x ) donc | f(x) fod 2z In(x)

zln (1 + 22
car lim & = lim /@) ( ) =1x1=1 d’aprés les équivalents
a—+o0 2rln(xr)  z—+oo zIn (1 + 22) 2z In(z)
d. Donner sans calcul un équivalent de f(x) lorsque = est au voisinage de —oo 1 point

Comme f est impaire, on comprend que I’équivalent en —oo sera 'opposé de ’équivalent précédent
mais on doit le modifier car il n’est pas défini pour x < 0, on utilise 2In(z) = In(2?) et alors

f(z) ~ xIn(z?) |que 'on pourrait aussi écrire f(z) ~ 2zIn(|z|) (on a bien Popposé car z < 0)
— 0o — 0o

5. Recherche d’un équivalent de f(x) au voisinage de 0

a. Montrer que f est de classe €° sur R 1 point

Pour les mémes raisons que plus haut f’ est une composée de fonctions €2 (et méme ) donc f’ est

%? (et méme ) et donc | f est €3 | (et méme €)

On admet la formule de Taylor-Young & l'ordre 3 au voisinage de 0 pour la fonction f, c’est-a-dire :
2 3
F(@) = FO) + T £0) + 5 1"(0) + 5 FP0) + oa?)
b. Déterminer f(0), f'(0), f(0) et £ (0) 1 point

0
f(0) = / In(1 + t3)dt = 0 et d’aprés les calculs précédents, pour z € R,
0

2x
— 2 — — _
() =In(1 +2°) et f"(z) = T2 donc f/(0) =0, f(0) =0
2(1 4a?
enfin Vo € R, £ () = ( (Tia)ﬂ)? T done| F®(0) =2et £(0) = f(0) = £(0) =0
c. En déduire alors un équivalent de f(z) au voisinage de 0 1 point

[’énoncé original était généreux sur cette question !
Ainsi, d’apres la formule proposée (de Taylor-Young a l'ordre 3 au voisinage de 0) :

3 223 3 3 3 . 3
f(zx) TR 2 + o(2?) s 6 + o(z°) iy + o(z”) donc par propriété | f(x) ~ 3
Partie II : étude d’une suite
1
On pose ug = 1, et pour tout entier naturel n non nul, u, = / (1n(1 + tg))n dt
0
1. a. La valeur donnée & ug est-elle cohérente avec 1’expression générale de u,, 7 0,5 point

1 1
Si on considere I’expression générale de u,,, / (ln(l + t2))0 dt = / 1dt = 1 = ug ce qui est donc cohérent

0 0
avec la valeur de ug donnée et on utilisera donc la formule avec 'intégrale pour tout n € N par la suite.



. Exprimer u; & I’aide de la fonction f 0,5 point

1
Par définition, uy = / In(1 4 t*)dt donc| u; = f(1) |par définition de f
0

. Montrer que la suite (uy),en est décroissante. 2 points

Soit n € N et t € [0;1], alors 0 < ¢ < 1 et donc 0 < t? < 1 par croissance de la fonction carré sur Ry
donc1 <14+ <2<eet donc0< In(1+ t2) < In(2) < 1 par croissance de In
donc (In(1 + t2))n > 0 et donc en multipliant 'inégalité précédente par (In(1 -+ t2))n on trouve

(In(1 + 752))n+1 < (In(1+ tz))n et donc par croissance de l'intégrale (car 0 < 1) :
1 1
/ (In(1 +2))" " dt < / (In(1 +¢%))" dt
0 0

e upi1 < uy et done | (uy)pen est décroissante

. Montrer que la suite (uy)nen est minorée par 0. En déduire qu’elle converge. 1 point

Soit m € N, comme vu a la question précédente V¢ € [0;1], (ln(l + t2))n > 0 donc par positivité de

1
I'intégrale, / (In(1 + t2))n dt > 01i.e. up =0 et donc| (up)nen est minorée par 0
0

finalement, (uy,)nen est décroissante et minorée par 0

donc d’apreés le théoréeme de la limite monotone, | (uy)nen converge.

