
Sujets type ESSEC - HEC Sujet n̊ 3 (HEC - 2006) Corrrigé

Problème

Partie I
1. a. On utilise la formule des probabilités totales :

Pn+1 = P (Xn+1 = 1) = P(Xn=1)(Xn+1 = 1)P (Xn = 1) + P(Xn=0)(Xn+1 = 1)P (Xn = 0)

= p2n + λpn(1− pn)

= p2n(1− λ) + λpn

b. Montrons par récurrence sur n ∈ N, la propriété (Hn) 0 < pn < 1.
Pour n = 0, c’est l’hypothèse initiale, donc (H0) est vérifiée.
Supposons (Hn) vérifiée, on a donc 0 < p2n < 1.
Donc 0 < (1− λ)p2n < (1− λ) (car (1− λ > 0) et 0 < λpn < λ
Par addition : 0 < (1− λ)p2n + λpn < 1. Donc (Hn+1) est vérifiée.

2. a. Formons la différence pn+1 − pn :

pn+1 − pn = (1− λ)p2n + λpn − pn

= (1− λ)(p2n − pn)

= (1− λ)pn(pn − 1)

< 0 d’après la question précédente

La suite (pn) est décroissante, minorée par 0 donc convergente.

Soit ℓ la limite. En faisant tendre n vers +∞ dans la relation pn+1 = (1− λ)p2n + λpn, on
obtient : ℓ = (1− λ)ℓ2 + λℓ, soit encore (1− λ)ℓ(1− ℓ) = 0.

On obtient donc : ℓ = 0 ou ℓ = 1.
Or cette dernière égalité est impossible, car ℓ 6 p0 < 1.

Donc ℓ = 0

b. Montrons par récurrence sur n ∈ N, la propriété (Gn) pn 6 an.
Pour n = 0, p0 < 1 donc (G0) est vérifiée.
Supposons (Gn) vérifiée. On sait que pn+1 = pn[(1− λ)pn + λ].
Or pn 6 p0, donc (1− λ)pn + λ 6 (1− λ)p0 + λ = a
Donc pn+1 6 ana.
Ainsi pn+1 6 an+1.

0 < p0 < 1 donc a = (1− λ)p0 + λ vérifie λ < a < (1− λ) + λ.

On a donc 0 < a < 1, ce qui prouve que la série géométrique
∑

an converge.

Or pn > 0, d’après la règle de majoration des séries à termes positifs, la série
∑

pn
converge.

3. a. On utilise la linéarité de l’espérance :

E(Yn) =

n
∑

k=0

E(Xk) =

n
∑

k=0

pk

Donc lim
n→+∞

E(Yn) =
+∞
∑

k=0

pk (série convergente)
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Donc L existe

4. a. (XnXn+1)(Ω) = {0, 1} (loi de Bernoulli) donc :

E(XnXn+1) = P (Xn = 1 ∩Xn+1 = 1)

= P(Xn=1)(Xn+1 = 1)P (Xn = 1)

= p2n
Puis :

Cov(Xn, Xn+1) = E(XnXn+1)− E(Xn)E(Xn+1)

= p2n − pnpn+1

= pn(pn − pn+1)

Or on sait que pn ∈]0, 1[ et pn − pn+1 > 0 donc Cov(Xn, Xn+1) 6= 0
Donc Xn et Xn+1 ne sont pas indépendantes.

b.
pn+1

pn
= (1− λ)pn + λ et on sait que (pn) converge vers 0,

donc lim
n→+∞

pn+1

pn
= λ.

c. σ(Xn) =
√

pn(1− pn) ∼
√
pn quand n → +∞ (car pn → 0).

Autrement dit,

rn =
pn(pn − pn+1)

σ(Xn)σ(Xn+1)

∼ pn(pn − λpn − (1− λ)p2n)√
pn
√
pn+1

∼ p2n(1− λ− (1− λ)pn)√
pn
√
pn
√

(1− λ)pn + λ)

∼ p2n(1− λ)

pn
√
λ

∼ 1− λ√
λ

pn

Partie II
1. Cette fonction calcule une réalisation de YN . En particulier, q représente pk+1, initialisé à pk à

la ligne 4, modifié si Xk = 0 dans la ligne 5, et p est réactualisé en ligne 8.

