Exercices - Chapitre 2 - Révisions et compléments d'algèbre linéaire

Exercice 1

Soit $n \in \mathbb{N}^*$. On note $\mathscr{B} = [1, X - 1, (X - 1)^2, \dots, (X - 1)^n]$.

- 1. Justifier que \mathscr{B} est une base de $\mathbb{R}_n[X]$.
- 2. Soit $k \in [[0,n]]$. Déterminer les coordonnées de X^k dans cette base \mathscr{B} .
- 3. Déterminer la matrice de passage de la base canonique $\mathscr C$ de $\mathbb R_n[X]$ vers la base $\mathscr B$, puis la matrice de passage de la base $\mathscr B$ vers la base $\mathscr C$.

Exercice 2

Noyau et image

Les questions suivantes sont indépendantes.

Soit E et F deux \mathbb{R} -espaces vectoriels.

- 1. Soit $f \in \mathcal{L}(E, F)$.
 - (a) Que signifie Ker(f) = E? Que signifie $Ker(f) = \{0_E\}$?
 - (b) Que signifie Im(f) = F? Que signifie $Im(f) = \{0_F\}$?
- 2. Soient $f \in \mathcal{L}(E)$ et $g \in \mathcal{L}(E)$. Montrer que $\mathrm{Im}(gof) \subset \mathrm{Im}(g)$ et que $\mathrm{Ker}(f) \subset \mathrm{Ker}(gof)$.
- 3. Soient $f \in \mathcal{L}(E)$ et $g \in \mathcal{L}(E)$ tels que $g \circ f = O_{\mathcal{L}(E)}$. Montrer que $\operatorname{Im}(f) \subset \operatorname{Ker}(g)$
- 4. Soit $f \in \mathcal{L}(E)$ tel que $f \circ f = 2f$. Montrer que $\ker(f 2Id_E) = \operatorname{Im}(f)$.
- 5. Soit E un espace vectoriel de dimension 2n. Soit $f \in \mathcal{L}(E)$ tel que $f^2 = O_{\mathcal{L}(E)}$ et rg(f) = n. Montrer que Im(f) = Ker(f).

Exercice 3

Polynômes de Lagrange

Dans cet exercice, n désigne un entier naturel non nul.

On considère n+1 réels deux à deux distincts notés x_0, x_1, \ldots, x_n

On note, pour tout $k \in [[0, n]], P_k$ le polynôme défini par

$$P_{k} = \prod_{0 \le j \le n, \ j \ne k} \frac{1}{x_{k} - x_{j}} (X - x_{j})$$

- 1. On suppose que n=2 dans cette question. Déterminer les polynômes P_0 , P_1 , et P_2 .
- 2. On revient au cas général. Préciser le degré du polynôme P_k pour tout entier $k \in [[0,n]]$.
- 3. (a) Pour tout $(k,i) \in [[0,n]]^2$, calculer $P_k(x_i)$. (On distinguera les cas où i=k et $i \neq k$).
 - (b) En déduire que la famille $[P_0, P_1,, P_n]$ est une base de $\mathbb{R}_n[X]$. On la notera \mathscr{B}' .
- 4. Soit $Q \in \mathbb{R}_n[X]$ et $R = Q \sum_{k=0}^n Q(x_k) P_k$.
 - (a) Calculer, pour tout $i \in [[0, n]], R(x_i)$.
 - (b) En déduire que R est le polynôme nul.
 - (c) Préciser les coordonnées du polynôme Q dans la base \mathscr{B}' .
- 5. En déduire la matrice de passage de la base (P_0, P_1, \dots, P_n) de $\mathbb{R}_n[X]$ vers la base canonique de $\mathbb{R}_n[X]$.
- 6. On note φ l'application

$$\varphi: \mathbb{R}_n[X] \to \mathbb{R}^{n+1}$$

$$P \mapsto \varphi(P) = (P(x_0), P(x_1), P(x_2), \dots, P(x_n))$$

(a) Montrer que φ est une application linéaire de $\mathbb{R}_n[X]$ vers \mathbb{R}^{n+1} .