. Etablir 'encadrement suivant : 0 < u,, < (In2)" 1,5 points

On a montré a la question 2.a. que Vn € N, V¢ € [0;1],In(1 + t?) < In(2)
donc In(1 + %)™ < (In(2))" par croissance des fonctions puissances sur R
donc par croissance de 'intégrale (0 < 1) :

1 1
/ In(1 + t*)"dt < / (In(2))" dt i.e. u, < (In(2))" par définition de u, et car
0 0

1
/0 (In(2))"dt = (In(2))" (1 — 0) = (In(2))" (puisque (In(2))" ne dépend pas de t)

de plus u,, > 0dou| VneN,0 < u, < (In(2))"

. Que peut-on en déduire sur la suite (u,)pen ? Sur la série de terme général w,, ? 2 points

Comme vu plus haut 1 <2 <e=0< ln( ) < 1 par stricte croissante de In
donc (In(2))" — 0 (forme ¢" avec |g| =1n(2) < 1)

donc d’apreés le théoréme des gendarmes, on en déduit que u,, — 0

de plus la série de terme général (In(2))" converge car il s’agit d’une série géométrique avec |q| < 1
donc par théoréme de comparaison sur les séries & termes positifs (u, > 0),

0 <up < (In(2)" = | la série de terme général u,, converge.

1 (ln(l + t2))n < Uy,
1—1In(1+¢?) 1—In2
On comprend qu’il faut travailler sur le dénominateur :
comme vu précédemment, pour ¢ € [0;1],In(1+#%) <In(2) <1 =0< 1 —1n(2) <1 —In(1 + %)
donc en applicant la fonction inverse, décroissante sur |0, 400,
2\\n 2\\n
0< 1 < 1 ~0< (In(1 +t%)) g(ln(l—i-t))
1—-In(1+¢) = 1-1In(2) 1 —In(1+¢?) 1 —1In(2)
1 2\\n 2
(In(1 +t%)) it < / (In(1+ )"
o 1-In(2)
)

/1(ln(1 + t3))dt =
0

. Montrer que : 0 < / 2 points
0

car (In(1 4 t*))™ > 0 donc par

croissance et positivité de I'intégrale (0 < 1) : 0 < / dt et enfin par

0 1— ln(l +t2)

1 In(1 2\\n 1
ne dépend pas de t),/ (In(1 +¢7)) dt =
o 1—In(2) 1 —1In(2)

@)

linéarité (

1
1 —1n(2)



. En déduire la valeur de lim

1 (In(1 +#2))"
d’ott Oé/ MdtéL
o 1—In(1+1¢2) 1—In2

U (n(1 4+ £2))"
n—-+oo Jq 1-— ln(l + tz)

D’apres la question précédente,

dt 0,5 point

U (In(1+t%)" U Un,
< < ; _ P . _
0< /0 1=l +t2)dt ST e et ngrfooun 0 donc par opération ngrfool 1o 0
. U (In(1 +¢%)"
et donc d’apreés le théoréme des gendarmes, lim —— 5 dt =0
= 11— (In(1 +2)"
. Justifier que, pour tout entier naturel n non nul, on a : kZ_Ouk = /0 1 _( ln((l n tQ))) dt 1,5 points
Soit n un entier naturel non nul, alors :
n—1 n—1 .1 . 1 /n—1
Zuk = Z/ (In(1 + t2)) dt = / (Z(ln(l + t2))k> dt par linéarité de I'intégrale
k=0 k=00 0 \k=0
"‘1 11— (In(1 +2))"
donc, par somme des termes d’'une suite géométrique, kZ_OUk = /0 1 _( ln((l n tQ))) dt
+00 1 1
. En déduire que 'on a : kz_ouk = /0 mdt 1,5 points
Ainsi,
i 11— (In(1 +2))" 1 1 U (In(1 4 2)"
Zuk :/ ( ( 2)) dt :/ —th—/ Mdt par linéarité
=0 0 1—1n(1+t) 0 1—1n(1+t) 0 1—1n(1—|—t)