2. Après la ligne 4, pour k ∈ [[1, 201]], T[k] correspond au nombre de fois où Y200 vaut k sur 10000
tirages, avec les valeurs p0 = 0.25 et λ = 0.7
Après la ligne 5, T contient les fréquences des valeurs de Y200 obtenues sur 10000 réalisations,
donc on pourra estimer que T [k] ≃ P (Y = k)
Remarque : Y200(Ω) = [[0, 201]].

Pour calculer E(Y200), il faut calculer

201
∑

k=0

kP (Y = k).

Les valeurs T[k] approcheront P (Y = k), donc il faudra calculer la somme des valeurs : k*T[k]
pour k de 0 à 201 pour avoir une valeur approchée de E(Y200).
On peut compléter le script en :

esperance=0

for k in range (202):

esperance=esperance+k*T[k]

print(esperance)
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Partie III
1. fest dérivable sur [0, T ] et

∀t ∈ [0, T ] f ′(t) = p′(t)e(1−ℓ)t + p(t)(1− ℓ)e(1−ℓ)t

= e(1−ℓ)t[(1− ℓ)p(t)(p(t)− 1) + (1− ℓ)p(t)]

= (1− ℓ)p(t)2e(1−ℓ)t

> 0

Donc f est croissante sur [0, T ].
f(0) = p(0) = p0 ∈]0, 1[
donc f(t) > f(0) > 0 donc p(t) = 0 est impossible.
Or p(t) est une probabilité donc p(t) ∈]0, 1]

2. a. p(t) ne s’annule pas sur [0, T ] donc g est dérivable sur [0, T ].

∀t ∈ [0, T ] g′(t) =
−(1 − ℓ)e−(1−ℓ)tp(t)− p′(t)e−(1−ℓ)t

p(t)2

=
e−(1−ℓ)tp(t)(1− ℓ)

p(t)2

= −(1 − ℓ)e−(1−ℓ)t

On peut primitiver : g(t) = e−(1−ℓ)t +K (K étant une constante).

b. Pour t = 0, on a donc g(0) = 1 +K =
1

p0
donc K =

1− p0
p0

.

p(t) =
e−(1−ℓ)t

1−p0
p0

+ e−(1−ℓ)t

=
p0e

−(1−ℓ)t

(1− p0) + p0e−(1−ℓ)t

=
p0e

−(1−ℓ)t

e−(1−ℓ)t[(1− p0)e(1−ℓ)t + p0]

=
p0

p0 + (1− p0)e(1−ℓ)t

c. p′(t) = (1− ℓ)p(t)(p(t)− 1) 6 0 donc p est une fonction décroissante sur [0, T ].
p([0, T ]) = [p0, m] avec m = p(T ).
p′(t) = (1− ℓ)p(t)(p(t)− 1)
Donc p′ est dérivable et

p′′(t) = (1− ℓ)[p′(t)(p(t)− 1) + p(t)p′(t)]

= (1− ℓ)[2p(t)p′(t)− p′(t)]

= (1− ℓ)2[2p(t)2(p(t)− 1)− p(t)(p(t)− 1)]

= (1− ℓ)2p(t)[p(t)− 1][2p(t)− 1]

Donc p′′ est continue, et la courbe (C) aura un point d’inflexion au point d’abscisse t si
p′′(t) s’annule et change de signe en t. Or

p′′(t) = 0 ⇐⇒ p(t) =
1

2

⇐⇒ 2p0 = p0 + (1− p0)e
(1−ℓ)t

⇐⇒ (1− p0)e
(1−ℓ)t = p0

⇐⇒ e(1−ℓ)t p0
1− p0

⇐⇒ t =
1

1− ℓ
ln

(

p0
1− p0

)
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Reste à chercher une condition d’existence de ce point d’inflexion.

Le point existe si et seulement si (i) 0 <
1

1− ℓ
ln

(

p0
1− p0

)

< T .

L’inégalité de gauche est facile à interpréter : elle devient
p0

1− p0
> 1, c’est à dire p0 >

1

2
.

