Chapitre 4 - Intégrales impropres

I. Nature et valeur d'une intégrale impropre

I.1) Intégrale impropre à droite

Dans cette partie, a désigne un réel fixé et b désigne soit un réel strictement supérieur à a, soit $+\infty$.

Définition I.1

Soit f une fonction **continue** sur un intervalle [a, b[mais pas en b.

L'intégrale $\int_a^b f(t)dt$ est alors dite **impropre en** b.

On dit que l'intégrale $\int_a^b f(t)dt$ converge si la fonction $F: x \mapsto \int_a^x f(t)dt$ admet une limite finie quand $x \to b$.

On note alors

$$\int_{a}^{b} f(t)dt = \lim_{x \to b} \int_{a}^{x} f(t)dt$$

Si l'intégrale $\int_a^b f(t)dt$ ne converge pas, on dit qu'elle **diverge** (ou aussi que cette intégrale n'existe pas).

Remarque

Déterminer la **nature** d'une intégrale impropre, c'est dire si elle est convergente ou divergente.

Exercice 1

Déterminer la nature des intégrales impropres suivantes et calculer leur valeur si elles sont convergentes.

$$I_1 = \int_0^1 \frac{1}{\sqrt{1-t}} dt; \quad I_2 = \int_2^{+\infty} \frac{1}{t \ln(t)} dt; \quad I_3 = \int_1^{+\infty} \frac{1}{t} dt; \quad I_4 = \int_0^{+\infty} \frac{1}{1+t^2} dt; \quad I_5 = \int_1^{+\infty} \frac{1}{x(x+1)} dx$$

I.2) Intégrale impropre à gauche

Dans cette partie, b désigne un réel fixé et a désigne soit un réel strictement inférieur à a, soit $-\infty$.

Définition I.2

Soit f une fonction **continue** sur un intervalle [a, b] mais pas en a.

L'intégrale $\int_a^b f(t)dt$ est alors dite **impropre en** a.

On dit que l'intégrale $\int_a^b f(t)dt$ converge si la fonction $F: x \mapsto \int_x^b f(t)dt$ admet une limite finie quand $x \to a$.

On note alors

$$\int_{a}^{b} f(t)dt = \lim_{x \to a} \int_{x}^{b} f(t)dt$$

Si l'intégrale $\int_a^b f(t)dt$ ne converge pas, on dit qu'elle **diverge** (ou aussi que cette intégrale n'existe pas).

Exercice 2

Déterminer la nature des intégrales impropres suivantes et calculer leur valeur si elles sont convergentes.

$$J_1 = \int_0^{\frac{\pi}{2}} \frac{\cos(t)}{\sin(t)} dt, \quad J_2 = \int_0^1 \frac{1}{\sqrt{t}} dt, \quad J_3 = \int_0^1 t^3 \ln(t) dt$$

I.3) Intégrale doublement impropre

Cette fois, a désigne un réel ou $-\infty$ et b désigne un réel strictement plus grand que a ou $+\infty$.

Définition L3

Soit f une fonction **continue** sur un intervalle a, b mais pas en a ni en b.

L'intégrale $\int_a^b f(t)dt$ est alors dite doublement impropre en a et en b.

On dit que $\int_a^b f(t)dt$ converge s'il existe un réel $c \in]a,b[$ tel que les deux intégrales $\int_a^c f(t)dt$ et $\int_c^b f(t)dt$ convergent. On note alors

$$\int_{a}^{b} f(t)dt = \int_{a}^{c} f(t)dt + \int_{c}^{b} f(t)dt$$

Avec les mêmes notations, on a le résultat suivant :

Proposition I.1

Si $\int_a^b f(t)dt$ converge, alors pour tout $c \in]a,b[$, les intégrales $\int_a^c f(t)dt$ et $\int_c^b f(t)dt$ sont convergentes et

$$\int_{a}^{b} f(t)dt = \int_{a}^{c} f(t)dt + \int_{c}^{b} f(t)dt$$

Exercice 3

Déterminer la nature des intégrales impropres suivantes et préciser leur valeur éventuelle

$$K_1 = \int_0^{+\infty} \frac{1}{t^3} dt$$
, $K_2 = \int_{-\infty}^{+\infty} \frac{1}{1+t^2} dt$, $K_3 = \int_{-\infty}^{+\infty} \frac{t}{\sqrt{1+t^2}} dt$

Remarque

- \bullet Choisir judicieusement c pour simplifier les calculs.
- La divergence de l'une des deux intégrales $\int_a^c f(t)dt$ ou $\int_c^b f(t)dt$ suffit à conclure à la divergence de $\int_a^b f(t)dt$.

