
ECG 2 - mathématiques appliquées Janvier 2026

Chapitre 11 - graphes probabilistes - chaines de Markov

Objectifs d’apprentissage - A la fin de ce chapitre, je sais :
• représenter un graphe probabiliste à partir des données d’un problème �

• déterminer la matrice de transition d’une chaine de Markov �

• utiliser la formule des probabilités totales pour démontrer la relation entre deux états
consécutifs �

• détermimer les éventuels états stables d’une chaine de Markov �

• ... toujours diagonaliser des matrices afin d’étudier leurs puissances �

Dans tout le chapitre, (Xn)n∈N désigne une suite de variables aléatoires à valeurs dans N, définies
sur un même espace probabilisé (Ω,A, P ). Pour tout n ∈ N, Xn(Ω) est fini, et plus précisément
∃r ∈ N

∗, ∀n ∈ N, Xn(Ω) ⊂ [[1, r]] (pour tout n,Xn est à valeurs dans un même ensemble fini d’entiers).

1 Chaines de Markov, états, matrice de transition

Définitions : (Xn)n∈N est appelée chaine de Markov, si la loi de Xn+1 sachant X0, . . .Xn est
celle de Xn+1 sachant Xn, ce qui se traduit par :
pour tout n ∈ N, et tous entiers i0, . . . in+1,

P[Xn=in]∩[Xn−1=in−1]∩...∩[X0=i0](Xn+1 = in+1) = P[Xn=in](Xn+1 = in+1)

sous réserve que P ([Xn = in] ∩ [Xn−1 = in−1] ∩ . . . ∩ [X0 = i0]) 6= 0

on appelle état à l’instant n ou nème état de la chaine de Markov, noté Vn la matrice ligne
Vn = (P (Xn = 1) ... P (Xn = r)) (où r ∈ N

∗)

Remarques :

• en général, cette suite (Xn)n∈N sera donnée par un processus aléatoire concret (cf. exemples et
exercices). Dans ces exemples concrets, n correspond à un moment temporel.

• pour une chaine de Markov, l’état à l’instant n + 1 (les valeurs possibles de Xn+1) ne dépend que
de l’état à l’instant n

• selon la situation, on peut avoir (Xn)n∈N (le problème commence à l’instant 0) ou (Xn)n∈N∗ (le
problème commence à l’instant 1)

Définitions :

pour i, j ∈ [[1, r]]2, la probabilité PXn=i(Xn+1 = j) est appelée probabilité de transition de
l’état i à l’état j

la matrice M = (mi,j) avec mi,j = PXn=i(Xn+1 = j), est appelée matrice de transition

lorsque la matrice M ne dépend pas de n, on parle de chaine de Markov homogène

Remarques :

• pour nous, les chaines de Markov seront (presque) toujours homogènes ;

• pour des raisons pratiques, en particulier en vue d’une programmation Python, il se peut qu’on
prenne Xn(Ω) ⊂ {0, 1, . . . r} et donc d’indicer les lignes et les colonnes de la matrice de transition
à partir de 0
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Propriétés :

• d’après la formule des probabilités totales ,

∀n ∈ N, ∀j ∈ [[1, r]], P (Xn+1 = j) =

r
∑

i=1

P (Xn = i)P[Xn=i](Xn+1 = j)

• matriciellement cela s’écrit ∀n ∈ N, Vn+1 = VnM

Remarques :

• le système complet d’événements est (Xn = i)i∈[[1,r]] = ((Xn = 1), (Xn = 2), . . . , (Xn = r)) (à un
instant n, ce sont toutes les valeurs possibles pour Xn)

• on écrit aussi P (Xn+1 = j) =
r

∑

i=1

P (Xn = i)mi,j où M = (mi,j)(i,j)∈[[1,r]]2

Définition :

pour une chaine de Markov homogène à valeurs dans [[1, r]], le graphe orienté pondéré à r sommets,
numérotés de 1 à r, contenant une arête pondérée par mi,j entre i et j si mi,j > 0 (où mi,j =
P[Xn=i](Xn+1 = j)) est appelé graphe probabiliste

Exemple : une puce se déplace aléatoirement sur trois sommets, à chaque déplacement,

• soit elle reste sur le même sommet avec une probabilité
1

2
• soit elle change de sommet avec équiprobabilité entre les sommets restants.

alors la matrice de transition est :
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et le graphe probabiliste :

2 3

1

1/2

1/2 1/2

1/41/4

1/4

B La matrice de transition peut être déterminée à l’aide du graphe ou des probabilités condi-
tionnelles (de transition) mais c’est la formule des probabilités totales qui démontre le lien
Vn+1 = VnM

Quelques résultats sur les matrices stochastiques

Les résultats de cette section, ne sont pas au programme, mais bons à connaitre.