L’inégalité de droite se lit : (ii)
1

1− ℓ
ln

(

p0
1− p0

)

< T

(ii) ⇐⇒ p0
1− p0

< e(1−ℓ)T

⇐⇒ p0 < (1− p0)e
(1−ℓ)T

⇐⇒ p0(1 + e(1−ℓ)T < e(1−ℓ)T

⇐⇒ p0 <
e(1−ℓ)T

1 + e(1−ℓ)T

La condition d’existence s’écrit donc :
1

2
< p0 <

e(1−ℓ)T

1 + e(1−ℓ)T
.

3. a. On utilise la linéarité de l’espérance :

E(Zn)

n
=

1

n

n
∑

k=0

E(X(tk))

=
1

n

n
∑

k=0

p(X(tk) = 1)

=
1

n

n
∑

k=0

p(tk))

=
1

n

n
∑

k=0

p

(

k
T

n

)

=
1

T

[

T

n

n
∑

k=0

p

(

k
T

n

)

]

=
1

T

[

T

n

n
∑

k=1

p

(

k
T

n

)

]

+
1

n
p0

On reconnâıt dans la dernière somme, une somme des rectangles (hors programme pour

nous), qui converge, comme p est continue sur [0, T ] vers

∫ T

0

p(t) dt. L’autre terme tend

vers 0.

Donc : lim
n→+∞

E(Zn)

n
=

1

T

∫ T

0

p(t) dt

b. On pose u(t) = e(1−ℓ)t, ou encore t =
1

1− ℓ
ln u.

t = 0 ⇐⇒ u = 1
t = T ⇐⇒ u = e(1−ℓ)T

dt =
1

1− ℓ

du

u
.

Ainsi :

m(T ) =
1

T

1

1− ℓ

∫ u=e(1−ℓ)T

u=1

p0
u(p0 + (1− p0)u) du

=
1

(1− ℓ)T

∫ e(1−ℓ)T

1

[

1

u
− 1− p0

p0 + (1− p0)u

]

du

c. On peut maintenant intégrer :
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m(T ) =
1

(1− ℓ)T
[ln |u|+ ln |p0 − (1− p0)u|]e

(1−ℓ)T

1

=
1

(1− ℓ)T

[

ln

(

u

p0 + (1− p0)u

)]e(1−ℓ)T

1

=
1

(1− ℓ)T
ln

(

e(1−ℓ)T

p0 + (1− p0)e(1−ℓ)T

)

− ln

(

1

1

)

Ainsi : m(T ) =
1

(1− ℓ)T
ln

(

e(1−ℓ)T

p0 + (1− p0)e(1−ℓ)T

)

Quand T → +∞, e(1−ℓ)T → +∞, donc :

m(T ) = − 1

(1− ℓ)T
ln

(

(1− p0)e
(1−ℓ)T + p0

e(1−ℓ)T

)

= − 1

(1− ℓ)T
ln
(

1− p0 +
p0

e(1−ℓ)T

)

On a bien : m(T ) ∼ − 1

(1− ℓ)T
ln(1− p0)

Partie IV

1. Les calculs ont déjà été faits :

p′(t) =
1

2
p(t)(p(t)− 1))

p′′(t) =
1

4
p(t)(p(t)− 1)(2p(t)− 1)

2. a. On utilise l’inégalité de Taylor (hors programme pour nous), elle même issue de la formule
de Taylor avec reste intégrale :

Si p est C2 sur [a, b] : p(b) = p(a) + p′(a)(b− a) +

∫ b

a

(b− t)p′′(t)dt

Donc |p(b)− p(a)− p′(a)(b− a)| 6 M2
(b− a)2

2
avec M2 = sup

[a,b]

|p′′|.

En prenant a = tk, b = tk+1, alors (b− a) = tk+1 − tk = δ.

|p′′(t)| 6 1

4
d’après la question 1)

Donc p(tk+1)− p(tk)− δp′(tk)| 6
δ2

8

b. Posons A = p(tk) + δp′(tk)− pk+1. Ici δ =
T

n
= 2(1− λ).