I.4) Intégrale multiplement impropre

Définition I.4

Soit $(a_1, a_2, ..., a_n)$ tels que $-\infty \le a_1 < a_2 < \cdots < a_{n-1} < a_n \le +\infty$. Soit f une fonction définie et continue sur chaque intervalle $]a_k, a_{k+1}[$ $(k \in [[1, n-1]])$. On dit que l'intégrale $\int_{a_1}^{a_n} f(t)dt$ converge si pour tout $k \in [[1, n-1]]$ l'intégrale $\int_{a_k}^{a_{k+1}} f(t)dt$ converge. En cas de convergence, on pose

$$\int_{a_1}^{a_n} f(t)dt = \sum_{k=1}^{n-1} \int_{a_k}^{a_{k+1}} f(t)dt$$

Remarque

Pour démontrer la convergence d'une telle intégrale, on va "couper" l'intégrale en un certain nombre d'intégrales simplement impropres.

I.5) Intégrales faussement impropres

Proposition I.2

Soit f une fonction continue sur un intervalle [a,b[, avec $(a,b) \in \mathbb{R}^2$, a < b. Si f est prolongeable par continuité en une fonction continue \tilde{f} sur [a,b] alors $\int_a^b f(t)dt$ est convergente et $\int_a^b f(t)dt = \int_a^b \tilde{f}(t)dt$. Dans ce cas on dit que l'intégrale est **faussement impropre** en b.

Remarque

Bien sûr, on a le résultat analogue pour une intégrale faussement impropre en a.

- Montrer que l'intégrale $\int_0^1 \frac{e^x-1}{x} dx$ est convergente.
- Montrer que l'intégrale $\int_0^1 e^{-\frac{1}{x}} dx$ est convergente.

I.6) Divergence triviale en $+\infty$ ou en $-\infty$

Proposition I.3

Soit a un réel et f continue sur $[a; +\infty[$. Si la fonction f tend vers un réel $l \neq 0$, vers $+\infty$ ou vers $-\infty$ alors l'intégrale $\int_{a}^{+\infty} f(t)dt$ est divergente.

I.7) Intégrale des fonctions continues par morceaux

Définition I.5

Soient a et b deux réels tels que a < b et soit f une fonction définie sur [a, b].

On dit que la fonction f est continue par morceaux sur l'intervalle [a,b] lorsqu'il existe une subdivision $a_0 = a < a_1 < a_2 < \ldots < a_n = b$ telle que la restriction de f à chaque intervalle a_i, a_{i+1} notée $f_{a_i,a_{i+1}}$ admet un prolongement continu sur l'intervalle fermé $[a_i,a_{i+1}]$.

Proposition I.4

Avec les notations ci-dessus, l'intégrale $\int_{a}^{a_n} f(t)dt$ converge et

$$\int_{a_0}^{a_n} f(t)dt = \sum_{k=0}^{n-1} \int_{a_k}^{a_{k+1}} f(t)dt$$

Reste d'une intégrale impropre convergente

Soient a un réel. Soit b un réel supérieur ou égal à a ou $b = +\infty$. Soit f une fonction continue sur [a, b] mais pas en b.

Proposition I.5

Si l'intégrale $\int_{a}^{b} f(t)dt$, impropre en b est **convergente** alors

$$\lim_{\substack{x \to b \\ <}} \left(\int_{x}^{b} f(t)dt \right) = 0.$$

Autrement dit : le reste d'une intégrale impropre convergente tend vers 0.

Soient b désignant un réel et a désignant un réel inférieur ou égal à b ou $-\infty$.

Proposition I.6

Si l'intégrale $\int_a^b f(t)dt$, impropre en a est **convergente** alors

$$\lim_{x \to a} \left(\int_a^x f(t) \ dt \right) = 0.$$

Exercice 5 Justifier que
$$\lim_{x\to +\infty} \left(\int_x^{+\infty} \frac{1}{t^2} dt \right) = 0.$$

II. Intégrales usuelles

Fonction exponentielle

Théorème II.1 Soit $\alpha\in\mathbb{R}$. L'intégrale $\int_0^{+\infty}e^{-\alpha t}dt$ converge si et seulement si $\alpha>0$.