Une matrice carrée A = (ai,j) d’ordre r sera dite stochastique si :

• tous les coefficients sont positifs : ∀(i, j) ∈ [[1, r]]2, ai,j > 0

• la somme des éléments de chaque ligne vaut 1 : ∀i ∈ [[1, r]],
r

∑

j=1

ai,j = 1

Dans ce chapitre (chaines de Markov), les matrices de transition sont toujours des matrices stochas-
tiques car ∀i ∈ [[1, r]],
r

∑

j=1

P[Xn=i](Xn+1 = j) = P[Xn=i](Xn+1 = 1) + P[Xn=i](Xn+1 = 2) + · · ·+ P[Xn=i](Xn+1 = r) = 1
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i.e. pour chaque valeur i de Xn (soit la ligne de i de la matrice), l’ensemble des valeurs pour l’instant
suivant vaut 1 (i.e. la somme des colonnes).

Des résultats classiques sur les matrices stochastiques (les deux premiers sont faciles à retrouver).

Si A est une matrice stochastique d’ordre r, alors :

• 1 ∈ Sp(A)

• le vecteur colonne t(1, . . . 1) est un vecteur propre de A associé à la valeur propre 1

• Sp(A) ⊂ [−1, 1]. Autrement dit : λ ∈ Sp(A) =⇒ |λ| 6 1

2 Etat stable

On considère une chaine de Markov homogène (Xn)n∈N, telle que Xn(Ω) = [[1, r]]
on note toujours M = (mi,j) la matrice de transition associée

et Vn =
(

P (Xn = 1) . . . P (Xn = r)
)

qui vérifie donc ∀n ∈ N, Vn+1 = VnM

Définition :

un état V (i.e. une matrice ligne) V =
(

v1 . . . vr

)

est appelé état stable s’il vérifie :

(i) ∀i ∈ [[1, r]], vi > 0 et
r

∑

i=1

vi = 1 (i.e. V définit une loi de probabilité)

(ii) V = VM

Remarques :

• un état stable est donc d’un état théorique où la loi de resterait constante (ce qui ne veut pas
dire qu’il n’y a pas de déplacement entre les sommets), on parle également de loi de probabilité
invariante ;

• V est un état stable ⇔ tV est un vecteur propre de la matrice de transition transposée tM
car V = VM ⇔ tV = t(VM) = tM tV

• si les composantes de Vn ont une limite quand n → +∞, alors la matrice dont les coefficients sont
les limites définit un état stable

3 L’étude classique d’une chaine de Markov

Les finalités de ces études, qui font l’objet de problèmes entiers sont :

• le calcul de Vn en fonction de n

• le calcul de E(Vn) en fonction de n

• l’évolution de Vn ou de E(Vn) en fonction de n, en particulier quand n → +∞

Avant cela, il faut :

• déterminer la matrice de transition avec les probabilités conditionnelles

• établir le lien Vn+1 = VnM avec la formule des probabilités totales

• diagonaliser la matrice M

• montrer que Vn = V0M
n (ou Vn = V1M

n−1) et expliciter M en montrant que Mn = PDnP−1
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On récapitule avec la marche aléatoire sur les sommets d’un polygone

Un mobile se déplace sur les sommets d’un polygone régulier à r côtés numérotés 1, 2, . . . , r
Lorsqu’il est sur un sommet à l’étape n, il passe à un des deux sommets adjacents à l’étape n + 1
avec équiprobabilité.
Pour n ∈ N

∗, on note Xn la position du mobile (état) au bout de k étapes, avec X0 = 1

Pour l’exemple, on choisit r = 3 (triangle).

On a ainsi : ∀i ∈ {1, 2, 3}, ∀j ∈ {1, 2, 3}, j 6= i P[Xn=i](Xn+1 = j) =
1

2

Les probabilités mi,j = P[Xn=i](Xn+1 = j) sont les probabilités de transition.

En notant mi,j = PXn=i(Xn+1 = j), on a, grâce à la formule des probabilités totales, la relation :

∀j ∈ [[1, 3]], P (Xn+1 = j) =

3
∑

i=1

mi,jP (Xn = i) (1)

La matrice M = (mi,j)16i,j63 =


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est la matrice de transition

La matrice de transition contient en ligne i et colonne j la probabilité de passer de l’état i à l’état j

On remarquera que la somme des éléments de chaque ligne de M vaut 1, c’est un exemple de matrice
stochastique.

En notant Vn =
(

P (Xn = 1) P (Xn = 2) P (Xn = 3)
)

, les relations de (1) se traduisent matriciel-

lement par :

∀n ∈ N, Vn+1 = VnM

Puis par récurrence, on obtient, ∀n ∈ N, Vn = V0M
n

Le schéma d’évolution de l’état n à l’état n+ 1 est représenté par un graphe probabiliste :
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