
ECG 2 - mathématiques appliquées Pour le 9 février 2026

Devoir en temps libre n̊ 7 bis

Sujet au choix : si vous choisissez ce sujet (sujet type ESSEC - HEC), l’objectif n’est pas de tout
faire.

I - Distance en variations

Soit X et Y deux variables aléatoires à valeurs dans N

1. Montrer que la série
∑

k>0

|P (X = k)− P (Y = k)| converge.

On définit alors la distance en variations d(X, Y ) entre X et Y par :

d(X, Y ) =
1

2

+∞
∑

k=0

|P (X = k)− P (Y = k)|

2. Montrer les propriétés suivantes :

a. 0 6 d(X, Y ) 6 1

b. d(X, Y ) = 0 si, et seulement si : X et Y ont même loi.

c. Montrer que, pour trois variables X, Y, Z à valeurs dans N :

d(X, Y ) 6 d(X,Z) + d(Y, Z)

d. Soit (Xn)n∈N une suite de variables aléatoires à valeurs dans [[0, N ]] avec N ∈ N fixé.
Montrer que (Xn)n∈N converge en loi vers X si, et seulement si : lim

n→+∞

d (Xn, X) = 0

Précision : dans le cas où X(Ω) = N, on dit que (Xn)n∈N converge en loi vers X si ;
∀x ∈ X(Ω), lim

n→+∞

P (Xn = x) = P (X = x)

II - Convergence d’une chaine de Markov

Dans cette partie, on considère une chaine de Markov (Xn)n∈N d’ensemble d’états fini {1, 2, . . . r} où
r est un entier supérieur ou égal à 2
On notera Pr l’ensemble des vecteurs lignes V = (v1 v2 . . . vr) ∈ M1,r(R) vérifiant :
• ∀i ∈ [[1, r]], vi > 0

•

r
∑

i=1

vi = 1

On note A la matrice de transition de la chaine (Xn)n∈N et G le graphe probabiliste associé à cette
chaine.
On dit que (Xn)n∈N est irréductible si G est connexe.

On note, pour (i, j) ∈ [[1, r]]2, ai,j l’élément en ligne i et colonne j de A, et a
(k)
i,j l’élément en ligne i et

colonne j de la matrice Ak pour tout k ∈ N.
On fera attention à ne pas confondre a

(k)
i,j et aki,j, ce dernier désignant la puissance kème du nombre

ai,j
On notera Un = (P (Xn = 1) P (Xn = 2) . . . P (Xn = r)) le vecteur ligne définisssant la loi de
Xn pour n ∈ N

On remarquera que Un ∈ Pr pour tout n ∈ N
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L’objectif de cette partie est de montrer, sous une condition suffisante portant sur la matrice A,
qu’il existe un unique état stable pour la chaine de Markov, c’est-à-dire un unique vecteur ligne
π = (π1 . . . πr) ∈ M1,r(R) vérifiant :

(H1) ∀i ∈ [[1, r]], πi > 0

(H2)
r
∑

i=1

πi = 1

(H3) π = πA

et, en considérant une variable X à valeurs dans [[1, n]] dont la loi est donnée par π, de montrer que
(Xn)n∈N converge en loi vers X

La loi donnée par π est appelée loi de probabilité invariante ; on dira en abrégé que π est une loi de
probabilité invariante.

On admettra le résultat suivant, déductible de la définition d’une chaine de Markov :
Pour n ∈ N, m ∈ N

∗ et tous entiers i, j, k de [[1, r]] :

P[Xn=i]∩[Xn+1=j] (Xn+m = k) = P[Xn+1=j] (Xn+m = k)

1. Quelques résultats sur les chaines de Markov.

a. Montrer que le vecteur colonne V =

















1

1
...

1

















∈ Mr,1(R) est un vecteur propre de A associé

à la valeur propre 1

b. Soit W =

















w1

w2

...

wr

















∈ Mr,1(R) un vecteur propre de A associé à une valeur propre λ ∈ R

Soit i0 ∈ [[1, r]] l’indice tel que |wi0 | = max {|wi| ; i ∈ [[1, r]]}.

a. Justifier que : |wi0 | > 0

b. En considérant la ligne i0 dans le produit matriciel AW , montrer que : |λ| 6 1

Ainsi, toutes les valeurs propres (réelles) de la matrice A sont dans [−1, 1]

2. Montrer par récurrence sur k ∈ N que, pour tout n ∈ N :

∀(i, j) ∈ [[1, r]]2, P[Xn=i] (Xn+k = j) = a
(k)
i,j

Justifier alors que l’on peut passer de l’état i à l’état j si et seulement s’il existe un entier k > 0
tel que a