Dans le cas où $\alpha > 0$,

$$\int_{0}^{+\infty} e^{-\alpha t} dt = \frac{1}{\alpha}$$

Intégrales de Riemann

Théorème II.2

Intégrales de Riemann "simples"

Soit $\alpha \in \mathbb{R}$.

- 1. L'intégrale $\int_{-t\alpha}^{+\infty} \frac{1}{t\alpha} dt$ converge si et seulement si $\alpha > 1$.
- 2. L'intégrale $\int_{-t\alpha}^{1} \frac{1}{t\alpha} dt$ converge si et seulement si $\alpha < 1$.

Théorème II.3

Intégrales de Riemann "simples" (variante)

Soit $\alpha \in \mathbb{R}$ et c un réel strictement positif.

- 1. L'intégrale $\int_{-t\alpha}^{+\infty} \frac{1}{t^{\alpha}} dt$ converge si et seulement si $\alpha > 1$.
- 2. L'intégrale $\int_{-t\alpha}^{c} \frac{1}{t} dt$ converge si et seulement si $\alpha < 1$.

Théorème II.4

Intégrales de Riemann impropres en un point

Soit a et b deux réels, a < b. Soit $\alpha \in \mathbb{R}$.

- 1. L'intégrale $\int_{-\infty}^{b} \frac{1}{(b-t)^{\alpha}} dt$ converge si et seulement si $\alpha < 1$.
- 2. L'intégrale $\int_{a}^{b} \frac{1}{(t-a)^{\alpha}} dt$ converge si et seulement si $\alpha < 1$.

Exemple

Déterminer la nature des intégrales suivantes :

$$I_1 = \int_0^1 \frac{1}{\sqrt{1-t}} \ dt, \quad I_2 = \int_{-1}^0 \frac{1}{(t+1)\sqrt{t+1}} \ dt \qquad \ I_3 = \int_{-1}^1 \frac{1}{\sqrt{1-t^2}} \ dt$$

II.3) L'intégrale de Gauss

Théorème II.5

Intégrale de Gauss

$$\int_{-\infty}^{+\infty} e^{-\frac{t^2}{2} dt} \text{ existe et } \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt = 1$$

Théorème II.6

Soit m un réel et σ un réel strictement positif.

$$\int_{-\infty}^{+\infty} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{t-m}{\sigma}\right)^2} \ dt \ \text{ existe } \text{ et } \int_{-\infty}^{+\infty} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{t-m}{\sigma}\right)^2} \ dt = 1$$

On note $\forall t \in \mathbb{R}, \ f(t) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{t-m}{\sigma}\right)^2}$ On verra dans le cours des variables à densités que f est une densité.

Un exercice: Logarithme (HP) II.4)

L'intégrale $\int_{0}^{1} \ln(t)dt$ converge et $\int_{0}^{1} \ln(t)dt = -1$.

Remarque

Pas au programme mais sert souvent !!!

Propriétés et méthodes de calcul

III.1) Propriétés

Proposition III.1

Permutation des bornes

Soit a désignant un réel et soit b désignant un réel strictement supérieur à a, ou bien $+\infty$. Soit f une application continue sur l'intervalle [a, b]

- Les deux intégrales $\int_a^b f(t) dt$ et $\int_a^a f(t) dt$ sont de même nature.
- Si $\int_a^b f(t) dt$ existe alors $\int_b^a f(t) dt$ existe aussi et $\int_b^a f(t) dt = -\int_a^b f(t) dt$

Proposition III.2

Linéarité

Soit f et g deux fonctions continues sur [a,b[, telles que les intégrales $\int_a^b f(t)dt$ et $\int_a^b g(t)dt$ soient convergentes. Soit λ un réel. Alors : $\int_{a}^{b} \lambda f(t) + q(t) dt$ est convergente et

$$\int_a^b \lambda.f(t) + g(t) \ dt = \lambda. \int_a^b f(t) \ dt + \int_a^b g(t) \ dt$$

Proposition III.3

Relation de Chasles

Soit f une application continue sur un intervalle [a,b], telle que $\int_a^b f(t)dt$ soit convergente. Alors pour tout $c \in [a, b], \int_{c}^{b} f(t)dt$ est convergente et

$$\int_{a}^{b} f(t)dt = \int_{a}^{c} f(t)dt + \int_{c}^{b} f(t)dt$$

Proposition III.4

Positivité

Soit f une fonction continue sur [a, b]. Si:

- 1. $\int_a^b f(t)dt$ converge,
- 2. f est à valeurs positives,
- 3. les bornes sont dans le bon sens a < b

alors
$$\int_a^b f(t)dt \ge 0$$
.

