
ECG 2 - mathématiques appliquées Devoir en temps libre n̊ 5 Pour le 8 janvier 2026

Corrigé Total sur 20 points

Exercice 1 - exercice 20 de la feuille de T.D. n̊ 8

Soit A =











2 10 7

1 4 3

−2 −8 −6











On note B = (e1, e2, e3) la base canonique de R
3

On note f l’endomorphisme de R3 canoniquement associé àA, c’est-à-dire l’endomorphisme représenté
par A relativement à la base canonique B

On pose u = (2, 1,−2)

1. a. Montrer que Ker(f) = Vect(u) 2 points

Soit (x, y, z) ∈ R
3, alors f((x, y, z)) = 0R3 ⇔ AX = 03,1 où X = t(x y z)

or AX = 03,1 ⇔











2 10 7 0

1 4 3 0

−2 −8 −6 0











⇔











1 4 3 0

2 10 7 0

−2 −8 −6 0











L1 ↔ L2

L1 ↔ L2 ⇔











1 4 3 0

0 2 1 0

0 0 0 0











L2 ← L2 − 2L1

L3 ← L3 + 2L1

⇔







x1 + 4x2 + 3x3 = 0

2x2 + x3 = 0
⇔







x1 = −4x2 − 3(−2x2) = 2x2

x3 = −2x2

⇔ X ∈





























2x2

x2

−2x2





























⇔ X ∈



















x2











2

1

−2





























⇔ X ∈ Vect





















2

1

−2





















= Vect(u)

donc Ker(f) = Vect(u)

b. La matrice A est-elle inversible ? 0,5 point

Ker(f) 6= {0R3} donc f n’est pas injective, donc f n’est pas bijective

donc A = MB(f) n’est pas inversible.

2. a. Déterminer le vecteur v ∈ R
3 dont la deuxième composante vaut 1 et tel que f(v) = u

On pose v = (a, 1, b) où (a, b) ∈ R
2 alors f(v) = u⇔ A

t(a 1 b) = t(2 1 − 2)

⇔



















2a+ 10− 7b = 2

a+ 4 + 3b = 1

−2a− 8− 6b = −2

⇔



















a + 4 + 3b = 1

2a+ 10− 7b = 2

−2a− 8− 6b = −2

L1 ↔ L2

L1 ↔ L2 ⇔ 1,5 points



















a+ 4 + 3b = 1

2 + b = 0

0 = 0

L2 ← L2 − 2L1

L3 ← L3 + 2L1

⇔







a = −3− 3b = 3

b = −2

donc v = (3, 1,−2) est l’unique solution



b. Déterminer le vecteur w ∈ R
3 dont la deuxième composante vaut 1 et tel que f(w) = v 1

point

Même méthode et mêmes opérations sur les lignes (attention le second membre est différent) :

on trouve f((a, 1, b)) = v ⇔



















a+ 4 + 3b = 1

2 + b = 1

0 = 0

⇔







a = −3 − 3b = 0

b = −1

donc w = (0, 1,−1) est l’unique solution

3. a. Montrer que B
′ = (u, v, w) est une base de R

3 1,5 points

Soit (λ1, λ2, λ3) ∈ R
3, tel que λ1u+ λ2v + λ3w = 0R3 , alors



















2λ1 + 3λ2 = 0

λ1 + λ2 + λ3 = 0

−2λ1 − 2λ2 − λ3 = 0

⇔



















2λ1 + 3λ2 = 0

λ1 + λ2 = 0

λ3 = 0 L3 ← L3 + 2L1

⇔



















λ2 = 0

λ1 = 0

λ3 = 0

L1 ← L1 − 2

donc la famille B
′ est libre et Card(B′) = 3 = dim(R3) donc B

′ est une base de R
3

b. Ecrire la matrice N de f relative à la base B
′ 0,5 point

D’après les questions précédentes, f(u) = 0R3, f(v) = u et f(w) = v,

donc par définition, N = MB′(f) =











0 1 0

0 0 1

0 0 0











Nota bene : on aura remarqué le N comme Nathalie ! ou plutôt, nilpotente !