- (b) Montrer que φ est un isomorphisme.
- (c) Déterminer la matrice de φ dans les bases canoniques de $\mathbb{R}_n[X]$ et \mathbb{R}^{n+1} .
- (d) Déterminer la matrice de φ dans la base \mathscr{B}' de $\mathbb{R}_n[X]$ et dans la base canonique de \mathbb{R}^{n+1} .

Exercice 4

On note: $F = \{(x, y, z) \in \mathbb{R}^3 \text{ tels que } x - 3y + 4z = 0\}$ et G = Vect((1, 0, 0))

- 1. Justifier que F et G sont des sous-espaces vectoriels de \mathbb{R}^3 et déterminer leur dimension.
- 2. Montrer que F et G sont des sous espaces vectoriels supplémentaires dans \mathbb{R}^3 .

Exercice 5

On note $F = \{(a, b, c, d) \in \mathbb{R}^4 \text{ tels que } a - b - c = 0 \text{ et } a - b - d = 0\}$ et G = Vect((1, 1, 1, 1), (1, 0, 1, 0))

- 1. Justifier que F et G sont des sous-espaces vectoriels de \mathbb{R}^4 et préciser leur dimension.
- 2. Montrer que F et G sont des sous espaces vectoriels supplémentaires dans \mathbb{R}^4 .

Exercice 6

Fonctions paires et impaires

On note F l'ensemble des fonctions paires d'une variable réelle.

On note G l'ensemble des fonctions impaires d'une variable réelle.

- 1. Montrer que F et G sont deux espaces vectoriels.
- 2. Montrer que F et G sont deux sous-espaces vectoriels supplémentaires dans l'espace E des fonctions d'une variable réelle.

Exercice 7

Matrices symétriques et antisymétriques

On note F l'ensemble des matrices symétriques de $\mathcal{M}_n(\mathbb{R})$ et G l'ensemble des matrices anti-symétriques de $\mathcal{M}_n(\mathbb{R})$

- 1. On suppose dans cette question que p=2.
 - (a) Montrer que F et G sont deux espaces vectoriels et déterminer leur dimension.
 - (b) En déduire qu'ils sont supplémentaires dans $\mathcal{M}_2(\mathbb{R})$.
- 2. Retour au cas général : $p \in \mathbb{N}^*$.
 - (a) Montrer que F et G sont des espaces vectoriels.
 - (b) Justifier que F et G sont supplémentaires dans $\mathcal{M}_{p}(\mathbb{R})$.

Exercice 8

Polynômes

Soit n un entier naturel supérieur ou égal à 1.

On considère l'application f définie sur $\mathbb{R}_{2n}[X]$ par: $\forall P \in \mathbb{R}_{2n}[X], f(P)(X) = \frac{1}{2}(P(X) - P(-X))$

- 1. Montrer que f est un endomorphisme de $\mathbb{R}_{2n}[X]$.
- 2. Déterminer la matrice de f dans la base canonique de $\mathbb{R}_{2n}[X]$.
- 3. Déterminer une base du noyau de f et une base de l'image de f.
- 4. L'endomorphisme f est-il bijectif?
- 5. Montrer que f est un projecteur.
- 6. Justifier que $Ker(f) \bigoplus Im(f) = \mathbb{R}_{2n}[X]$

Exercice 9

Déterminer le rang des matrices suivantes et le cas échéant, une base de leur noyau. Préciser si ces matrices sont inversibles.

$$A = \left(\begin{array}{ccc} 2 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 2 \end{array}\right), \quad B = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array}\right), \quad M = \left(\begin{array}{ccc} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{array}\right), \quad H = \left(\begin{array}{ccc} 1 & 2 & 2 \\ 1 & 2 & 2 \\ 1 & 2 & 2 \end{array}\right)$$

Exercice 10

On considère l'espace \mathbb{R}^3 muni de sa base canonique \mathcal{B} .

Soit
$$f \in \mathcal{L}(\mathbb{R}^3)$$
 une application dont la matrice dans la base canonique est $A = \begin{pmatrix} 9 & -6 & 10 \\ -5 & 2 & -5 \\ -12 & 6 & -13 \end{pmatrix}$.