(k)
i,j > 0

3. Montrer que, s’il existe un entier k > 0 tel que Ak a tous ses éléments strictement positifs, alors
la chaine de Markov (Xn)n∈N est irréductible.
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On considère à présent la condition suivante, appelée condition de Doeblin :
Il existe un entier ℓ > 0, un réel c > 0 et un élément µ = (µ1 . . . µn) ∈ Pr tel que :

∀j ∈ {1, . . . r}, ∀i ∈ {1, . . . r}, a
(ℓ)
i,j > cµj

4. Un exemple.

On considère la chaine de Markov de matrice de transition A =















1

2

1

2
0

1

4

1

2

1

4

0
1

2

1

2















a. Déterminer son graphe probabiliste.

b. Calculer A2. En déduire que A satisfait la condition de Doeblin avec µ =

(

1

6

2

3

1

6

)

c. Montrer que la chaine admet un unique état stable et le déterminer.

d. Montrer que Sp(A) =

{

0,
1

2
, 1

}

5. On suppose dans cette question que Al a tous ses éléments strictements positifs pour une valeur
l ∈ N

∗ donnée.

On pose, pour j ∈ [[1, r]] :

• mj = min
(

a
(l)
1,j, . . . , a

(l)
r,j

)

• m =

r
∑

j=1

mj

• µj =
mj

m
• µ =

(

µ1 µ2 . . . µr

)

∈ M1,r(R)

Justifier que : µ ∈ Pr et que ∀(i, j) ∈ {1, . . . r}, a
(l)
i,j > mµj

Ceci montre que A satisfait la condition de Doeblin.
On pourra vérifier que le vecteur µ ainsi défini est bien celui utilisé dans la question 4b avec

m =
3

4

On suppose pour ce qui suit, et pour simplifier, que A satisfait la condition de Doeblin avec
ℓ = 1, c’est-à-dire qu’il existe c > 0 et µ ∈ Pr tels que :

∀(i, j) ∈ {1, . . . r}2, ai,j > cµj

6. Montrer que c 6 1 (considérer la somme sur j).

7. a. Pour n ∈ N
∗, rappeler la relation entre Un+1, Un et A. En déduire ∀n ∈ N

∗, ∀j ∈ [[1, r]] :

P (Xn+1 = j)− P (Xn = j) =
r
∑

k=1

(P (Xn = k)− P (Xn−1 = k)) (ak,j − cµj)
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b. Déduire de la question précédente que : pour n ∈ N
∗ :

d (Xn+1, Xn) 6
1

2

r
∑

k=1

(

|P (Xn = k)− P (Xn−1 = k)|
r
∑

j=1

(ak,j − cµj)

)

puis que :

d (Xn+1, Xn) 6 (1− c)d (Xn, Xn−1)

c. En déduire par récurrence que :

∀n ∈ N, d (Xn+1, Xn) 6 (1− c)nd (X1, X0)

d. On pose un(k) = P (Xn = k) pour k ∈ [[1, r]] fixé.

Justifier qu’il existe une constante K > 0 telle que :

∀n ∈ N, |un+1(k)− un(k)| 6 K(1− c)n

en déduire que
∑

n>0

(un+1(k)− un(k)) est une série convergente, puis que (un(k))n>0 est

une suite convergente.

e. Conclure que (Xn)n∈N converge en loi vers une variable aléatoire X

On notera π = (P (X = 1) P (X = 2) . . . P (X = r)) le vecteur de Pr définissant la loi de X

8. Montrer que π = πA

Ceci signifie que π est une loi de probabilité invariante.
La conséquence des questions 7 et 8 est que, sous la condition de Doeblin, la chaine de Markov
(Xn)n∈N convergera toujours vers X quel que soit l’état initial, c’est-à-dire la loi de X0 (donnée
par U0).

9. Montrer que π est l’unique loi de probabilité invariante pour la chaine (Xn)n∈N

10. Supposons que −1 ∈ Sp(A) et soit W un vecteur propre de A associé à la valeur propre −1

a. Justifier qu’il existe un élément U0 ∈ Pr tel que U0W 6= 0

b. Soit (Xn)n∈N la chaine de Markov de matrice A telle que la loi de Xn soit donnée par
Un ∈ Pr pour tout n ∈ N (et donc telle que X0 soit de loi U0).
Montrer que : ∀n ∈ N, U2nW = U0W et U2n+1W = −U0W

c. En déduire que (Xn)n∈N ne peut pas converger en loi.

d. Conclure que −1 /∈ Sp(A)

Les résultats des questions 7, 8, 9 et 10 restent valables pour une matrice vérifiant la condition
de Doeblin avec ℓ ∈ N

∗
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