c. Ecrire la matrice P de passage de B à B
′ 1 point

Donner une relation entre N , P , et A

Par définition, P contient ≪ en colonnes ≫ les vecteurs de B
′ exprimés dans la base B

donc P =











2 3 0

1 1 1

−2 −2 −1











et d’après la formule de changement de base d’une application linéaire,

MB(f) = PB→B′MB′(f)PB′→B soit A = PNP−1 car PB′→B = P−1
B′→B

= P−1

d. Calculer N2, N3. En déduire que : Ak = 0M3(R) pour tout k > 3 1,5 points

N2 =











0 1 0

0 0 1

0 0 0





















0 1 0

0 0 1

0 0 0











=











0 0 1

0 0 0

0 0 0











doncN3 =











0 1 0

0 0 1

0 0 0





















0 0 1

0 0 0

0 0 0











=











0 0 0

0 0 0

0 0 0











soit N3 = 03

donc A3 = (PNP−1)3 = PNP−1PNP−1PNP−1 = PNI3NI3NP−1 = PN3P−1 = 03



car N3 = 03 et donc ∀k ∈ N, k > 3, Ak = Ak−3A3 = 03 car A3 = 03

Nota bene : on peut montrer que Nn = 03 pour n > 3 puis établir An = PNnP−1 (par
récurrence) mais ce n’est pas indispensable ici.

4. a. Montrer que A ne possède qu’une seule valeur propre et déterminer le sous-espace propre
associé. 1,5 points

D’après la question précédente A3 = 03 donc x 7→ x3 est un polynôme annulateur de A,
et admet 0 pour unique racine, donc 0 est la seule valeur possible
de plus pour X = t(x y z), AX = 03,1 ⇔ f((x, y, z)) = 0R3 ⇔ (x, y, z) ∈ Ker(f)
⇔ (x, y, z) ∈ Vect(u) d’après la question 1.a. donc AX = 03,1 ⇔ X ∈ Vect(t(2 1 −2))

donc 0 est valeur propre et E0(A) = Vect(t(2 1 − 2))

b. Montrer que, pour tout réel λ non nul, f − λid3 est un automorphisme, id3 étant l’endo-
morphisme identité de R

3 (un automorphisme est un endomorphisme bijectif ) . 1,5

points

D’après la caractérisation des isomorphismes, f − λid3 est un automorphisme (i.e. un
endomorphisme bijectif) ⇔MB(f − λid3) est inversible
or MB(f − λid3) = MB(f)− λMB(id3) = A− λI3
or A n’admet que 0 pour valeur propre, donc ∀λ 6= 0, A − λI3 est inversible (car alors λ
n’est pas valeur propre)

et donc ∀λ 6= 0, f − λid3 est un automorphisme

5. On note g = f − id3

a. Ecrire la matrice B de g relative à la base canonique. 1,5 points

Ecrire la matrice M de g relative à la base B
′

Donner une relation entre B, M , P

Comme à la question précédente,

B = MB(g) = MB(f − id3) = MB(f)−MB(id3) = A− I3 puis de même,

M = MB′(g) = MB′(f − id3) = MB′(f)−MB′(id3) = N − I3 car MB′(f) = N

donc B =







1 10 7

1 3 3

−2 −8 −7






et M =







−1 1 0

0 −1 1

0 0 −1







et d’après la formule de changement de base d’une application linéaire,

MB(g) = PB→B′MB′(g)PB′→B soit M = PBP−1 d’après ce qui précède.

b. Montrer que B est inversible et expliciter B−1 2 points

D’après la question 4.b., g − id3 est un automorphisme et A − I3 est inversible, i.e.