Proposition III.5

Croissance de l'intégrale

Si f et g sont deux fonctions continues sur [a, b]. Si :

- 1. les intégrales $\int_a^b f(t)dt$ et $\int_a^b g(t)dt$ soient convergentes,
- 2. pour tout $t \in [a, b]$, $f(t) \leq g(t)$,
- 3. les bornes sont dans le bon sens a < b

alors
$$\int_a^b f(t)dt \le \int_a^b g(t)dt$$
.

Proposition III.6

Stricte positivité

Soit f une application continue sur un intervalle [a, b]. Si:

- 1. $\int_a^b f(t)dt$ est convergente,
- 2. f est à valeurs positives,
- 3. f est différente de la fonction nulle sur l'intervalle [a, b],

alors
$$\int_a^b f(t)dt > 0$$
.

Théorème III.1

Fonction continue positive d'intégrale nulle

Soit f une application continue sur un intervalle [a, b]. Si:

- 1. $\int_{a}^{b} f(t)dt$ est convergente,
- 2. pour tout $t \in [a, b], f(t) > 0$,
- 3. $\int_{a}^{b} f(t)dt = 0$,

alors f est la fonction nulle sur [a, b]: $\forall t \in [a, b], f(t) = 0$.

Toutes ces propriétés se généralisent au cas des intégrales impropres en a.

III.2) Techniques de calcul

III.2.1 Intégration par parties

Les intégrations par parties sont autorisées uniquement pour des intégrales bien définies sur un segment [a,b]. Il est **interdit de réaliser des intégrations par parties "sur bornes impropres"** (se méfier en particulier des bornes finies mais impropres)!

Lorsque vous souhaitez faire une IPP, il faut **revenir à des bornes propres** puis faire un ou deux passages (ou deux passages successifs) à la limite soigneusement en justifiant tout (limites et puissances, croissances comparées, existence d'intégrales...)

Exercice 7

Justifier que les intégrales suivantes convergent et déterminer leur valeur :

$$I_1 = \int_0^1 t \ln(t) \ dt \ \text{et} \ I_2 = \int_0^{+\infty} \ln\left(1 + \frac{1}{t^2}\right) \ dt$$

III.2.2 Changement de variable

Un changement de variable par l'intermédiaire d'une fonction de classe C^1 et strictement monotone (donc d'une bijection C^1) ne change pas la nature d'une intégrale impropre.

Théorème III.2

Soient a et b tels que a < b (avec $-\infty \le a < b \le +\infty$).

Soient α et β tels que $\alpha < \beta$ (idem).

Soient f une fonction continue sur [a,b]. Soit φ une fonction définie sur $[\alpha,\beta]$

- Si $\lim_{t\to\alpha} \varphi(t) = a$ et $\lim_{t\to\beta} \varphi(t) = b$
 - et si φ est une fonction de classe \mathcal{C}^1 et strictement croissante sur $]\alpha,\beta[$ d'ensemble image]a,b[, alors les intégrales $\int_a^b f(x)dx$ et $\int_\alpha^\beta f(\varphi(t))\varphi'(t)dt$ sont de même nature. Si elles sont convergentes alors

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt$$

- Si $\lim_{t\to\alpha} \varphi(t) = b$ et $\lim_{t\to\beta} \varphi(t) = a$
- et si φ est une fonction de classe \mathcal{C}^1 et strictement décroissante sur $]\alpha, \beta[$ d'ensemble image]a,b[.

alors les intégrales $\int_a^b f(x)dx$ et $\int_\alpha^\beta f(\varphi(t))\varphi'(t)dt$ sont de même nature. Si elles sont convergentes alors

$$\int_{a}^{b} f(x)dx = \int_{\beta}^{\alpha} f(\varphi(t))\varphi'(t)dt$$

Rédaction type

Le changement de variables $u = \varphi(t)$ est donné par une fonction φ de classe \mathcal{C}^1 et strictement monotone sur ..., bijective de ... sur ...