On note $u_1 = (2, -1, -2)$, $u_2 = (1, 0, -1)$ et $u_3 = (-2, 1, 3)$.

- 1. Montrer que la famille (u_1, u_2, u_3) est une base de \mathbb{R}^3 . On la note \mathcal{B}' .
- 2. Déterminer la matrice de passage de \mathcal{B} vers \mathcal{B}' .
- 3. Déterminer la matrice de f dans la base \mathcal{B}' .

Exercice 11

Soit f un endomorphisme de \mathbb{R}^2 définie par f(x,y) = (x-y,x+y). Soit $\mathcal{B} = ((1,2),(1,1))$ et $\mathcal{B}' = ((1,1),(1,-1))$ deux familles de \mathbb{R}^2 .

- 1. Justifier que \mathcal{B} et \mathcal{B}' sont des bases de \mathbb{R}^2
- 2. Déterminer la matrice M de f dans la base \mathcal{B} , puis la matrice N de f dans la base \mathcal{B}'
- 3. Déterminer la matrice de passage P de \mathcal{B} vers \mathcal{B}'
- 4. Justifier que P est inversible et déterminer P^{-1} .
- 5. Déterminer une relation entre les matrices P, P^{-1} et N.

Exercice 12 Soit A la matrice de $\mathcal{M}_3(\mathbb{R})$ telle que $A = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$.

- 1. Déterminer un polynôme annulateur P de A.
- 2. En déduire que A est inversible et calculer son inverse.
- 3. Soit n un entier naturel. Déterminer le reste de la division euclidienne de X^n par le polynôme P.
- 4. En déduire pour tout entier n, A^n .

Exercice 13

On note: $\forall M \in \mathcal{M}_2(\mathbb{R}), f(M) = M + {}^tM$

- 1. Justifier que f est un endomorphisme de $\mathcal{M}_2(\mathbb{R})$
- 2. Déterminer le rang de f.
- 3. Déterminer une base du noyau de f.
- 4. Montrer que le noyau et l'image de f sont des sous espaces supplémentaires dans $\mathcal{M}_2(\mathbb{R})$.
- 5. Montrer que $X^2 2X$ est un polynôme annulateur de l'endomorphisme f.
- 6. Justifier que $\operatorname{Im}(f) = \operatorname{Ker}(f 2Id)$
- 7. En déduire qu'il existe une base de $\mathcal{M}_2(\mathbb{R})$ dans laquelle la matrice de f est diagonale.

Soit E un espace vectoriel de dimension 3 et $\mathcal{B} = (e_1, e_2, e_3)$ une base de E.

Soit f un endomorphisme de E dont la matrice dans la base \mathcal{B} est $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 3 \\ \vdots & \vdots & \vdots \end{pmatrix}$

- 1. Déterminer le rang, et le cas échéant une base du novau et de l'image de f.
- 2. On note $e'_1 = e_1 + e_2 + e_3$, $e'_2 = e_1 + e_3$ et $e'_3 = 3e_1 2e_2 e_3$.
 - (a) Montrer que $\mathcal{B}' = (e'_1, e'_2, e'_3)$ est une base de E.
 - (b) Donner la matrice de f dans la base \mathcal{B}' .
 - (c) Que peut-on dire de $H = Vect(e'_1, e'_2)$ et de la restriction de f à l'espace vectoriel engendré par e'_1 et e'_2 ?

Soit n un entier naturel supérieur ou égal à 4.

Soit G l'ensemble des polynômes à coefficients réels de degré inférieur ou égal à n dont 1 et -1 sont des racines d'ordre supérieur ou égal à 2.

- 1. Montrer que G est un sous-espace vectoriel de $\mathbb{R}_n[X]$, en donner une base.
- 2. Montrer que G et $\mathbb{R}_3[X]$ sont supplémentaires dans $\mathbb{R}_n[X]$.

Soit E un \mathbb{R} -espace vectoriel de dimension $n \geq 3$, de base $\mathcal{B} = (e_1, e_2, \dots, e_n)$.