1 (In(1 + )"
or d’aprés la question 4.b., lim ( ( ))

- dt =0
n—+oo Jo 1 — ln(l -+ t2)

n—1 1
1
donc lim U = ————dt (car cette derniére expression ne dépend pas de n
n_H_OOkZO " /0 iy Xp pend p )

400 1 1
soit UL :/ —dt
;} 0 1— ln(l + t2)




Exercice 3 - Ecricome 2022 34 points

On dispose de trois urnes Uy, Us et Us, et d’une infinité de jetons numérotés 1,2, 3,4, ...

On répartit un par un les jetons dans les urnes : pour chaque jeton, on choisit au hasard et avec équiprobabilité
une des trois urnes dans laquelle on place le jeton. Le placement de chaque jeton est indépendant de tous les autres
jetons, et la capacité des urnes en nombre de jetons n’est pas limitée.

Pour tout entier naturel n non nul, on note X,, (respectivement Y;,, Z,) le nombre de jetons présents dans I'urne
1 (respectivement 'urne 2, 'urne 3) aprés avoir réparti les n premiers jetons.

Partie I

Pour tout entier naturel n non nul, on note V,, ’événement : « Apreés la répartition des n premiers jetons, au moins
une urne reste vide ».

1. Soit n € N*

a. Justifier que X,,, Y, et Z, suivent la méme loi binomiale dont on précisera les parameétres. 1 point
En interprétant comme succeés « le jeton est placé dans 'urne 1 » (respectivement dans 'urne 2, dans

1
I'urne 3) dont la probabilité est égale a 3 alors X,, (respectivement Y,,, Z,) détermine le nombre le

succes a l'issue de la réalisation des n épreuves identiques et indépendantes de Bernoulli.

1
On peut donc conclure que | X,,, Y, et Z,, suivent toutes trois la loi binomiale % <n, §>

b. Expliciter P (X,, =0) et P (X, =n) 0,5 point
n\ 1\ [2\"  [2\" n\ (1\"/2\°  [1\"

D’aprés | P(X, =0) = ) (2) = (=2 P(X, =n) = ) (2) = (=
rstecns 10020 (3) (3) (3) = (5) evrem=n= () (5) (3) = )
c. Justifier que (Y, =0)N(Z, =0) = (X, =n) 0,5 point

(Y, = 0)N(Z, = 0)] signifie qu’apres avoir placé les n premiers jetons, les urnes 2 et 3 n’en contiennent
aucun : on a donc placé tous les jetons (au nombre de n) dans l'urne 1, c’est-a-dire que (X,, = n)

On a bien I'égalité voulue | (Y, =0)N(Z, =0) = (X,, =n)

Nota bene : on peut aussi raisonner a l'aide de X,, +Y,, + Z, = n (et X,,Y,, Z, > 0)
d. Exprimer I'événement V;, a 'aide des événements (X,, = 0), (Y;, =0) et (Z,, = 0) 0,5 point
La définition littérale de V,, est synonyme de « X,, = Oou Y,, = 0 ou Z, = 0» ce qui s’écrit :

Vn:(Xn:O)U(Yn:O)U(Zn:O)

2\" \"
e. En déduire que : P(V,,) =3 <§> -3 <§> 2 points

Il s’agit ici d’appliquer & ’égalité précédente, la formule du crible, avec trois événements (cf. plus bas) :
PV, =PX,=0+PY,=0+PZ, =0 —P(X, =0Nn[Y, =0])—P(Y, =0nNn[Z, =
O])_P([Zn:O]H[Xn:O])+P([Xn:O]m[Yn:O]m[ZnZO])

or, les trois urnes ne peuvent pas étre simultanément vides apres avoir placé n jetons donc
P([X,=0]N[Y,=0n[Z,=0])=0

et par ce qui précéde (en reproduisant le raisonnement car les roles de X,,,Y,, et Z,, sont symétriques) :