Donc :

A = p(tk) + 2(1− λ)
1

2
p(tk)(p(tk)− 1)− (1− λ)p2k − λpk

= p(tk) + (1− λ)p(tk)
2 −′ 1− λ)p(tk)− (1− λ)p2k − λpk

= (1− λ)[p(tk)
2 − p2k] + λ[p(tk)− pk]

= (1− λ)εk(p(tk) + pk) + λεk

= εk[(1− λ)(p(tk) + pk) + λ]
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Posons B = εk[1− (1− λ)(1− p(tk)− pk)]
B = εk[(1− λ)(p(tk) + pk)− (1− λ) + 1]

Donc B = A.

c. On utilise les deux majorations précédentes :

|εk+1| = |p(tk+1)− pk+1|
= |p(tk+1)− p(tk)− δp′(tk) + p(tk) + δp′(tk)− pk+1|
6 |p(tk+1)− p(tk)− δp′(tk)|+ |p(tk) + δp′(tk)− pk+1|

6
δ2

8
+ |εk|[1− (1− λ)(1− p(tk)− pk)]

Posons C = 1 − (1 − λ)(1 − p(tk) − pk). On sait que 0 6 pk 6
1

3
et 0 6 p(tk) 6

1

3
car

p0 =
1

3

donc 0 6 pk + p(tk) 6
2

3

donc
1

3
6 1− pk − p(tk) 6 1

donc
1− λ

3
6 (1− λ)[1− pk − p(tk)] 6 1− λ

donc λ− 1 6 −(1 − λ)[1− pk − p(tk)] 6
λ− 1

3

donc 1 + λ− 1 6 C 6 1 +
λ− 1

3

donc C 6
2 + λ

3

donc |εk+1| 6
δ2

8
+ |εk|

2 + λ

3
d. Montrons par récurrence sur k ∈ N, la propriété : (Hk) |εk| 6 6(1− λ)

Pour k = 0, ε0 = p(t0)− p0 = p(0)− p0 = 0, donc (H0) est vérifiée.
Supposons |εk| 6 6(1− λ) alors , compte tenu de l’égalité δ = 2(1− λ) :

|εk+1| 6
δ2

8
+

1

3
(λ+ 2)6(1− λ)

6
δ2

8
+ 2(λ+ 2)(1− λ)

6
4(1− λ)2

8
+ 2(λ+ 2)(1− λ)

6
1− λ

2
[(1− λ) + 4(λ+ 2)]

6
1− λ

2
(3λ+ 9)

6 12
1− λ

2

6 6(1− λ)

3. a. supposons α > 18(1− λ), on a alors
α

1− λ
> 18

donc
1

12

α

1− λ
>

3

2

donc
1

12

α

1− λ
− 1

2
> 1
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donc ln

(

1

12

α

1− λ
− 1

2

)

> 0

donc N(α) > 0

b. On suppose n 6 N(α), on a alors nδ 6 N(α)δ.
Pour k 6 n 6 N(α), on a kδ 6 nδ 6 N(α)δ
c’est à dire tk 6 N(α)δ.
Posons alors t = N(α)δ. On a tk 6 t et comme p est une fonction décroissante, p(tk) > p(t).

Calculons p(t) :

p(t) =
p0

p0 + (1− p0)et/2
=

1/3

1/3 + 2/3et/2
=

1

1 + 2et/2

=
1

1 + 2eN(α)(1−λ)
=

1

1 + 2eln(
1
12

α

1−λ
−

1
2)

=
1

1 + 2
(

1
12

α
1−λ

− 1
2

) =
1

1 + α
6(1−λ)

− 1
=

6(1− λ)

α

Donc p(tk) >
6(1− λ)

α
et, ainsi,

1

p(tk)
6

α

6(1− λ)
.

En combinant ce résultat avec p(tk)− pk 6 6(1− λ) (obtenu en 2) d )

on a bien :

∣

∣

∣

∣

p(tk)− pk
p(tk

∣

∣

∣

∣

6 α

c. Posons u = 1− λ. Quand λ → 1−, u → 0+.

N(α) =
1

u
ln

(

α

12u
− 1

2

)

,

donc lim
λ→1−

N(α) = +∞

d. Quand λ se “ rapproche” de 1, |εk| 6 6(1− λ) devient donc “proche” de 0.
Donc p(tk) est proche de pk.
N(α) devient “grand”, la condition n 6 N(α) est donc réalisée , donc , en choisissant α
“petit”, p(tk) devient équivalent à pk.
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