Pour
$$k \in \{1, 2, ..., n\}$$
, on pose $f_k = \left(\sum_{i=1}^{n} e_i\right) - e_k$

- 1. Montrer que la famille $\mathcal{B}_1 = (f_1, f_2, \dots, f_n)$ est une base de E.
- 2. Déterminer la matrice de passage P de \mathcal{B} vers la base \mathcal{B}_1 de E. Déterminer la matrice P^{-1} .

Pour $k \in \mathbb{N}$, on note f_k les fonctions définies sur \mathbb{R} par $f_k(x) = x^k \exp(x)$ pour tout x réel.

On note E_k l'espace vectoriel engendré par f_0, f_1, \dots, f_k .

On considère l'application définie, pour tout $f \in E_3$, par $\Phi(f) = f''' - 2f'' + f'$.

- 1. Montrer que $\mathcal{B}_k = (f_0, f_1, \cdots, f_k)$ est une base de E_k .
- 2. Montrer que Φ est un endomorphisme de E_3
- 3. Déterminer la matrice de Φ dans la base \mathcal{B}_3 de E_3

Exercice 18

Soit n un entier naturel non nul fixé.

Soit $E = \mathbb{R}_n[x]$, l'espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à n.

On définit l'application Δ qui à tout polynôme $P \in E$ associe le polynôme $\Delta(P)$ défini par :

$$\forall x \in \mathbb{R}, \ \Delta(P)(x) = P(x+1) - P(x)$$

On note $\mathcal{C} = (P_0, P_1, \dots, P_n)$ la base canonique de E, où $\forall x \in \mathbb{R}, P_k(x) = x^k$

- 1. Montrer que Δ est un endomorphisme de E.
- 2. (a) Soit P un élément de $Ker(\Delta)$. Montrer que P-P(0) admet une infinité de racines. En déduire que P est un polynôme constant.
 - (b) Déterminer le noyau de Δ .
 - (c) L'endomorphisme Δ est-il bijectif?
- 3. (a) Déterminer l'image par Δ du polynôme constant $P_0 = 1$. Déterminer $\Delta(P_k)$ pour tout entier k de [[1,n]].
 - (b) En déduire la matrice de Δ dans la base C.
 - (c) Donner une base de l'image de Δ .
- 4. $\operatorname{Ker}(\Delta)$ et $\operatorname{Im}(\Delta)$ sont-ils supplémentaires dans $\mathbb{R}_n[x]$?
- 5. Pour $k \in \{1, \ldots, n\}$, on pose : $P_k(X) = \frac{1}{12}X(X-1)(X-2)\ldots(X-k+1)$ et $P_0(X) = 1$.
 - (a) Montrer que $(P_k)_{0 \le k \le n}$ est une base de E.
 - (b) Ecrire la matrice de Δ dans cette base

Exercice 19

Soit E un espace vectoriel de dimension 4. On note id_E et $0_{\mathscr{L}(E)}$ respectivement, l'endomorphisme identité et l'endomorphisme nul de E, et pour tout endomorphisme v de E, on pose $v^0 = id_E$ et pour tout k de \mathbb{N}^* , $v^k = v \circ v^{k-1}$. Soient u et g deux endomorphîsmes de E tels que : $u^4 = 0_{\mathscr{L}(E)}$, $u^3 \neq 0_{\mathscr{L}(E)}$ et $g = id_E + u + u^2 + u^3$.

- 1. Soit x un vecteur de E tel que $x \notin Ker(u^3)$. Montrer que la famille $(x, u(x), u^2(x), u^3(x))$ est une base de E. On la note \mathscr{B} .
- 2. Déterminer la matrice de g dans cette base \mathcal{B} . En déduire que g est un automorphisme de E.
- 3. Calculer $qo(id_E u)$. Déterminer l'automorphisme réciproque q^{-1} en fonction de u.

Exercice 20

- 1. Soit $u \in \mathcal{L}(E)$ tel que $u^2 \neq 0_{\mathcal{L}(E)}$ et $u^3 = 0_{\mathcal{L}(E)}$. Soit $x \in E$ tel que $u^2(x) \neq 0$. Montrer que $(x, u(x), u^2(x))$ est libre.
- 2. **Généralisation**: Soit E un espace vectoriel et f un endomorphisme de E.

