
ECG 2 - mathématiques appliquées Janvier 2026

Chapitre 11 - graphes probabilistes - chaines de Markov

Exercice 1 - le problème du collectionneur

Le titre de l’exercice vient d’une situation concrète : un collectionneur de cartes à jouer (ou de
timbres, etc.) achète des paquets de cartes. Dans chaque paquet, il y a une carte ≪ rare ≫ et d’autres
communes . On suppose qu’il y a r cartes rares en tout et que la probabilité d’obtenir une carte rare

donnée dans un paquet est égale à
1

r
(équiprobabilité). On s’intéresse au moment où le collectionneur

obtient la collection complète des cartes rares.

Le problème peut être modélisé ainsi : une urne contient r boules numérotées de 1 à r. On effectue des
tirages avec remise d’une boule et on note son numéro. On note Xn le nombre de numéros différents
obtenus lors des n premiers lancers.
On pourra s’appuyer sur les exemples r = 3 ou r = 4

1. Montrer que, pour tout n ∈ N
∗ et tout i ∈ {1, . . . r}, P[Xn=i](Xn+1 = i) =

i

r

2. Montrer que, pour tout n ∈ N
∗ et tout i ∈ {1, . . . r}, P[Xn=i](Xn+1 = i+ 1) = 1− i

r
3. Compléter le graphe probabiliste suivant schématisant les résultats précédents (de l’état n à

l’état n + 1) :

1 2 3 . . . r1/r 1

Dans le cas r = 4, on note, pour tout n ∈ N, Un =
(

P (Xn = 1) P (Xn = 2) P (Xn = 3) P (Xn = 4)
)

4. Déterminer la matrice M vérifiant : ∀n ∈ N, Un+1 = UnM

5. Soit P =















1 3 3 1

0 1 2 1

0 0 1 1

0 0 0 1















Vérifier queM = PDP−1 oùD =
1

4
Diag(1, 2, 3, 4) (matrice diagonale).

6. Montrer que : ∀n ∈ N
∗, Un = U1M

n−1

7. Montrer que : pour tout entier n ∈ N
∗, Mn−1 = PDn−1P−1

8. Calculer P−1 puis en déduire Un en fonction de n (loi de Xn)

9. Déterminer les limites des composantes de Un quand n tend vers +∞
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Exercice 2 - tirages dans une urne

Une urne contient initialement r boules rouges et m− r boules blanches, où m et r sont des entiers
naturels vérifiant 0 6 r 6 m et m > 2
On effectue une série de tirages ; à chaque tirage, la boule tirée est écartée et on remet dans l’urne
une boule de la couleur opposée (blanche si la boule tirée et rouge et inversement).
On s’intéresse au nombre Xn de boules rouges dans l’urne à l’issue du nème tirage, avec X0 = r

On posera, pour n ∈ N, Un le vecteur ligne (loi de Xn) :

Un =
(

P (Xn = 0) P (Xn = 1) . . . P (Xn = m)
)

1. Montrer que, pour n ∈ N : P (Xn+1 = 0) =
1

m
P (Xn = 1) et P (Xn+1 = m) =

1

m
P (Xn = m− 1)

2. Compléter le graphe probabiliste suivant schématisant l’évolution de l’état n à l’état n+ 1 :

0 1 2 . . . m−1 m

1

1

3. Montrer que, pour i ∈ [[1, m− 1]] et pour tout n ∈ N :

P (Xn+1 = i) =
m− i+ 1

m
P (Xn = i− 1) +

i+ 1

m
P (Xn = i+ 1)

Dans la suite, on suppose que m = 2 et r = 1

4. Déterminer la matrice de transition associée à la chaine de Markov (Xn)n∈N

5. a. Montrer que les valeurs propres de M sont −1, 0 et 1
Pour λ ∈ Sp(M), on déterminera un vecteur colonne Cλ de première coordonnée égale à 1
et générateur du sous-espace propre Eλ associé à la valeur propre λ

b. On définit une matrice carrée P par ses colonnes : dans l’ordre égales à C−1, C0 et C1

Justifier que P est une matrice inversible.

c. Trouver une matrice diagonale D telle que MP = PD et en déduire que M est diagonali-
sable.

6. On note, pour tout n ∈ N, Vn = UnP . Donner une relation entre Vn+1, Vn et D

7. Montrer que les composantes de Un n’ont pas de limite quand n tend vers +∞
8. Montrer que la chaine de Markov (Xn)n∈N possède une loi de probabilité invariante, c’est-à-dire

un vecteur ligne U définissant une loi de probabilité et vérifiant U = UM

Exercice 3

On considère la chaine de Markov (Xn)n∈N definie par : X0 = 0 et, pour n ∈ N :� la loi de Xn+1 sachant [Xn = 0] est la loi de Bernoulli de paramètre
1

2� la loi de Xn+1 sachant [Xn = 1] est la loi de Bernoulli de paramètre
3

4

1. Justifier que, pour tout entier n ∈ N, Xn est à valeurs dans {0, 1}
Montrer que (Xn)n∈N est une chaine de Markov homogène et déterminer la matrice de transition
M ainsi que son graphe probabiliste associé.