P, = 011 ¥, = 0) = P(Y, = 010 (2 = 0) = P(Z = 0] [, =0) = P =) = (3 )

2\" \"
dou| P(V,) =3 <§> -3 <§> comme demandé

Remarque : nous n’avons pas abordé cette formule du crible en cours. Pour la démontrer, on utilise la
formule du crible avec deux événements :
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P(AUBUC)=PAU(BUC(C))=P(A)+P(BUC)—-PAN(BUCQ))

or P(BUC) = P(B)+ P(C)— P(BUC) d’apres la formule du crible encore

et AN(BUC) = (ANB)U (AN B) donc a nouveau avec la formule :
P(ANn(BUC))=P(ANB)+P(ANB)—P((ANB)N(BNC)=P(ANB)+P(ANC)—P(ANBNC)
car (ANB)N(BNC)=AnBnNnC

donc en injectant dans la premiére égalité :

P(AUBUC) = P(AU(BUC)) = P(A)+P(B)+P(C)—P(BUC)—(P(ANB)+P(ANC)—P(ANBNC))

P(AUBUC)=P(A)+P(B)+P(C)—PBUC)—P(ANB)—P(ANC)+P(ANBNC)

2. On note V I'événement : « Au moins I'une des trois urnes reste toujours vide ». 2 points
Exprimer I’événement V' a l'aide des événements V;,, puis démontrer que P (V) =0
+oo
On peut écrire V = ﬂ V,, car pour qu’au moins une des urnes reste vide, il faut qu’elle reste vide a l'issue
n=1

du premier tour, du deuxiéme tour, et du n®™® tour pour tout n € N* (il s’agit donc d’un «et» d’ou
'intersection).

donc Vn e N,V C V,, (car AC AN B)

2\" 1\"
donc P(V) < P(V,,) donc 0 < P(V) <3 <§> -3 <§> et ce Vn € N*

2\" 2\"
donc en faisant tendre n vers 4+oo, puisque <§> — 0 et <§> — 0 (forme ¢" avec |q| < 1)

donc d’aprés le théoreme des gendarmes lim P(V)=| P(V)=0

n—-+o0o

3. Soit T la variable aléatoire égale au nombre de jetons nécessaires pour que, pour la premiére fois, chaque
urne contienne au moins un jeton.

a. On rappelle qu’en Python la commande rd.randint(a,b+1) renvoie un nombre aléatoire qui est la
réalisation d’une variable aléatoire suivant une loi uniforme sur l'intervalle [a, b]
Compléter la fonction Python ci-dessous pour qu’elle simule le placement des jetons jusqu’au moment ot
chaque urne contient au moins un jeton, et pour qu’elle renvoie la valeur prise par la variable aléatoire

T 1 point
def TQ):
X=0, Y=0, Z=0, n=0
liste = np.array([X,Y,Z])
while -------- :
i = rd.randint (1,4) # choix d’un entier entre 1 et 3
liste[i-1] = liste[i-1] + 1 # 1’urne i regoit un jeton de plus
n=n+1
T

return t

Pour compléter ce programme : on va continuer & ajouter des jetons tant qu’il y a au moins un zéro dans

la liste correspondant au nombre de jetons par urne, d’ott while 0 in liste (on peut aussi faire avec des
«ouy» :while liste[0]==0 or ... : ouencoreavec un produit while liste[0]*1liste[1]*1liste[2]==
Il faut enfin utiliser le compteur de tours, comme l'incrémentation s’arréte au moment ot un jeton a
été placé dans la derniére urne restée vide, il faut renvoyer n donc t=n.