 On suppose qu'il existe un entier naturel p non nul tel que $f^p \neq \mathcal{O}_{\mathscr{L}(E)}$ et $f^{p+1} = \mathcal{O}_{\mathscr{L}(E)}$.
 - (a) Montrer qu'il existe x dans E tel que la famille $(x, f(x), f^2(x), \dots, f^p(x))$ soit libre.
 - (b) Montrer que l'espace vectoriel $Vect(x, f(x), f^2(x), \dots, f^p(x))$ est stable par f.
 - (c) Montrer que la famille $(Id_E, f, f^2, \ldots, f^p)$ est une famille libre de $\mathcal{L}(E)$.
- 3. Montrer que si E est de dimension finie n et si $f^{n+1} = \mathcal{O}_{\mathscr{L}(E)}$, alors $f^n = \mathcal{O}_{\mathscr{L}(E)}$.

Exercice 21

Soit f un endomorphisme de \mathbb{R}^n .

- 1. Soit λ un réel. Montrer que les sous-espaces stables par f sont exactement ceux qui sont stables par $f \lambda Id_{\mathbb{R}^n}$.
- 2. Quel lien y a-t-il entre les sous-espaces vectoriels de \mathbb{R}^n stables par f et ceux qui sont stable par f^2 ?
- 3. On note (e_1, e_2, \ldots, e_n) la base canonique de \mathbb{R}^n .
 - (a) Soit $p \neq q$. Montrer que si $Vect(e_p)$, $Vect(e_q)$ et $Vect(e_p + e_q)$ sont stables par f alors il existe $\lambda \in \mathbb{R}$ tel que : $f(e_p) = \lambda e_p$ et $f(e_q) = \lambda e_q$.

5

(b) Que dire des endomorphismes de \mathbb{R}^n qui laissent stables toutes les droites vectorielles?

Exercice 22

Novaux itérés

Soit E un \mathbb{R} -espace vectoriel. Soit $f \in \mathcal{L}(E)$.

- 1. Soit p un entier naturel non nul.
 - (a) Montrer que $Ker(f^p) \subset Ker(f^{p+1})$.
 - (b) Montrer que $\operatorname{Im}(f^{p+1}) \subset \operatorname{Im}(f^p)$.
- 2. (a) Montrer que $\operatorname{Ker}(f) = \operatorname{Ker}(f^2) \iff \operatorname{Ker}(f) \cap \operatorname{Im}(f) = \{O_E\}.$
 - (b) En déduire que si E est un espace vectoriel de dimension finie alors : $\operatorname{Ker}(f) = \operatorname{Ker}(f^2) \iff \operatorname{Ker}(f) \bigoplus \operatorname{Im}(f) = E.$
- 3. Montrer que : $\operatorname{Im}(f) = \operatorname{Im}(f^2) \iff \operatorname{Ker}(f) + \operatorname{Im}(f) = E$

Exercice 23

Soit E un e.v. sur \mathbb{R} de dimension finie non nulle, et $f \in \mathcal{L}(E)$ telle que $f^3 = 3f^2 - 2f$.

1. Prouver par analyse-synthèse que

$$Ker(f) \oplus Ker(f - Id_E) \oplus Ker(f - 2Id_E) = E$$

- 2. Justifier qu'il existe une base \mathcal{B} de E dans laquelle $Mat_{\mathcal{B}}(f)$ est diagonale.
- 3. On considère les trois polynômes

$$P_0 = (X-1)(X-2)$$
 $P_1 = X(X-2)$ $P_2 = X(X-1)$

- (a) Justifier que $\mathcal{D} = (P_0, P_1, P_2)$ est une base de $\mathbb{R}_2[X]$
- (b) Déterminer les coordonnées de 1 dans la base \mathcal{D} .
- (c) Soit $x \in E$. Justifier que pour j = 0, j = 1, j = 2, on a $P_j(f)(x) \in Ker(f jId_E)$, puis que $x \in \sum_{j=0}^{2} Ker(f jId_E)$.
- (d) Reprouver finalement que $Ker(f) \oplus Ker(f-Id_E) \oplus Ker(f-2Id_E) = E$