Bornes:, $du = \varphi'(t)dt$.

Les intégrales ... et ... sont de même nature.

Rédaction type rapide pour changement de variables affines

Le changement de variables u = at + b est affine non constant, donc autorisé.

Exemple

On considère l'intégrale impropre

$$I = \int_{-\infty}^{+\infty} \frac{1}{e^{-x} + e^x} \ dx$$

A l'aide du changement de variables $t=e^{-x}$, montrons que l'intégrale I converge et déterminons sa valeur.

Posons $t=e^{-x}$. La fonction $x\mapsto e^{-x}$ est de classe C^1 et strictement décroissante sur $]-\infty;+\infty[$. Elle réalise une bijection de $]-\infty;+\infty[$ sur $]0,+\infty[$. Le changement de variables est donc autorisé. Bornes

$$\left\{ \begin{array}{l} x \to -\infty \\ x \to +\infty \end{array} \right. \to \left\{ \begin{array}{l} t \to +\infty \\ t \to 0 \end{array} \right.$$

 $dt = -e^{-x}dx.$

A l'aide de ce changement de variables,

$$I = \int_{-\infty}^{+\infty} \frac{1}{e^{-x} + e^x} dx \ = \int_{-\infty}^{+\infty} \frac{1}{e^x (1 + e^{-2x})} dx \ = \int_{-\infty}^{+\infty} \frac{1}{1 + e^{-2x}} . e^{-x} dx$$

est de même nature que

$$J = -\int_{+\infty}^{0} \frac{1}{1+t^2} dt = \int_{0}^{+\infty} \frac{1}{1+t^2} dt$$

Si ces intégrales convergent, elles sont égales.

Posons $A \in \mathbb{R}_+$. Alors

$$\int_0^A \frac{1}{1+t^2} dt = [Arctan(t)]_0^A = Arctan(A) - Arctan(0) \rightarrow_{A \rightarrow +\infty} \frac{\pi}{2}$$

Donc $\int_0^{+\infty} \frac{1}{1+t^2} dt$ converge et vaut $\frac{\pi}{2}$. Donc finalement l'intégrale I converge et

$$I = \int_{-\infty}^{+\infty} \frac{1}{1+t^2} dt = \frac{\pi}{2}$$

Exercice 8

Déterminer la nature de l'intégrale suivante : $I_1 = \int_0^1 \sin\left(\frac{1}{t}\right) dt$.

III.2.3 Fonctions paires et impaires

Théorème III.3

Soit b désignant un réel strictement positif ou $+\infty$. Soit f une fonction définie sur]-b,b[

- Si f est paire alors $\int_0^b f(t)dt$ et $\int_{-b}^b f(t)dt$ sont de même nature.
- Si f est paire et si $\int_0^b f(t)dt$ existe alors $\int_{-b}^b f(t)dt$ existe et $\int_{-b}^b f(t)dt = 2\int_0^b f(t)dt$
- Si f est impaire alors $\int_0^b f(t)dt$ et $\int_{-b}^b f(t)dt$ sont de même nature.
- Si f est impaire et si $\int_0^b f(t)dt$ existe alors $\int_{-b}^b f(t)dt$ existe et $\int_{-b}^b f(t)dt=0$

Exercice 9

Justifier l'existence et préciser la valeur de $I_1 = \int_{-\infty}^{+\infty} t^3 e^{-t^2} dt$ Justifier l'existence de $J_k = \int_{-1}^{1} \frac{t^k}{\sqrt{1-t^2}} dt$ pour tout $k \in \mathbb{N}$.

Critères de convergence pour les fonctions positives

Proposition IV.1

Soit f une fonction continue sur [a,b], à valeurs positives. Alors $\int_a^b f(t)dt$ converge si et seulement si la fonction $x \mapsto \int_a^x f(t)dt$ est majorée sur [a,b]

Théorème IV.1

Soit f et g deux fonctions continues sur [a, b]

1. Critère de comparaison Si f et g sont positives, et pour tout $t \in [a,b[,\,f(t) \leq g(t)$ alors :

- si l'intégrale $\int_{a}^{b} g(t)dt$ converge alors l'intégrale $\int_{a}^{b} f(t)dt$ converge;
- si l'intégrale $\int_a^b f(t)dt$ diverge alors l'intégrale $\int_a^b g(t)dt$ diverge.