b. Ecrire un script Python qui simule 10 000 fois la variable aléatoire T" et qui renvoie une valeur approchée
de son espérance (en supposant que cette espérance existe). 1,5 points

On peut obtenir une valeur approchée de I’espérance d’une variable (quand celle-ci existe) a ’aide de la
moyenne empirique d’un n—échantillon de cette variable, avec n aussi grand que possible. Ici, le sujet
propose n = 10000. On stocke donc 10000 réalisations de la variable 7" simulée avec la fonction ci-avant
et on en fait la moyenne.

est=np.mean([T() for k in range(10000)1])
print (est)
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4.

Déterminer T (€2) 0,5 point

Il faut au moins placer 3 jetons si on veut espérer remplir les 3 urnes, mais on peut atteindre n’importe quel
rang k > 3, en remplissant uniquement les deux premiéres urnes, jusqu’au K¢ tirage ou on place un jeton

dans la troisieme. On a donc clairement | 7(Q) = [3; +o00[

. Démontrer que : Vn € T'(2), P (T =n)=P (Vo—1) — P (V) 1,5 points

Soit m € N, n > 3, observons que [T'=n]UV,, =V,

En effet, si au moins une urne est vide aprés n — 1 jetons placés, il y a deux situations (incompatibles) pour
le placement suivant (du n°™® jeton) : ou bien il reste encore au moins une urne vide (c’est-a-dire V;,) ou
bien, on remplit toutes les urnes pour la premiére fois avec le n®™ jeton (c’est-a-dire [T = n))

I'incompatibilité donne bien P(T' = n) + P(V,) = P(V,—1) et donc| P(T =n) = P(V,—1) — P(V,,)

Option B : on peut aussi écrire [T =n] =V, 1NV,

donc par définition des probabilités conditionnelles (pour des événements possibles)
P(T'=N)=P(Vp-1)Pv,_, (Vo) = P(Vou1)(1 = Py, (Va) = P(Vo1) = P(Vo—1) Py, (Vi)
= P(Vn_l) — P(Vn_l N Vn) = P(Vn_l) — P(Vn) car V,_1 NV, =1V,

. Démontrer que la variable aléatoire T admet une espérance, et calculer cette espérance. 3 points

On doit commencer par expliciter la loi de T'. D’apreés les questions précédentes, on a, pour n > 3,

e RO AR SN OR )
() )

alors par définition, 7" admet une espérance si :

S uP(T=n)=3 n [(;)H 2 G)n_l] converge (absolument)

n=3 n>3

2 n—1 1 n—1 92 n—1 1 n—1

or Z nl{= -2 = = Z n| - -2 Z n| = et on reconnait une combinaison linéaire

3 3 3 3
n=3 n=3 n=3

de termes généraux de séries géométriques dérivées convergentes (de raisons respectives 2/3 et 1/3)

donc T" admet une espérance et

e B ) )

1 4 1 2 4 9 4 11
FlN=———-1-"--2(—=-1--|=9-1—--—-2x-+4+2+-4d E(T)=—
(T) (1_%)2 3 <(1_%)2 3> 3 ><4+ +3 one (T) 2

Partie I1

Pour tout entier naturel n non nul, on note W, la variable aléatoire égale au nombre d’urne(s) encore vide(s) aprés
le placement des n premiers jetons.