2. Déterminer les valeurs propres de M et les sous-espaces propres associés.

3. Déterminer une matrice P inversible de deuxième ligne (1 1) et une matrice D = Diag(λ1, λ2)
diagonale avec λ1 < λ2 telles que M = PDP−1

4. Montrer que, pour tout n ∈ N, Mn = PDnP−1 et calculer explicitement Mn (on calculera P−1)

5. On note, pour n ∈ N, Un = (P (Xn = 0) P (Xn = 1))
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a. Justifier la relation : ∀n ∈ N, Un+1 = UnM

b. Montrer que les composantes de Un ont une limite quand n tend vers +∞

c. Que dire du vecteur U =

(

lim
n→+∞

P (Xn = 0) lim
n→+∞

P (Xn = 1)

)

?

Exercice 4 (Edhec)

Les sommets d’un carré sont numérotés 1, 2, 3, 4. Un mobile se déplace aléatoirement sur ces sommets
selon le protocole suivant :� au départ, c’est-à-dire à l’instant 0, le mobile est sur le sommet 1� lorsque le mobile est à un instant donné sur un sommet, il se déplace à l’instant suivant sur l’un
des trois autres sommets, de manière équiprobable.

On note, pour n ∈ N, Xn la variable aléatoire égale au numéro du sommet sur lequel se situe le
mobile à l’instant n, avec donc X0 = 1

On note, pour n ∈ N, Un =
(

P (Xn = 1) . . . P (Xn = 4)
)

définissant la loi de Xn

1. Donner la loi de X1, son espérance E(X1) et sa variance V (X1)

2. Montrer que (Xn)n∈N est une chaine de Markov homogène.
Déterminer sa matrice de transitionM et faire le graphe probabiliste correspondant en indiquant
les probabilités de transition.

3. Justifier la relation : ∀n ∈ N, Un+1 = UnM

4. On pose : J la matrice carrée d’ordre 4 ne contenant que des 1

a. Calculer J2, puis montrer que : pour tout n ∈ N
∗, Jn = 4n−1J

b. Déterminer les valeurs propres de J et les sous-espaces propres correspondants.

c. Justifier que J est diagonalisable.

5. a. Ecrire M comme combinaison linéaire de J et de I4

b. En utilisant la formule du binôme de Newton, en déduire que, pour tout n ∈ N, Mn est
une combinaison linéaire de I4 et de J que l’on explicitera.

c. Montrer que, pour tout n ∈ N, Un = U0M
n. En déduire la loi de Xn

6. Montrer que la chaine de Markov (Xn)n∈N possède une probabilité invariante (état stable).

7. Soit C =















1

2

3

4















a. Vérifier que MC =
10

3















1

1

1

1















− 1

3
C

b. En déduire : pour n ∈ N
∗, E(Xn) =

10

3
− 1

3
E(Xn−1)

c. Déterminer E(Xn) en fonction de n et calculer lim
n→+∞

E(Xn)
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Exercice 5

On considère une urne contenant initialement 2 boules blanches et 1 boule noire et on dispose d’une
pièce équilibrée.
On effectue une suite de tirage selon le protocole suivant :� on pioche une boule de l’urne et on lance la pièce ;� si on obtient pile, on remet la boule dans l’urne ;� si on obtient face, on écarte la boule et on remet dans l’urne une boule de la couleur opposée
(noire si on a pioché une boule blanche, et blanche si on a pioché une boule noire).

Pour n ∈ N
∗, on note Xn le nombre de boules noires à l’issue du nème tirage, et on posera X0 = 1

On note enfin, pour n ∈ N, Un =
(

P (Xn = 0) P (Xn = 1) P (Xn = 2) P (Xn = 3)
)

(loi de Xn)

1. Montrer que, pout n ∈ N
∗, P (Xn+1 = 0) =

1

2
P (Xn = 0) +

1

6
P (Xn = 1)

2. Montrer que, pout n ∈ N
∗, P (Xn+1 = 3) =

1

6
P (Xn = 2) +

1

2
P (Xn = 3)

3. Déterminer, pour i ∈ {1, 2}, PXn=i(Xn+1 = i), PXn=i−1(Xn+1 = i) et PXn=i+1(Xn+1 = i)
Regrouper les résultats obtenus dans un graphe probabiliste schématisant le passage de l’état
au tirage n à l’état au tirage n+ 1.