B est inversible car B = A− I3 d’après la question précédente

déterminons alors B−1, on peut le faire de manière classique avec le pivot de Gauss, mais
aussi réaliser que A3 = 03 i.e. (B + I3)

3 = 03
donc en développant (B+I3)(B+I3)

2 = (B+I3)(B
2+2B+I3) = B3+3B2+3B+I3 = 03

donc B(−B2 − 3B − 3I3) = I3 donc (B est inversible) et B−1 = −B2 − 3B − 3I3
on nous demande de l’expliciter :



B2 =







1 10 7

1 3 3

−2 −8 −7













1 10 7

1 3 3

−2 −8 −7






=







−3 −16 −12

−2 −5 −5

4 12 11







doncB−1 = −







−3 −16 −12

−2 −5 −5

4 12 11






−







3 30 21

3 9 9

−6 −24 −21






−







3 0 0

0 3 0

0 0 3






=







−3 −14 −9

−1 −7 −4

2 12 7







c. Montrer qu’il existe trois suites (an)n∈N, (bn)n∈N, (cn)n∈N telles que : 1,5 points

∀n ∈ N, Mn = anI3 + bnN + cnN
2

Par récurrence, pour n ∈ N, on pose P (n) : ∃(an, bn, cn) ∈ R
3,Mn = anI3 + bnN + cnN

2

Initialisation : P (0) vraie ⇔ M0 est combinaison linéaire de I3, N et N2

ce qui est vrai car M0 = I3 = 1× I3 + 0×N + 0×N2 donc P (0) est vraie

Hérédité : soit n ∈ N, on suppose P (n) vraie
alors par hypothèse, ∃(an, bn, cn) ∈ R

3,Mn = anI3 + bnN + cnN
2

et donc Mn+1 = MnM = (anI3 + bnN + cnN
2)M = (anI3 + bnN + cnN

2)(N − I3)
donc Mn+1 = anN+bnN

2+cnN
3−anI3−bnN−cnN

2 = −anI3+(an−bn)N+(bn−cn)N
2

car N3 = 03

donc Mn+1 est bien combinaison linéaire de I3, N et N2 donc P (n+ 1) est vraie,
d’où l’hérédité, donc par théorème de récurrence, ∀n ∈ N, P (n) est vraie i.e.

∃(an, bn, cn) ∈ R
3,Mn = anI3 + bnN + cnN

2

d. En déduire que : ∀n ∈ N, Bn = anI3 + bnA+ cnA
2 2,5 points

On va d’abord établir la formule classique par récurrence : Mn = PBnP−1

n ∈ N, on pose Q(n) : Mn = PBnP−1

Initialisation : Q(0) vraie ⇔ M0 = PB0P−1 ⇔ I3 = PI3P
−1 = PP−1 ⇔ I3 = I3

ce qui est vrai donc Q(0) est vraie

Hérédité : soit n ∈ N, on suppose Q(n) vraie
alors par hypothèse, Mn = PBnP−1 et donc Mn+1 = MnM = PBnP−1PBP−1

car M = PBP−1, donc Mn+1 = PBnI3BP−1 = PBnBP−1 = PBn+1P−1

donc P (n+ 1) est vraie, d’où l’hérédité,

donc par théorème de récurrence, ∀n ∈ N, P (n) est vraie i.e. Mn = PBnP−1

or d’après la question précédente pour n ∈ N,Mn = anI3 + bnN + cnN
2

soit PBnP−1 = anI3 + bnN + cnN
2

donc P−1PBnP−1 = P−1(anI3+ bnN + cnN
2) soit BnP−1 = anP

−1+ bnP
−1N + cnP

−1N2

puis BnP−1P = (anP
−1 + bnP

−1N + cnP
−1N2)P

soit Bn = anP
−1P + bnP

−1NP + cnP
−1N2P

or P−1P = I3, A = P−1NP et A2 = P−1NPP−1NP = PN2P−1

d’où Bn = anI3 + bnA+ cnA
2 et ce ∀n ∈ N

e. Montrer que : pour tout n ∈ N, Bn ∈ Vect(I3, B, B2) 1 point

Nous venons de montrer que ∀n ∈ N, Bn = anI3 + bnA+ cnA
2 or B = A + I3

donc ∀n ∈ N, Bn = anI3+ bn(B+ I3)+ cn(B+ I3)
2 = anI3+ bnB+ bnI3+ cn(B

2+2B+ I3)

donc Bn = (an+ bn+ cn)I3+(bn+2cn)B+ cnB
2 et donc Bn ∈ Vect(I3, B, B2) (i.e. Bn

est combinaison linéaire de I3, B et B2