7.

a. Donner la loi du couple (X5, W5) 3 points

Commencons par observer qu’aprés avoir placé 2 jetons on a entre 1 et 2 urnes vides,

donc Wy(Q) = {1;2}

On introduit aussi NV; la variable qui renvoie le numéro de 'urne dans laquelle on place le jeton i. D’aprés
les hypothéses, les variables N; sont indépendantes et suivent toutes des lois uniformes sur [1; 3]

1 1 1 1 2
P(X2:0ﬂW2:1):P([N1:2ﬂN2:3]U[N1:3ﬂN2:2]):§Xg—{—ng:g
1 1 1 1 2
P(XQ—OQWQ— ):P([N1:2ﬂN2:2] [N1:3ﬂN2:3]):§X§+§X§:§
P(XQ—lﬂWQ— ) P([N —1ﬂN2—2] [lelﬂN2:3]U[N1: ﬂN2:1]U[N1:3ﬂN2:
1 1 1 1 1 1 1 4
| JRE SO P RS N P
3 3 3 3 3 3 3 3 9
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P(Xy =1NWy=2) =0 (un jeton dans I'urne 1 et deux urnes vides, c’est impossible)
P(Xy=2NnWsy=1)=0 (deux jetons dans l'urne 1 et une urne vide, c’est impossible)

P(XQ:QHWQ:Q):P([Nl:1ﬂN2:1]):%xézé
Ce qui donne le tableau :
Xo\Wo | 1 2
0 2/9 | 2/9
1 4/9 | 0
2 0 |1/9
b. En déduire la loi de W5 et calculer son espérance. 1,5 points

On en déduit, en sommant les termes de chaque colonne (formule des probabilités totales avec le systéme
complet d’événements {[Xo =1 : ¢ € [0;2]}), la loi de Wy :

] 1 2 2 1 4
/ donc| E(Wa)=1x-+2x - =<
PWy=3)1|2/3]|1/3 3 3 3

c. Calculer la covariance de X5 et Wy 1,5 points

La covariance de Wj et Xy se calcule avec la formule cov(Xa, Wa) = E(XoWa) — E(X2)E(Ws)
1

4
le tableau de la loi conjointe donne E(XoWs) =1 X 9 +4x 9= 09

1 2 4
par ailleurs Xy — % <2, 3 donc E(X3) = 3 et d’apres la question précédente, on a E(Wy) = 3
8 2 4
donc on trouve finalement | cov(Xsa, Wa) = 9 3%3= 0
d. Les variables aléatoires X et Wy sont-elles indépendantes 7 1 point

X, et W5 ne sont pas indépendantes |car P(Xo =1NWy =2) =0 # P(Xo =1)P(Wy =2)

Nota bene : il s’agit d'un cas ou la covariance des deux variables est nulle, mais pour autant les variables
ne sont indépendantes. Par ailleurs, quand un zéro apparait dans le tableau de la loi de couple, les
variables ne sont pas indépendantes.

Soit n un entier naturel supérieur ou égal & 3
8. Déterminer W, (2) 1 point

Comme n > 3, on place au moins 3 jetons. On peut avoir placé tous les jetons dans la méme urne (auquel
cas W, = 2), ou dans deux urnes différentes (auquel cas W,, = 1) ou dans les trois (ce qui donne W,, = 0).

On a donc| W, (22) =[0,2]

9. Pour i € [1, 3], on note W, ; la variable aléatoire égale & 1 si l'urne ¢ est encore vide apres le placement des
n premiers jetons, et qui vaut 0 sinon.

2 n
a. Montrer que : Vi € [1,3], E(W,;) = <§> 1 point

W,,.; est une variable de Bernoulli, son espérance est donc égale a son paramétre. L'urne 1 (resp. 2, 3)
est vide si X,, =0 (resp. Y,, =0, Z, =0)
ces trois événements ont la méme probabilité on a, pour tout i € {1,2,3}

2 n
E(Wy) | = P(Wni=1)=P(X, =0)| = <§>
b. Exprimer la variable aléatoire W, en fonction des variables aléatoires Wy, 1, Wy, 2 et W, 3 1 point
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11.

12.