4. Déterminer la matrice de transition M associée à la châıne de Markov (Xn)n∈N

5. Justifier la relation : ∀n ∈ N, Un+1 = UnM

6. Montrer que Sp(M) =

{

0,
1

3
,
2

3
, 1

}

7. Déterminer une matrice inversible P de deuxième ligne ne contenant que des 1, telle que :

M = PDP−1 avec D = Diag

(

1,
2

3
,
1

3
, 0

)

réponse : P =















1 3 −3 −1

1 1 1 1

1 −1 1 −1

1 −3 −3 1















8. On pose, pour n ∈ N, Vn = UnP . Montrer que : ∀n ∈ N, Vn = V0D
n

9. On note, pour n ∈ N, Un = (an, bn, cn, dn) et Vn = (αn, βn, γn, δn)

a. Déterminer, quand n → +∞, les limites de αn, βn, γn, δn, respectivement notées α, β, γ, δ

b. On pose V = (α β γ δ) et U = V P−1 = (a b c d)
Montrer que a, b, c, d sont les limites respectives de an, bn, cn, dn quand n → +∞

c. Justifier que U est une loi de probabilité invariante (état stable) pour la chaine de Markov
(Xn)n∈N
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Exercice 6

Une urne contient N boules numérotées de 1 à N avec N > 2, indiscernables.
On effectue une suite de tirages indépendants avec remise dans cette urne et on note, pour n ∈ N

∗,
Tn la variable aléatoire égale au nombre de numéros obtenus à l’issue des n premiers tirages.

1. Indiquer Tn(Ω) pour n ∈ N
∗. Que vaut T1 ?

2. Pour n ∈ N
∗, que dire de la loi de Tn+1 sachant [Tn = N ] ?

3. Soit n ∈ N
∗. Pour deux entiers naturels i et j, avec i < N , calculer PTn=i(Tn+1 = j) dans les

cas j = i et j = i+ 1

4. Justifier que (Tn)n∈N∗ est une chaine de Markov homogène. On notera MN sa matrice de tran-
sition.

5. Justifier que MN est diagonalisable.

6. Dans cette question, on considère le cas N = 3 et on note M = M3

a. Déterminer une matrice inversible P et une matrice diagonale D dont les éléments diago-
naux sont rangés dans l’ordre croissant tels que M = PDP−1

b. Montrer que, pour tout n ∈ N, Mn = PDnP−1

Déterminer P−1 et en déduire explicitement Mn pour n ∈ N

c. Soit Un =
(

(P (Tn = 1) P (Tn = 2) P (Tn = 3)
)

Montrer que : pour tout n ∈ N
∗, Un = U1M

n−1, puis expliciter Un

d. Montrer que les composantes de Un ont une limite quand n tend vers +∞
En notant U =

(

lim
n→+∞

P (Tn = 1) lim
n→+∞

P (Tn = 2) lim
n→+∞

P (Tn = 3)

)

, à quoi corres-

pond U ?
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Exercice 7 - marche sur un pentagone

Deux personnes P1 et P2 ont rendez-vous dans un complexe
formé de cinq sites S1, S2, S3, S4, S5 disposés en pentagone
et reliés par des routes comme l’illustre le schéma ci-contre.
Elles arrivent au rendez-vous l’heure prévu, mais suite à un
malentendu, P1 se présente au site S1 et P2 au site S2.

S1

S2

S3

S4

S5

Elles décident alors de partir à la recherche l’une de l’autre. Elles empruntent les différentes routes
du complexe avec les règles suivantes :

• à partir d’un site, chacune choisit de se rendre sur l’un des deux sites voisins, les deux possibilités
étant équiprobables ;

• les déplacements des deux personnes se font simultanément ;

• tous les choix de déplacements se font indépendamment les uns des autres.

Elles continuent à se déplacer ainsi jusqu’à se retrouver éventuellement sur un même site (ils ne se
rencontrent pas le long des routes). Une fois retrouvées, elles ne se déplacent plus.
Pour tout entier naturel n, on définit une variable aléatoire Xn à valeurs dans {0, 1, 2} par :

• [Xn = 0] : ≪ les deux personnes sont sur le même site après le nème déplacement ≫

• [Xn = 1] : ≪ les deux personnes sont sur sur deux sites adjacents après le nème déplacement ≫

• [Xn = 2] : ≪ les deux personnes sont à deux routes de distance après le nème déplacement ≫

1. Préciser X0

2. Montrer que P[Xn=2](Xn+1 = 0) =
1

4
et P[Xn=0](Xn+1 = 0) = 1

3. Déterminer les autres probabilités conditionnelles P[Xn=i](Xn+1 = j) pour (i, j) ∈ {0, 1, 2}
On représentera les résultats en reproduisant et en complétant le schéma suivant :

1 2

0

1

1/4

4. Déterminer la matrice de transition M associée à la chaine de Markov (Xn)n∈N

5. On pose, pour n ∈ N, an = P (Xn = 0), bn = P (Xn = 1) et cn = P (Xn = 2)

On note α =
5−

√
5

8
et β =

5 +
√
5

8
a. Montrer que : ∀n ∈ N, 16bn+2 − 20bn+1 + 5bn = 0

b. En déduire deux réels λ1 et λ2 tels que : ∀n ∈ N, bn = λ1α
n + λ2β

n

c. Déterminer de même deux réels µ1 et µ2 tels que : ∀n ∈ N, cn = µ1α
n + µ2β

n

d. Montrer que an −−−−→
n→+∞

1. Interpréter le résultat.

6. Montrer qu’il n’existe qu’une seule loi de probabilité invariante (état stable) associée à la chaine
(Xn)n∈N
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