2. Critère d'équivalence

Si g est positive sur un voisinage de b et si $f(t) \sim_{t \to b} g(t)$ alors les intégrales $\int_a^b f(t)dt$ et $\int_a^b g(t)dt$ sont de même nature : toutes les deux convergentes ou toutes les deux divergentes.

3. Critère de négligeabilité

Si g est positive sur un voisinage de b et si $f(t) = o_{t\to b}(g(t))$. Alors:

- si l'intégrale $\int_a^b g(t)dt$ converge alors l'intégrale $\int_a^b f(t)dt$ converge.
- si l'intégrale $\int_{-}^{b} f(t)dt$ diverge alors l'intégrale $\int_{-}^{b} g(t)dt$ diverge.

Exercice 10

Déterminer la nature des intégrales impropres suivantes

$$\begin{split} I_1 &= \int_0^{+\infty} \frac{e^{-t}}{\sqrt{1+t^2}} dt & I_2 = \int_0^{+\infty} \frac{t^2+1}{t^4+2} dt & I_3 = \int_0^{+\infty} P(t) e^{-t^2} dt \text{ où } P \in \mathbb{R}[X] \\ I_4 &= \int_1^{+\infty} \ln(1+\frac{1}{\sqrt{t}}) dt & I_5 = \int_1^{+\infty} \frac{\sin^2(t)}{t^2} dt & I_6 = \int_2^{+\infty} \frac{1}{\ln(t)} dt \\ I_7 &= \int_0^1 \frac{P(t)}{\sqrt{1-t}} dt \text{ où } P \in \mathbb{R}[X] \end{split}$$

Les critères ci-dessus peuvent aussi s'utiliser pour des fonctions à valeurs négatives.

Convergence absolue

Soit f une fonction continue sur [a, b]. On dit que l'intégrale $\int_a^b f(t)dt$ converge absolument si l'intégrale $\int_{a}^{b} |f(t)| dt$ converge.

Soit f une fonction continue sur [a, b]. Si $\int_a^b f(t)dt$ est absolument convergente alors elle est convergente et de plus

$$\left|\int_{a}^{b} f(t)dt\right| \leq \int_{a}^{b} |f(t)|dt$$
 (bornes dans le bon sens : $a \leq b$)

Exercice 11

montrer que l'intégrale $\int_{1}^{+\infty} \frac{\sin(t)}{t^2} dt$ converge.

Il ne s'agit pas d'une équivalence. Par exemple, on peut montrer que l'intégrale de Dirichlet $\int_1^{+\infty} \frac{\sin(t)}{t} dt$ est convergente mais n'est pas absolument convergente (voir le TD).

VI. La fonction Gamma

Exercice 12

Soit x un réel et

$$\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$$

On souhaite déterminer les valeurs de x pour lesquelles cette intégrale $\Gamma(x)$ est convergente.

- 1. Montrer que la fonction $t \mapsto t^{x-1}e^{-t}$ est continue sur $[0, +\infty[$ si $x \ge 1$, et est continue sur $]0, +\infty[$ si
- 2. Montrer que l'intégrale $\int_{-\infty}^{+\infty} t^{x-1}e^{-t}dt$ est convergente quel que soit le réel x.
- 3. Montrer que l'intégrale $\int_{-t}^{t} t^{x-1} e^{-t} dt$ converge si et seulement si x > 0.
- 4. Conclure. Quel est le domaine de définition de la fonction $\Gamma: x \mapsto \Gamma(x)$?

Théorème VI.1

La fonction Gamma, notée Γ , est la fonction définie sur $]0; +\infty[$ par

$$\forall x \in]0, +\infty[, \Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$$

- $\Gamma(1) = 1$ et pour tout x > 0, $\Gamma(x) > 0$.
- Pour tout x > 0, $\Gamma(x+1) = x.\Gamma(x)$.
- Pour tout $n \in \mathbb{N}$, $\Gamma(n+1) = n!$

Exercice 13

- 1. A l'aide du changement de variables $t=u^2/2$, montrer que $\Gamma(\frac{1}{2})=\sqrt{\pi}$.
- 2. Montrer que pour tout $n \in \mathbb{N}$,

$$\Gamma(n+\frac{1}{2}) = \frac{(2n)! \sqrt{\pi}}{4^n n!}$$