Par définitinon de W,, qui est le « compteur » d’urnes vides et des W), ; qui vaut 1 si 'urne ¢ est vide,

Wn = Wn,l + Wn,Z + Wn,3

c. Exprimer alors E (W) en fonction de n 1 point
Par linéarité de I'espérance, et puisque les W, ; suivent des lois de Bernoulli,
2 n
onadonc| E(W,) |=EWy1)+ EWp2)+EW,3)=| 3 <§>
1 n
. Démontrer que : P( (Xp=n)Nn(W, = 2)) = <§> 1,5 points

Comme [X,, =n]=[X, =n]N[W, =2],ona| P([X,=n]N[W,=2])=P(X,=n)= <_>n

d’autre part, si W,, = 2 alors tous les jetons sont placés dans la méme urne et il n’est pas possible d’avoir;

chaque urne contient donc 0 ou n jetons et donc | P ([X, =k|N[W,=2])=0 | ke[l,n—1]

Démontrer que : Vk € [1,n — 1], P<(X =k)nW, = 1)) = 2() 2 points
Que vaut P((Xn =n)N (W, = 1)) ?

On s’intéresse a I’événement [X,, = k] N [W,, = 1] pour k € [1,n — 1]
cet événement signifie qu’on a placé k des n jetons dans I'urne 1 et les n — k jetons restants dans une (et
meéme) autre urne.

n
Par exemple, si la deuxiéme urne & recevoir des jetons est 'urne 2, il y a ( k:) fagons de choisir les k jetons

parmi les n que l'on va mettre dans 'urne 1, les autres étant automatiquement placés dans 'urne 2. Pour
chacune de ces possibilités, la probabilité est (1/3)"
il en va de méme si la deuxkiéme urne a recevoir des jetons est 'urne 3

donc | P([Xn = k] N [Wy =1]) =2 x <Z> @

par ailleurs, si [X,, = n| tous les jetons sont placés dans la méme urne et il y en a deux qui restent vides;
ainsi

P(Xpy=nnW,=1)=0

Démontrer que : E (X,W,) = 2nP( (Xp=n)Nn (W, = 2)) + Z kP( (Xn=k)n (W, = 1)) 2 points

D’apres le theoreme de transfert

n n 2
E(X, W) ZZkzPX =kNW, =1i) > kiP(Xy =kNW, =)
kaO nlk:lz:l
—ZkPX =kNWy=1)+> 2kP(X, =knW, =2) +2nP(X, =nNW, =2)
k=1 k=1
n—1
=2P(X, =nNW, =2)+ Y kP(X, =knW, =1)
k=1

1 n n—1
E(X,W,) =2n <§> + Z EP(X, =kNW, =1) |dou le résultat d’aprés la question 10.
k=1
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2 n
13. Montrer alors que E (X, W,) =n <§> , puis calculer la covariance de X,, et W, 3 points

On poursuit le calcul en ajoutant le résultat obtenu plus haut. On va aussi utiliser la formule classique mais

-1
hors programme (on peut la démontrer avec la formule des coefficients binomiaux) : k:<:> = n(Z 1)

n—1

E(X,W,) = 2n <é>n+ZkP(Xn —kNW, =1)
“an () () () =2 () = () 2000

1
n n nn—1 n
1 —1 —1 1
m <§> ;:1 (Z B 1) =2n ( > <nj ) =2n <§> on—1 (formule du binome)

2 n
E(X,W,)=n <§> comme demandé.

Wl =

[{ng

on calcule ensuite la covariance avec la méme formule que plus haut, comme X, — % <n, §>

2\" 2\"
ona B (X,) = % dott| cov(Xn, Wy) |= BE(XaWy) — E (X)) E(W,) =n <§> - % x 3 <§> =0

14. Interpréter le résultat obtenu a la question précédente. 0,5 point

La covariance précédente est nulle, pourtant (tout comme précédemment pour n = 2) les variables X, et
W, ne sont pas indépendantes fournissant un nouveau contre-exemple & la réciproque du résultat du cours
affirmant que si deux variables aléatoires sont indépendantes, leur covariance est nulle.
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